МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Антрацитовский институт геосистем и технологий Кафедра экономики и транспорта

УТВЕРЖДАЮ

— итранитовского института

— доц. Крохмалёва Е.Г.

— 2023 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

По дисциплине Прикладная механика (Теория машин и

механизмов)

Направление подготовки 23.03.01 Технология транспортных

процессов

Профиль Организация перевозок и управление на

автомобильном транспорте

Лист согласования РПУД

Рабочая программа учебной дисциплины «Прикладная механика (Теория машин и механизмов)» по направлению подготовки 23.03.01 Технология транспортных процессов. – 15 с.

Рабочая программа учебной дисциплины «Прикладная механика (Теория машин и механизмов)» составлена на основе федерального государственного образовательного стандарта высшего образования по направлению подготовки 23.03.01 Технология транспортных процессов, утвержденного приказом Министерства науки и высшего образования Российской Федерации от «7» августа 2020 года № 911, зарегистрированным в Министерстве юстиции Российской Федерации «24» августа 2020 года за № 59352, учебного плана по направлению подготовки 23.03.01 Технология транспортных процессов (профиль «Организация перевозок и управление на автомобильном транспорте») и Положения о рабочей программе учебной дисциплины в ФГБОУ ВО «ЛГУ им. В. Даля».

СОСТАВИТЕЛИ:

к.т.н, доцент, доцент кафедры экономики и транспорта Савченко И.В. старший преподаватель кафедры экономики и транспорта Лукьянова В.П.

Рабочая программа учебной дисциплины утверждена на заседании кафедры
экономики и транспорта
« <u>/4</u> » <u>04</u> 20 <u>2</u> З ода, протокол № <u>9</u>
Заведующий кафедрой проф. Артёменко В.А.
Переутверждена: «»20 года, протокол №
Рекомендована на заседании учебно-методической комиссии Антрацитовского института геосистем и технологий «2/» 04 20 2 вода, протокол № <u>8</u>
Председатель учебно-методической доц. Савченко И.В.

[©] Савченко И.В., Лукьянова В.П., 2023 год

Структура и содержание дисциплины

1. Цели и задачи дисциплины, ее место в учебном процессе

Цели дисциплины:

дать студентам, будущим инженерам знания об общих методах структурного, кинематического и динамического анализа и синтеза различных механизмов, механику машин.

Задачи дисциплины:

научить студентов общим методам исследования и проектирования механизмов машин и приборов; принципам реализации движения с помощью механизмов и взаимодействия механизмов и машин, обуславливающим кинематические и динамические свойства механической системы; системному подходу к проектированию машин и механизмов, нахождению оптимальных параметров механизмов по заданным условиям работы.

2. Место дисциплины в структуре ОПОП ВО.

Дисциплина «Прикладная механика (Теория машин и механизмов)» относится к обязательной части дисциплин.

Освоение дисциплины осуществляется по очной и заочной форме обучения в четвёртом семестре.

Содержание дисциплины является логическим продолжением содержания дисциплин «Теоретическая механика», «Начертательная геометрия и инженерная графика», «Высшая математика», «Прикладная механика (Сопротивление материалов)» и служит основой для изучения дисциплин «Прикладная механика (Детали машин)».

3. Требования к результатам освоения содержания дисциплины

3. Требования к результатам освоения содержания дисциплины

Студенты, завершившие изучение дисциплины «Прикладная механика (Теория машин и механизмов)», должны:

знать:

структурообразование механизмов машин, методы их синтеза, статического, кинематического и динамического расчетов; методы исследования и проектирования механизмов машин и деталей по критериям работоспособности;

уметь:

выполнять технические чертежи рычажных, зубчатых, и кулачковых механизмов; выполнять расчеты и механизмов при анализе и синтезе; решать вопросы связанные с выбором кинематических схем механизмов, их расчетом, динамикой их движения, с подбором основных параметров двигателей;

владеть навыками:

общими методами исследования и проектирования механизмов машин;

навыками решения прикладных задач; методами структурного, кинематического и динамического анализа и синтеза рычажного, кулачкового и зубчатого механизмов; самостоятельно принимать решения при выполнении исследовательских задач; моделирования механизмов; применять метод аналогов при синтезе механизмов.

Перечисленные результаты образования являются основой для формирования следующих компетенций:

общепрофессиональные:

ОПК-1 — Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности

4. Структура и содержание дисциплины

4.1 Объем учебной дисциплины и виды учебной работы

	Объем часов (зач. ед.)		
Вид учебной работы	Очная	Очно-заочная	Заочная
	форма	форма	форма
Объем учебной дисциплины (всего)	108		108
Ооъем учеоной дисциплины (всего)	(3 зач. ед.)		(3 зач. ед.)
Обязательная аудиторная учебная нагрузка			
дисциплины (всего)	68		12
в том числе:			
Лекции	34		6
Практические (семинарские) занятия	34		6
Лабораторные работы	-		-
Курсовая работа (курсовой проект)	-		-
Другие формы и методы организации	18		18
образовательного процесса	10		10
Самостоятельная работа студента (всего)	40		96
Итоговая аттестация	экз		экз

4.2. Содержание разделов дисциплины

Тема 1. Введение.

Предмет и задачи курса «Прикладная механика». Разделы курса, их краткая характеристика. Фундаментальные основы взаимосвязи со специальными дисциплинами. Основные понятия и определения: изделия машиностроения, оборудование, машина, аппарат, установка, прибор, механизм, деталь. Обзор основных видов механизмов. Главные критерии работоспособности.

Тема 2. Структура и классификация механизмов (звенья, КП, КЦ).

Звенья механизмов. Кинематические пары и их классификация. Кинематические цепи и их классификация.

Тема 2. Структура механизмов. Степень подвижности механизма.

Структурная формула пространственной и плоской кинематических цепей. Определение понятий: степень подвижности, число лишних связей. Замена высших кинематических пар низшими. Структурная классификация плоских механизмов. Метод образования рычажных механизмов.

Тема 2. Структура механизмов. Группы Ассура.

Структурные группы Ассура, их свойства, классификация. Определение класса механизма. Построение структурной схемы механизма.

Тема 3. Кинематика механизмов. Траектории движения точек механизма.

Кинематический анализ плоских механизмов. Главные задачи кинематического анализа и методы решения. Построение положений звеньев механизма методом геометрических засечек. Определение положений звеньев механизмов и траекторий, описываемых точками звеньев механизма второго класса.

Тема 3. Кинематика механизмов. Скорости движения точек механизма.

Методы определения скоростей точек механизма. Определение скоростей точек звеньев механизма методом планов. Теорема о подобии фигур плана скоростей и схемы механизма. Определение угловых скоростей звеньев механизма.

Тема 3. Кинематика механизмов. Ускорения движения точек механизма.

Методы определения ускорений точек механизма. Определение ускорений точек звеньев механизма методом планов. Теорема о подобии фигур плана ускорений и схемы механизма. Определение угловых ускорений звеньев механизма. Аналоги скорости и ускорений.

Тема 4. Динамический анализ механизмов и машин. Метод кинетостатики.

Силы, действующие на звенья механизма. Задачи силового анализа механизма. Метод кинетостатики силового расчета. Система сил инерции, которые действуют на механизм. Статически определимые группы Ассура. Определение реакций в кинематических парах. Силовой расчет начального звена.

Тема 4. Динамический анализ механизмов и машин. Теорема Жуковского.

Теорема Н.Е. Жуковского о жестком рычаге. Определение уравновешивающей силы. Определение уравновешивающего момента.

Tema 4. Динамический анализ механизмов и машин. Силовой расчет с учетом сил трения.

Виды и законы трения. Трения на горизонтальных и наклонных плоскостях.

Самоторможение. Трение гибкой связью. Закон Эйлера. Трение в кинематических парах: поступательной, винтовой, вращательной.

Тема 4. Динамический анализ механизмов и машин. КПД.

Коэффициент полезного действия машин. Определение КПД различных кинематических пар. Общий механический КПД последовательного и параллельного соединения механизмов. Уравнение энергетического баланса машины.

Тема 4. Динамический анализ механизмов и машин. Регулирование движения машин.

Характеристики сил, действующих на звенья машинного агрегата. машинного агрегата Динамическая модель форме дифференциального В уравнения и в форме уравнения кинематической энергии. Приведение сил и масс машинного агрегата. Численное определение закона движения машинного агрегата при силах, зависящих от скорости и положенья звеньев. Определение обеспечивающего инерции маховика, заданный коэффициент момента неравномерности хода при позиционных силах.

Тема 4. Динамический анализ механизмов и машин. Уравновешивание масс.

Влияние неуравновешенных сил в машине на ее опоры и фундамент. Задача об уравновешивании масс. Уравновешивание вращающихся масс. Статистическая и динамическая балансировки вращающихся масс.

Тема 5. Механизмы с высшими кинематическими парами. Кулачковые механизмы.

Назначение и устройство. Основные виды кулачковых механизмов. Кинематический анализ кулачкового механизма. Синтез кулачкового механизма.

Тема 5. Механизмы с высшими кинематическими парами. Зубчатые механизмы.

Типы зубчатых механизмов. Основной закон зацепления. Синтез зубчатой передачи. Передаточное отношение простых и сложных зубчатых механизмов.

Тема 5. Механизмы с высшими кинематическими парами. Волновые передачи.

Назначение волновых передач. Устройство волновых передач. Классификация волновых передач. Особенности кинематических расчетов волновых передач.

Тема 5. Механизмы с высшими кинематическими парами. Планетарные передачи.

Дифференциальные передачи. Назначение планетарных передач. Устройство планетарных передач. Классификация планетарных передач. Особенности кинематических расчетов планетарных передач.

Тема 5. Механизмы с высшими кинематическими парами. Механизмы прерывистого одностороннего движения.

Назначение механизмов прерывистого одностороннего движения. Устройство механизмов прерывистого одностороннего движения. Классификация механизмов прерывистого одностороннего движения. Особенности кинематических расчетов механизмов прерывистого одностороннего движения.

4.3. Лекции.

		Объем часов		
№ п/п	Название темы		Очно- заочная форма	Заочная форма
1	Тема 1: Введение.	1		
2	Тема 2: Структура и классификация механизмов. (Звенья, КП, КЦ)	1		0,5
3	Тема 2: Структура механизмов. Степень подвижности механизма.	2		0,5
4	Тема 2: Структура механизмов. Группы Ассура.	2		
5	Тема 3: Кинематика механизмов. Траектории движения точек механизма.	2		0,5
6	Тема 3: Кинематика механизмов. Скорости движения точек механизма.	2		1
7	Тема 3: Кинематика механизмов. Ускорения движения точек механизма.	2		1
8 Тема 4: Динамический анализ механизмов и машин. Метод кинетостатики.			1	
9				0,5
10	Тема 4: Динамический анализ механизмов и машин. Силовой расчет с учетом сил трения.	2		
11	Тема 4: Динамический анализ механизмов и машин. КПД.	2		
12				
13	Тема 4: Динамический анализ механизмов и машин. Уравновешивание масс.	2		
14	Тема 5: Механизмы с высшими кинематическими парами. Кулачковые механизмы.	2		
15	Тема 5: Механизмы с высшими кинематическими парами. Зубчатые механизмы.	2		1
16				
17	* ' '			
18				
Итог	• • • • • • • • • • • • • • • • • • • •	34 6		

4.4. Практические (семинарские) занятия.

	Название темы		Объем часов		
№ п/п			Очно- заочная форма	Заочная форма	
1	Структурный анализ механизма.	2			
2	 Построение плана положения звеньев и траектории движения отдельных точек механизма. 		0,5		
3	Определений перемещений всех точек механизма.	2		0,5	
4	Определение скоростей точек и звеньев механизма.	2			
5	Определение ускорений точек и звеньев механизма.			0,5	
6			1		
7				1	
8	Определение приведенной силы.	1 1		1	
9	Определение приведенной массы.	1		0,5	
10	Построение эвольвентного зацепления зубчатого колеса.	4			
11					
12	•				
13					
14					
15	Особенности работы механизмов прерывистого действия.	2		1	
Итог	TO:	34		6	

4.5. Лабораторные работы.

Лабораторные работы программой не предусматриваются.

4.6. Самостоятельная работа студентов.

			(Объем час	0B
№ п/п	Название темы	Вид СРС	Очная форма	Очно- заочная форма	Заочная форма
1	Тема 1: Введение.	изучение лекционного материала; подготовка к опросу	2 5		
2	Тема 2: Структура и классификация механизмов. (Звенья, КП, КЦ)	подготовка к опросу; защита			5
3	Тема 2: Структура механизмов. Степень подвижности механизма.	изучение лекционного материала; подготовка к опросу; защита практической работы; защита индивидуального задания; выполнение контрольной работы	2 5		5

			1	
4	Тема 2: Структура механизмов. Группы Ассура.	изучение лекционного материала; подготовка к опросу; защита практической работы; защита индивидуального задания; выполнение контрольной работы	2	6
5	Тема 3: Кинематика механизмов. Траектории движения точек механизма.	изучение лекционного материала; подготовка к опросу; защита практической работы; защита индивидуального задания; выполнение контрольной работы	3	6
6	Тема 3: Кинематика механизмов. Скорости движения точек механизма.	изучение лекционного материала; подготовка к опросу; защита практической работы; защита индивидуального задания; выполнение контрольной работы	3	6
7	Тема 3: Кинематика механизмов. Ускорения движения точек механизма.	изучение лекционного материала; подготовка к опросу; защита практической работы; защита индивидуального задания; выполнение контрольной работы	3	6
8	Тема 4: Динамический анализ механизмов и машин. Метод кинетостатики.	изучение лекционного материала; подготовка к опросу; защита практической работы; защита индивидуального задания; выполнение контрольной работы	3	6
9	Тема 4: Динамический анализ механизмов и машин. Теорема Жуковского	изучение лекционного материала; подготовка к опросу; защита практической работы; защита индивидуального задания; выполнение контрольной работы	2	6
10	Тема 4: Динамический анализ механизмов и машин. Силовой расчет с учетом сил трения.	изучение лекционного материала; подготовка к опросу; выполнение контрольной работы	2	5
11	Тема 4: Динамический анализ механизмов и машин. КПД.	изучение лекционного материала; подготовка к опросу; выполнение контрольной работы		
12	Тема 4: Динамический анализ механизмов и машин. Регулирование движения машин	изучение лекционного материала; подготовка к опросу; выполнение контрольной работы	лекционного материала; ка к опросу; выполнение	
13	Тема 4: Динамический анализ механизмов и машин. Уравновешивание масс.	изучение лекционного материала; подготовка к опросу; выполнение контрольной работы	2	5
14	Тема 5: Механизмы с высшими кинематическими парами. Кулачковые механизмы.	изучение лекционного материала; подготовка к опросу; защита практической работы; выполнение контрольной работы	2	5

Ито	прерывистого одностороннего движения.		40	96
18	Тема 5: Механизмы с высшими кинематическими парами. Механизмы	изучение лекционного материала; подготовка к опросу; защита практической работы; выполнение контрольной работы	2	5
17	Тема 5: Механизмы с высшими кинематическими парами. Планетарные передачи.	изучение лекционного материала; подготовка к опросу; защита практической работы; выполнение контрольной работы	2	5
16	Тема 5: Механизмы с высшими кинематическими парами. Волновые передачи.	изучение лекционного материала; подготовка к опросу; защита практической работы; выполнение контрольной работы	2 5	
15	Тема 5: Механизмы с высшими кинематическими парами. Зубчатые механизмы.	изучение лекционного материала; подготовка к опросу; защита практической работы; выполнение контрольной работы	2	5

4.7. Курсовые работы/проекты.

Курсовые работы/проекты программой не предусматриваются.

5. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

традиционные объяснительно-иллюстративные технологии, которые обеспечивают доступность учебного материала для большинства студентов, системность, отработанность организационных форм и привычных методов, относительно малые затраты времени;

проблемного обучения, технологии направленные развитие на активности, творческой самостоятельности познавательной студентов предполагающие последовательное и целенаправленное выдвижение перед студентом познавательных задач, разрешение которых позволяет студентам знания (используются поисковые активно усваивать методы; постановка познавательных задач);

технологии развивающего обучения, позволяющие ориентировать учебный процесс на потенциальные возможности студентов, их реализацию и развитие;

технологии концентрированного обучения, суть которых состоит в создании максимально близкой к естественным психологическим особенностям человеческого восприятия структуры учебного процесса и которые дают возможность глубокого и системного изучения содержания учебных дисциплин за счет объединения занятий в тематические блоки;

технологии модульного обучения, дающие возможность обеспечения

гибкости процесса обучения, адаптации его к индивидуальным потребностям и особенностям обучающихся (применяются, как правило, при самостоятельном обучении студентов по индивидуальному учебному плану);

технологии дифференцированного обучения, обеспечивающие возможность создания оптимальных условий для развития интересов и способностей студентов, в том числе и студентов с особыми образовательными потребностями, что позволяет реализовать в культурно-образовательном пространстве университета идею создания равных возможностей для получения образования

технологии активного (контекстного) обучения, с помощью которых осуществляется моделирование предметного, проблемного и социального содержания будущей профессиональной деятельности студентов (используются активные и интерактивные методы обучения) и т.д.

Максимальная эффективность педагогического процесса достигается путем конструирования оптимального комплекса педагогических технологий и (или) их элементов на личностно-ориентированной, деятельностной, диалогической основе и использования необходимых современных средств обучения.

6. Формы контроля освоения дисциплины

Текущая аттестация студентов производится в дискретные временные интервалы лектором и преподавателем, ведущим практические занятия по дисциплине в следующих формах:

опрос лекционного материала;

защита индивидуального задания;

защита практических (расчетно-графических) работ;

выполнение контрольной работы (заочная форма).

Фонды оценочных средств, включающие типовые задания, контрольные работы, тесты и методы контроля, позволяющие оценить результаты текущей и промежуточной аттестации обучающихся по данной дисциплине, помещаются в приложении к рабочей программе в соответствии с «Положением о фонде оценочных средств».

Итоговый контроль по результатам освоения дисциплины проходит в форме письменного экзамена (в четвертом семестре), который включает в себя ответ на два теоретических вопроса и решение задачи. Студенты, выполнившие 75% текущих и контрольных мероприятий на «отлично», а остальные 25 % на «хорошо», имеют право на получение итоговой отличной оценки.

В экзаменационную ведомость и зачетную книжку выставляются оценки по шкале, приведенной в таблице.

Шкала оценивания	Характеристика знания предмета и ответов		
отлично (5)	Студент глубоко и в полном объеме владеет программным материалом. Грамотно, исчерпывающе и логично его излагает в устной или письменной форме. При этом знает рекомендованную литературу, проявляет творческий подход в ответах на вопросы и правильно обосновывает принятые решения, хорошо владеет умениями и навыками при выполнении практических задач.		

хорошо (4)	Студент знает программный материал, грамотно и по сути излагает его в устной или письменной форме, допуская незначительные неточности в утверждениях, трактовках, определениях и категориях или незначительное количество ошибок. При этом владеет необходимыми умениями и навыками при выполнении практических задач.			
	Студент знает только основной программный материал, допускает			
удовлетвори-	неточности, недостаточно четкие формулировки, непоследовательность в			
тельно	ответах, излагаемых в устной или письменной форме. При этом недостаточно владеет умениями и навыками при выполнении			
(3)				
	практических задач. Допускает до 30% ошибок в излагаемых ответах.			
	Студент не знает значительной части программного материала. При этом			
неудовлетвори-	допускает принципиальные ошибки в доказательствах, в трактовке			
тельно	понятий и категорий, проявляет низкую культуру знаний, не владеет основными умениями и навыками при выполнении практических задач.			
(2)				
	Студент отказывается от ответов на дополнительные вопросы.			

7. Учебно-методическое и программно-информационное обеспечение дисциплины:

а) основная литература:

- 1. Мерко М.А., Теория механизмов и машин. Рычажные механизмы / М.А. Мерко, А.В. Колотов, М.В. Меснянкин [и др.] Красноярск: СФУ, 2016. 240 с. ISBN 978-5-7638-3529-8 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785763835298.html
- 2. Мерко М.А., Теория механизмов и машин : учеб. пособие / М.А. Мерко, А.В. Колотов, М.В. Меснянкин, А.А. Шаронов Красноярск: СФУ, 2015. 248 с. ISBN 978-5-7638-3362-1 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785763833621.html
- 3. Фальк И.Н., Теория механизмов и машин: Сборн. тестов / И.Н. Фальк, М.Н. Вьюшина, Т.В. Денискина М.: МИСиС, 2015. 56 с. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ Misis 235.html
- 3. Бардовский А.Д., Прикладная механика: теория механизмов и машин / Бардовский А.Д. М.: МИСиС, 2015. 96 с. ISBN 978-5-87623-889-4 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785876238894.html
- 4. Слободяник Т.М., Прикладная механика. Теория механизмов и машин: лаб. практикум / Т.М. Слободяник М.: МИСиС, 2019. 47 с. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/Misis_226.html

б) дополнительная литература:

- 1. Артоболевский И.И. Теория механизмов и машин: Учеб. для втузов. 4-е изд., перераб. и доп. М.: Наука. гл. ред. физ.-мат. лит., 1988. 610 с.
- 2. Теория механизмов и машин. Кореняко А.С. Издательское объединение «Вища школа», 1976, 444 с
- 3. Теория механизмов и машин: Под ред. К.В. Фролова. М.: Высш. шк., 1987. 496 с.: ил.

- 4. Теория механизмов и машин. Учеб. для втузов / Под ред. К.В. Фролова. 5-е изд., стереотип. М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. 664 с.: ил.
- 5. Смелягин А.И. Теория механизмов и машин. Курсовое проектирование: Учебное пособие. М.: ИНФРА-М; Новосибирск: Изд-во НГТУ, 2006 263 с.

в) методические указания:

- 1. Методические указания к выполнению контрольной работы по дисциплине «Прикладная механика (Теория машин и механизмов)» для студентов технических специальностей и направлений подготовки. / Сост.: Савченко И.В., Лукьянова В.П. Антрацит, 2021. 38 с.
- 2. Методические указания к выполнению практических работ по дисциплине «Прикладная механика (Теория машин и механизмов)» для студентов технических специальностей и направлений подготовки. / Сост.: Савченко И.В., Лукьянова В.П. Антрацит, 2021. 40 с.

г) интернет-ресурсы:

Министерство науки и высшего образования Российской Федерации – http://минобрнауки.pф/

Федеральная служба по надзору в сфере образования и науки – http://obrnadzor.gov.ru/

Портал Федеральных государственных образовательных стандартов высшего образования – http://fgosvo.ru

Федеральный портал «Российское образование» – http://www.edu.ru/

Информационная система «Единое окно доступа к образовательным ресурсам» — http://window.edu.ru/

Федеральный центр информационно-образовательных ресурсов – http://fcior.edu.ru/

Электронные библиотечные системы и ресурсы

Электронно-библиотечная система «StudMed.ru» – https://www.studmed.ru Другие открытые источники

Информационный ресурс библиотеки образовательной организации Научная библиотека имени А. Н. Коняева – http://biblio.dahluniver.ru/

8. Материально – техническое обеспечение дисциплины

Освоение дисциплины «Прикладная механика (Теория машин и механизмов)» осуществляется в академической аудитории, соответствующей действующим санитарным и противопожарным правилам и нормам.

Помещение укомплектовано специализированной мебелью и техническими средствами обучения (учебными плакатами, стендами, макетами и другими наборами демонстрационного оборудования и учебно-наглядных пособий), служащими для представления учебной информации.

Обучающиеся в течение всего периода обучения обеспечены индивидуальным неограниченным доступом к электронно-библиотечным системам, к электронной информационно-образовательной среде организации и к информационно-телекоммуникационной сети «Интернет».

Программное обеспечение:

Функциональное назначение	Бесплатное программное обеспечение	Ссылки
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu
Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx
Браузер	Opera	http://www.opera.com
Почтовый клиент	Mozilla Thunderbird	http://www.mozilla.org/ru/thunderbird
Файл-менеджер	Far Manager	http://www.farmanager.com/download.php
Архиватор	7Zip	http://www.7-zip.org/
Графический редактор	GIMP (GNU Image Manipulation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator
Аудиоплейер	VLC	http://www.videolan.org/vlc/