МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля»

Институт технологий и инженерной механики Кафедра микро- и наноэлектроники

УТВЕРЖДАЮ

директор института технологий и

инженерной механики

Могильная Е.П.

«18»

2023 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Технология получения структур микроэлектроники»

по научной специальности: 2.2.3. Технология и оборудование для производства материалов и приборов электронной техники

Лист согласования рабочей программы учебной дисциплины

Рабочая программа учебной дисциплины «Технология получения структур микроэлектроники» по научной специальности 2.2.3. Технология и оборудование для производства материалов и приборов электронной техники. — 28 с.

Рабочая программа учебной дисциплины «Технология получения структур микроэлектроники» по научной специальности 2.2.3. Технология и оборудование для производства материалов и приборов электронной техники составлена с учетом Федеральных государственных требований в структуре программ подготовки научных и научно-педагогических кадров в аспирантуре, утвержденных Приказом Министерства науки и высшего образования Российской Федерации от 20.10.2021 г. № 951; Приказом Министерства науки и высшего образования Российской Федерации от 24.02.2021 г. № 118 «Об утверждении номенклатуры научных специальностей, по которым присуждаются ученые степени» (с изменениями и дополнениями); Положением о подготовке научных и научно-педагогических кадров В аспирантуре, утвержденного Постановлением Правительства Российской Федерации от 30.11.2021 г. № 2122.

СОСТАВИТЕЛИ:

кандидат технических наук, доцент, заведующий кафедрой микро- и наноэлектроники Войтенко В.А.

Рабочая программа дисциплины утверждена на заседании кафедры микро- и наноэлектроники « $\frac{14}{9}$ » 202 $\frac{3}{2}$ г., протокол № $\frac{9}{2}$
Заведующий кафедрой микро- и наноэлектроники Войтенко В. А. Переутверждена: «» 202 г., протокол \mathbb{N}_{2}
Рекомендована на заседании учебно-методической комиссии института технологий и инженерной механики « 18 » 29 202 г., протокол № 3
Председатель учебно-методической комиссии института технологий и инженерной механики <u>leyus</u> С. Н. Ясуник

[©] Войтенко В.А., 2023 год

[©] ФГБОУ ВО «ЛГУ им. В. Даля», 2023 год

Структура и содержание дисциплины

1. Цели и задачи дисциплины, ее место в учебном процессе

изучения дисциплины «Технология получения структур микроэлектроники» – формирование у аспирантов (соискателя ученой степени) по научной специальности 2.2.3. Технология и оборудование для производства материалов и приборов электронной техники знаний, умений и навыков в области технологии получения И исследования состава, структуры, электрофизических свойств И оптических материалов компонентов микроэлектроники.

Задачи дисциплины — ознакомление аспиранта (соискателя) с теоретическими основами и экспериментальными данными технологических методов получения и исследования материалов и структур микроэлектроники; формирование практических умений и навыков научно-исследовательской работы в области технологии получения и исследования микроструктур.

2. Место дисциплины в структуре ООП ВО

Дисциплина «Технология получения структур микроэлектроники» входит в часть образовательного компонента плана подготовки. Содержание дисциплины является логическим продолжением содержания дисциплины «Процессы микро- и нанотехнологии» и служит основой для осуществления научной и профессиональной деятельности.

3. Требования к результатам освоения содержания дисциплины

Аспиранты, завершившие изучение дисциплины «Технология получения структур микроэлектроники», должны знать: технологию фотолитографического процесса; особенности ионных технологий; ионноплазменное травление материалов; многотигельное и однотигельное испарение сплавов; катодное распыление материалов; диффузионные процессы при изготовлении микроструктур; технологию получения ионно-легированных слоев; методы изготовления межэлементных соединений, пассивных элементов и защитных пленок; методики и базовые средства измерений параметров и характеристик микроструктур; уметь: обрабатывать результаты измерений параметров и характеристик микроструктур; проводить анализ физических процессов, протекающих в микроструктурах; выбирать методики измерений параметров характеристик микроструктур; проводить исследования микроструктур; владеть: навыками расчета режимов диффузии, ионного легирования, травления; навыками работы с нормативной и технической документацией; навыками выбора теоретических и экспериментальных методов выбора исследования; навыками измерительного оборудования исследования материалов и структур электроники; навыками проведения исследования параметров и характеристик микроструктур.

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов
вид учеоной расоты	Очная форма
Общая учебная нагрузка (всего)	108
	(3 зач. ед)
Обязательная аудиторная учебная нагрузка (всего)	36
в том числе:	
Лекции	12
Семинарские занятия	-
Практические занятия	24
Лабораторные работы	-
Курсовая работа (курсовой проект)	-
Другие формы и методы организации	-
образовательного процесса (расчетно-графические	
работы, групповые дискуссии, ролевые игры, тренинг,	
компьютерные симуляции, интерактивные лекции,	
семинары, анализ деловых ситуаций и т.п.)	
Самостоятельная работа (всего)	72
Форма аттестации	зачет

4.2. Содержание разделов дисциплины

Раздел 1. Технология получения микроструктур методами диффузии.

Получение микроструктур методом диффузии. Диффузионные слои. Свободная и вынужденная диффузия. Законы диффузии. Способы проведения диффузии. Технологический процесс диффузии в кремнии. Диффузия в соединениях AIIIBV. Диффузионные процессы при изготовлении ИМС. Метод разделительной диффузии. Диффузионные резисторы. Диффузионные конденсаторы. Дефекты и методы контроля диффузионных структур. Образование дислокаций. Осаждение примесей. Геттерирование.

Раздел 2. Технология получения микроструктур методами ионной имплантации.

Особенности технологий. Ионно-плазменные процессы. ионных Взаимолействие атмосферой поверхностью ионов остаточной c эпитаксии полупроводников. Ионное стимулирование гетероструктур соединений AIIIBV из металлоорганических соединений. Взаимодействие ионных и плазменных потоков с поверхностью подложек. Технология получения ионно-легированных слоев. Высокочастотное диодное распыление. распыление. Методы контроля ионно-легированных Возможности ионной имплантации при создании полупроводниковых приборов Изоляция компонентов интегральных микроструктур. ИМС. имплантация для создания интегральных схем. Ионная имплантация для создания интегральных схем.

Раздел 3. Технология получения микроструктур методами термического испарения и катодного распыления.

Получение микроструктур методами термического испарения. Технологические особенности термического испарения материалов.

Многотигельное испарение сплавов. Однотигельное испарение сплавов. Конденсация пара на подложке. Катодное распыление материалов. Типы электрических разрядов и механизм распыления. Коэффициент распыления и его зависимость от угла падения ионов.

Раздел 4. Технология получения межэлементных соединений и пассивных элементов ИМС.

Технология изготовления межэлементных соединений и контактов. Соединительная металлизация. Алюминиевые межсоединения. Невыпрямляющие контакты. Пассивные элементы интегральных микросхем. Тонкопленочные резисторы. Тонкопленочные конденсаторы. Защитные диэлектрические пленки. Кинетика термического окисления. Термическое окисление кремния в парах воды. Термическое окисление кремния в сухом кислороде. Термическое окисление кремния во влажном кислороде.

Раздел 5. Технология получения защитных пленок и разделительных областей ИМС.

Химическое осаждение пленок нитрида кремния. Реакция взаимодействия кремния с азотом. Реакция взаимодействия силана с аммиаком. Реакция взаимодействия тетрахлорида кремния с аммиаком. Реактивное катодное осаждение пленок нитрида кремния. Контроль качества и толщины защитных диэлектрических пленок диоксида и нитрида кремния. Контроль пористости защитных диэлектрических пленок. Контроль качества дефектов на кремний границе раздела защитная пленка. Защита полупроводниковых пластин веществами на основе кремнийорганических соединений и полимеров. Защита оксидными и нитридными пленками кремния. Зашита пленками оксидов металлов. Зашита пленками стекла. Изоляция областей ИМС. Метод разделительной диффузии. Коллекторная разделительная диффузия. Базовая изолирующая диффузия. Эпик-процесс. Модифицированный эпик-процесс. Позитивный метод изоляции. Метод повторного нанесения поликристаллического кремния. Изопланар. Эпипланар. Полипланар.

Раздел 6. Основные методы исследования параметров и характеристик микроструктур.

Классификация методов исследования параметров и характеристик микроструктур. Оптические методы контроля параметров полупроводников. Оптическая микроскопия. Методы освещения и наблюдения в микроскопии. Оптическая спектроскопия. Характеристики современных приборов оптической спектроскопии. Применение оптического спектрального анализа производстве изделий электроники. Основные методы измерения электрофизических параметров полупроводников. Методы измерения удельного сопротивления полупроводниковых материалов и Двухзондовый метод измерения. Четырехзондовый метод измерения. Метод Ван-дер-Пау. Бесконтактные методы измерения. Установки для измерения сопротивления. Определение ширины запрещенной полупроводника. Измерение подвижности носителей заряда полупроводниках.

Раздел 7. Основные методы определения состава, структуры, морфологии поверхности и геометрических размеров в микроэлектронике.

Применение рентгеноспектрального анализа в производстве изделий электроники. Определение состава твёрдых тел и концентрационных профилей по основным и примесным компонентам методами электронной и ионной спектроскопии. Масс-спектроскопический метод анализа. Основные методы определения твёрдых тел, эпитаксиальных плёнок и плёночных покрытий. Дифракционные методы анализа кристаллической структуры. Применение Рентгеноструктурный анализ. электронной растровой изучения электронной микроскопии структурного ДЛЯ совершенства полупроводников и эпитаксиальных плёнок. Исследование морфологии поверхности и геометрических размеров в структурах микроэлектроники. Интерферометр Майкельсона. Микроинтерферометр Линника. Применение интерферометрических методов исследования материалов структур электроники. Прецизионная профилометрия поверхности.

4.3. Лекции

№ п/п	Название темы	Объем часов
		Очная
		форма
1	Технология получения микроструктур методами диффузии	2
2	Технология получения микроструктур методами ионной	2
2	имплантации	
3	Технология получения микроструктур методами термического	1
3	испарения и катодного распыления	
4	Технология получения межэлементных соединений и	1
	пассивных элементов ИМС	
5	Технология получения защитных пленок и разделительных	2
	областей ИМС	
6	Основные методы исследования параметров и характеристик	2
0	микроструктур	
	Основные методы определения состава, структуры,	2
7	морфологии поверхности и геометрических размеров в	
	микроэлектронике	
Итого:		12

4.4. Практические занятия

№ п/п	Название темы	Объем часов
		Очная
		форма
1	Расчет режимов имплантации для создания микроструктур	2
2	Расчет параметров процесса изготовления ИМС	2
3	Методы получения и исследования карбидокремниевых структур	2
4	Определение толщины тонких диэлектрических пленок цветовым методом и по интерференционной картине	2
5	Расчет сопротивления микроструктуры по результатам четырехзондовых измерений	
6	Расчет сопротивления структуры по результатам двухзондовых измерений 2	
7	Применение метода Ван-дер-Пау	4
8	Расчёт параметров кристаллической решётки и определение состава материала	2

0	Диагностика брака после операции металлизации с помощью	4
9	растрового электронного микроскопа	
10	Расчет коэффициента запыления ступеньки окисла 2	
Итого:		24

4.5. Лабораторные работы - не предусмотрены учебным планом

4.6. Самостоятельная работа студентов

№	4.0. Самостоятельная раоота Название темы	Вид СРС	Объем часов
п/п	пазвание темы	вид СТС	Очная
11/11			форма
	Получение слоев сурьмы методом	Анализ литературы,	форма 10
	термического испарения.	подготовка заданий	10
1	Исследование процессов диффузии,	подготовки зидинин	
1	фотолитографии и получения р-п-		
	перехода.		
	Диффузионные процессы при	Работа с лекционным	10
	изготовлении интегральных	материалом, анализ научно-	
	микросхем. Контроль	методической литературы,	
2	диффузионных слоев. Легирование	подготовка заданий	
	структур с помощью ядерных		
	реакций. Получение структур		
	методом ионной имплантации.		
	Ионная имплантация. Технология и	Работа с лекционным	10
	контроль качества ионно-	материалом, анализ	
3	легированных слоев. Ионная	учебной литературы,	
	имплантация для создания	подготовка заданий	
	интегральных схем.		
	Оптическая спектроскопия.	Углубленный анализ	10
	Характеристики современных	научно-технической	
	приборов оптической	литературы, подготовка	
4	спектроскопии. Применение	заданий	
	оптического спектрального анализа		
	в исследовании материалов и		
	структур электроники.	2.5	12
	Применение	Работа с лекционным	12
	рентгеноспектрального анализа в	материалом, подготовка	
	производстве изделий электроники.	заданий	
_	Определение состава твёрдых тел и		
3	концентрационных профилей по		
	основным и примесным		
	компонентам методами электронной и ионной		
	спектроскопии.		
	Дифракционные методы анализа	Работа с лекционным	10
6	кристаллической структуры.	материалом, подготовка	10
	Рентгеноструктурный анализ.	заданий	
	Применение электронной и		10
	растровой электронной	Работа с лекционным	10
_	микроскопии для изучения	материалом, углубленный	
7	структурного совершенства	анализ научно-	
	полупроводников и	методической литературы,	
	эпитаксиальных плёнок	подготовка заданий	
Ито			72
		i	

5. Образовательные технологии

Реализация дисциплины «Технология получения структур микроэлектроники» осуществляется традиционными методами и средствами организации и проведения образовательного процесса (практические занятия, самостоятельная работа, в том числе с монографиями, учебниками и научными статьями) и инновационными: проблемное обучение, диалоговые и другие активные формы обучения, личностно ориентированные и деятельностноценностные образовательные технологии, в том числе и информационно-коммуникационные технологии.

На практических занятиях аспиранты применяют теоретические знания при решении конкретных научно-технических задач, выступают с докладами и сообщениями, выполняют задания.

Самостоятельная работа предполагает работу с различными источниками учебной и научно-технической информации, включая изучение учебных пособий, монографий, научных статей; самоанализ научной деятельности, сопоставление различных точек зрения по той или иной научно-технической проблеме.

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

Информационные технологии: использование электронных образовательных ресурсов при подготовке практическим занятиям.

Тематическая дискуссия по проблемным вопросам.

Подготовка докладов, сообщений и др.

На практических занятиях, во время самостоятельной и индивидуальной работы, применяются репродуктивной (воспроизведение и повторение видов деятельности по заданиям преподавателя), частично-поисковый (самостоятельное решение проблемы), исследовательский (формирование умений приобретать знания самостоятельно, проводить исследования, делать выводы) методы.

6. Формы контроля освоения дисциплины

Текущая аттестация студентов производится в дискретные временные интервалы лектором и преподавателем, ведущими практические занятия по дисциплине в следующих формах (например):

- контрольные вопросы и задания;
- задания и упражнения;
- самостоятельная работа;
- тестовые задания.

Фонды оценочных средств, включающие типовые задания, тесты и методы контроля, позволяющие оценить результаты текущей и промежуточной аттестации обучающихся по данной дисциплине, помещаются в приложении к рабочей программе в соответствии с «Положением о фонде оценочных средств».

Форма аттестации по результатам освоения дисциплины проходит в форме устного зачета (включает в себя ответ на теоретические вопросы и

выполнение заданий) либо в сочетании различных форм (компьютерного тестирования, выполнение заданий и пр.).

В экзаменационную ведомость и зачетную книжку выставляются оценки по шкале оценивания, приведенной в таблице.

Vanartanuetura augung ungungta u otrotor	Зачеты	
Характеристика знания предмета и ответов	Эачсты	
Обучающийся глубоко и в полном объеме владеет программным материалом.		
Грамотно, исчерпывающе и логично его излагает в устной или письменной		
форме. При этом знает рекомендованную литературу, проявляет творческий		
подход в ответах на вопросы и правильно обосновывает принятые решения,		
хорошо владеет умениями и навыками при выполнении практических задач.		
Обучающийся знает программный материал, грамотно и по сути излагает его в		
устной или письменной форме, допуская незначительные неточности в		
утверждениях, трактовках, определениях и категориях или незначительное	зачтено	
количество ошибок. При этом владеет необходимыми умениями и навыками		
при выполнении практических задач.		
Обучающийся знает только основной программный материал, допускает		
неточности, недостаточно четкие формулировки, непоследовательность в		
ответах, излагаемых в устной или письменной форме. При этом недостаточно		
владеет умениями и навыками при выполнении практических задач. Допускает		
до 30% ошибок в излагаемых ответах.		
Обучающийся не знает значительной части программного материала. При этом		
допускает принципиальные ошибки в доказательствах, в трактовке понятий и		
категорий, проявляет низкую культуру знаний, не владеет основными	не зачтено	
умениями и навыками при выполнении практических задач. Обучающийся		
отказывается от ответов на дополнительные вопросы.		

7. Учебно-методическое и программно-информационное обеспечение дисциплины:

7.1. Основная литература:

- 1. Королёв М.А. Технология, конструкции и методы моделирования кремниевых интегральных микросхем: в 2 ч. Ч. 1: Технологические процессы изготовления кремниевых интегральных схем и их моделирование [Электронный ресурс] / М.А. Королёв [и др.]; под общей ред. чл.-корр. РАН проф. Ю.А. Чаплыгина. 3-е изд. (эл.). М.: БИНОМ, 2015. 400 с. ISBN 978-5-9963-2904-5 Текст: электронный // ЭБС "Консультант студента": [сайт]. Режим доступа: http://www.studentlibrary.ru/book/ISBN9785996329045.html
- 2. Барыбин А.А. Физико-технологические основы макро-, микро- и наноэлектроники [Электронный ресурс] / Барыбин А.А., Томилин В.И., Шаповалов В.И. М.: ФИЗМАТЛИТ, 2011. 784 с. ISBN 978-5-9221-1321-2 Текст: электронный // ЭБС "Консультант студента": [сайт]. Режим доступа: http://www.studentlibrary.ru/book/ISBN9785922113212.html
- 3. Зевайль А. Трехмерная электронная микроскопия в реальном времени [Электронный ресурс]: Учебное пособие / А. Зевайль, Д. Томас; Пер. с англ. А.В. Сухова. Долгопрудный: Интеллект, 2013. 328 с.: ил.; 60х90 1/16. (обложка) ISBN 978-5-91559-102-7 Режим доступа: http://znanium.com/catalog/product/438915
- 4. Дементьев, А. Н. Метаматериалы в радиоэлектронике : от исследований к разработкам / А. Н. Дементьев, А. О. Жуков, В. К. Ильков, В. Р. Скрынский. Москва : Техносфера, 2023. 248 с. ISBN 978-5-94836-674-6. -

Текст : электронный // ЭБС "Консультант студента" : [сайт]. - URL : https://www.studentlibrary.ru/book/ISBN9785948366746.html

7.2. Дополнительная литература:

- 1. Бутырин, П. А. Автоматизацмя физических исследований и эксперимента: компьютерные измерения и виртуальные приборы на основе LabVIEW / Под. ред. Бутырина П. А. Москва: ДМК Пресс. 265 с. ISBN 9-785-94074-726-0. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9785940747260.html
- 2. Космическая электроника. В 2-х книгах. Книга 1. [Электронный ресурс] / А. И. Белоус, В. А. Солодуха, С. В. Шведов. Москва : Техносфера, 2021. Режим доступа: https://www.studentlibrary.ru/book/ISBN9785948365763.html
- 3. Келсалл Р. Научные основы нанотехнологий и новые приборы [Электронный ресурс]: Учебник-монография / Под ред. Келсалл Р. Долгопрудный: Интеллект, 2011. 528 с. ISBN 978-5-91559-048-8 Режим доступа: http://znanium.com/catalog/product/319358
- 4. Мишина Е.Д. Методы получения и исследования наноматериалов и наноструктур. Лабораторный практикум по нанотехнологиям [Электронный ресурс]: Учебное пособие / Мишина Е.Д., 5-е изд., (эл.) М.: Лаборатория знаний, 2017. 187 с.: ISBN 978-5-00101-473-7 Режим доступа: http://znanium.com/catalog/product/502584

7.3. Методические указания / рекомендации

7.4. Интернет-ресурсы:

- 1. Министерство образования и науки Российской Федерации http://минобрнауки.pd/
- 2. Министерства природных ресурсов и экологии Российской Федерации http://www.mnr.gov.ru/
- 3. Федеральная служба по надзору в сфере образования и науки http://obrnadzor.gov.ru/
- 4. Портал Федеральных государственных образовательных стандартов высшего образования http://fgosvo.ru
 - 5. Федеральный портал «Российское образование» http://www.edu.ru/
- 6. Информационная система «Единое окно доступа к образовательным ресурсам» http://window.edu.ru/
- 7. Федеральный центр информационно-образовательных ресурсов http://fcior.edu.ru/

Электронные библиотечные системы и ресурсы

- 1. Электронно-библиотечная система «Консультант студента» http://www.studentlibrary.ru/cgi-bin/mb4x
 - 2. Электронно-библиотечная система «StudMed.ru» https://www.studmed.ru Информационный ресурс библиотеки образовательной организации
 - 1. Научная библиотека имени А. Н. Коняева http://biblio.dahluniver.ru/
- 8. Материально-техническое и программное обеспечение дисциплины

Освоение дисциплины «Технология получения структур микроэлектроники» предполагает использование академических аудиторий,

соответствующих действующим санитарным и противопожарным правилам и нормам. Лекционные и практические занятия могут проводиться в компьютерном классе (компьютеры с доступом в Интернет, предназначенные для работы в электронной образовательной среде) или с применением презентационной техники (проектор, экран, компьютер).

Прочее: рабочее место преподавателя, оснащенное компьютером с доступом в Интернет.

Программное обеспечение:

Функциональное назначение	Бесплатное программное	Ссылки
	обеспечение	
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu
Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx
Браузер	Opera	http://www.opera.com
Почтовый клиент	Mozilla Thunderbird	http://www.mozilla.org/ru/thunderbird
Файл-менеджер	Far Manager	http://www.farmanager.com/download.php
Архиватор	7Zip	http://www.7-zip.org/
Графический редактор	GIMP (GNU Image Manipulation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator
Аудиоплеер	VLC	http://www.videolan.org/vlc/

8. Оценочные средства по дисциплине

Фонды оценочных средств по дисциплине «Технология получения структур микроэлектроники»

І. Контрольные вопросы и задания

1. Контрольные вопросы по разделам дисциплины (примерные)

- 1. Опишите технологический процесс диффузии в кремнии.
- 2. Каковы особенности диффузии в соединениях AIIIBV?
- 3. В чем сущность метода разделительной диффузии?
- 4. Какие существуют методы контроля диффузионных структур?
- 5. Как образуются дислокации?
- 6. Как происходит осаждение примесей?
- 7. Что понимают под геттерированием?
- 8. Как проводят измерение глубины залегания p-n-перехода?
- 9. Как проводят измерение поверхностного сопротивления?

- 10. Как определяют поверхностную концентрацию?
- 11. Как происходи взаимодействие ускоренных заряженных частиц с поверхностью твердого тела?
- 12. Каковы особенности ионных технологий?
- 13. Как происходит взаимодействие ионов с остаточной атмосферой и поверхностью полупроводников?
- 14. Как проводят ионное стимулирование эпитаксии гетероструктур соединений AIIIBV из металлоорганических соединений?
- 15. Как происходит взаимодействие ионных и плазменных потоков с поверхностью подложек?
- 16. Как проводят ионную очистку поверхности?
- 17. Как проводят ионное травление технологических слоев?
- 18. Как проводят ионно-плазменное травление материалов?
- 19. Как проводят плазмохимическое травление пленок?
- 20. Как проводят реактивное распыление?
- 21. Как происходит формирование конфигурации наноэлементов ИС?
- 22. Как происходит дефектообразование?
- 23. Какова технология получения ионно-легированных слоев?
- 24. Как происходит процесс высокочастотного диодного распыления?
- 25. Как происходит процесс триодного распыления?
- 26. Перечислите методы контроля ионно-легированных слоев.
- 27. Каковы возможности ионной имплантации при создании полупроводниковых приборов и ИС?
- 28. Каковы технологические особенности термического испарения материалов?
- 29. Как происходит процесс многотигельного испарения сплавов?
- 30. Как происходит процесс однотигельного испарения сплавов?
- 31. Как происходит катодное распыление материалов?
- 32. Что такое тлеющий разряд?
- 33. Что называют коэффициентом распыления? Какова зависимость коэффициента распыления от угла падения ионов?
- 34. Как изготавливают межэлементные соединения и контакты?
- 35. Какова кинетика термического окисления?
- 36. Как происходит термическое окисление кремния в парах воды?
- 37. Как происходит термическое окисление кремния в сухом кислороде?
- 38. Как происходит термическое окисление кремния во влажном кислороде?
- 39. Как происходит химическое осаждение пленок нитрида кремния?
- 40. Как проводят контроль качества защитных диэлектрических пленок диоксида и нитрида кремния?
- 41.Как происходит контроль толщины защитных диэлектрических пленок?
- 42.Как происходит контроль пористости защитных диэлектрических пленок?
- 43.Как происходит контроль качества дефектов на границе раздела кремний защитная пленка?

- 44. Каковы физические свойства поверхности? Каковы способы защиты поверхности?
- 45.В чем суть стандартного метода разделительной диффузии?
- 46. Что такое эпик-процесс? Модифицированный эпик-процесс?
- 47.В чем суть позитивного метода изоляции?
- 48.В чем суть метода повторного нанесения поликристаллического кремния?
- 49. Как осуществляют изопланар? Эпипланар? Полипланар?
- 50. Перечислите основные цели и задачи диагностики состава и структуры материалов микроэлектроники.
- 51. Источники погрешностей при измерении удельного сопротивления полупроводников.
- 52.Опишите двухзондовый и четырехзондовый методы.
- 53. Методы измерения ЭДС-Холла.
- 54. Экспериментальные методы определения эффекта Холла.
- 55. Метод Ван дер Пау.
- 56.Измерение коэффициента термоЭДС.
- 57. Измерение теплопроводности полупроводников.
- 58. Измерение МДП структур методом высокочастотных вольтфарадных характеристик.
- 59. Принципы работы электронной микроскопии.
- 60. Просвечивающая электронная микроскопия. Экспериментальное оборудование.
- 61. Оптическая схема и принцип действия ПЭМ. Электронная оптика. Предельное разрешение электронного микроскопа и дефекты электронных линз.
- 62. Сканирующая электронная микроскопия. Физические принципы работы СЭМ.
- 63. Оптическая система СЭМ. Астигматизм, хроматическая и сферическая аберрации.
- 64. Формирование изображения СЭМ.
- 65. Атомно-силовая и туннельная микроскопия. Принцип работы атомно-силового микроскопа.
- 66. Техника измерений атомно-силовой микроскопии.
- 67. Техника измерений туннельной микроскопии.
- 68. Методики атомно-силовой микроскопии и туннельной микроскопии.

Критерии и шкала оценивания по оценочному средству контрольные вопросы

вопросы		
Шкала	Критерий оценивания	
оценивания		
(интервал		
баллов)		
5	Ответ на вопрос представлен на высоком уровне (аспирант в полном объеме	
	осветил рассматриваемую проблематику, привел аргументы в пользу своих	
	суждений, владеет профильным понятийным (категориальным) аппаратом и т.п.)	

4	Ответ на вопрос представлен на среднем уровне (аспирант в целом осветил рассматриваемую проблематику, привел аргументы в пользу своих суждений, допустив некоторые неточности и т.п.)
3	Ответ на вопрос представлен на низком уровне (аспирант допустил существенные неточности, изложил материал с ошибками, не владеет в достаточной степени профильным категориальным аппаратом и т.п.)
2	Ответ на вопрос представлен на неудовлетворительном уровне или не представлен (аспирант не готов, не выполнил задание и т.п.)

2. Задания и упражнения

Задание 1.

- Опишите технологический процесс диффузии в кремнии.
- Раскройте особенности диффузионных процессов при изготовлении ИМС.
 - Выполните расчет режимов диффузии для создания микроструктуры.

Задание 2.

- Опишите процесс взаимодействия ионов с остаточной атмосферой и поверхностью полупроводников при ионной имплантации.
- Охарактеризуйте метод высокочастотного диодного распыления, его достоинства и недостатки.
 - Выполните расчет параметров процесса изготовления ИМС.

Задание 3.

- Перечислите и охарактеризуйте методы термического испарения для получения микроструктур.
 - Как зависит коэффициент распыления от угла падения ионов?
- Выполните сравнительный анализ методов получения и исследования карбидокремниевых структур.

Задание 4.

- Опишите технологию изготовления межэлементных соединений и контактов.
- Каковы особенности термического окисления кремния в сухом кислороде?
- Определите толщины образцов тонких диэлектрических пленок цветовым методом и по интерференционной картине.

Задание 5.

- Опишите технологию химического осаждения пленок нитрида кремния.
- Как формируют защитный слой на поверхности полупроводниковых пластин веществами на основе кремнийорганических соединений и полимеров?
- Выполните расчет сопротивления микроструктуры по результатам четырехзондовых измерений.

Задание 6.

- Выполните сравнительный анализ оптических методов контроля параметров полупроводниковых слоев.
- Как осуществляют измерение подвижности носителей заряда в полупроводниках?
- Выполните расчет сопротивления микроструктуры по результатам двухзондовых измерений.

Задание 7.

- Как определяют состав микроструктур и концентрационных профилей?
- Опишите методики исследования морфологии поверхности и геометрических размеров в структурах микроэлектроники.
- Выполните расчёт параметров кристаллической решётки и определите состав тонкой пленки.

<u>Критерии и шкала оценивания по оценочному средству задания и упражнения</u>

Шкала	Критерий оценивания	
оценивания		
(интервал		
баллов)		
5	Аспирант полно излагает изученный материал, даёт правильный комментарий к выполненному упражнению; может привести необходимые примеры не только по учебнику, но и самостоятельно составленные; излагает материал последовательно и правильно с точки зрения норм литературного языка.	
4	Аспирант даёт ответ, удовлетворяющий тем же требованиям, что и для отметки "5", но допускает 1-2 ошибки, которые сам же исправляет, и 1-2 недочёта в последовательности и языковом оформлении излагаемого.	
3	Аспирант обнаруживает знание и понимание основных правил и положений данной темы, но излагает материал неполно и допускает неточности в определении понятий или формулировке правил; не умеет достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры; излагает материал непоследовательно и допускает ошибки в языковом оформлении излагаемого.	
2	Аспирант обнаруживает незнание большей части соответствующего раздела изучаемого материала, допускает ошибки в формулировке определений и правил, искажающие их смысл, беспорядочно и неуверенно излагает материал.	

II. Самостоятельная работа

1. Выполнить поиск научно-технической информации по проблематике «Получение слоев сурьмы методом термического испарения». Законспектировать тезисы и подготовить сообщение.

Критерии и шкала оценивания по оценочному средству самостоятельная

работа

Шкала оценивания (интервал	Критерий оценивания
баллов)	
5	Самостоятельная работа выполнена на высоком уровне
4	Самостоятельная работа выполнена на среднем уровне
3	Самостоятельная работа выполнена на низком уровне
2	Самостоятельная работа выполнена на
	неудовлетворительном уровне или не выполнена

111. Промежуточный (итоговый) контроль знаний				
Тестовые задания				
Тест контрольный, проверяющий основные понятия				
1. Какой из элементов используют для диффузии в кремнии?				
А) золото				
Б) бор				
В) азот				
Правильный ответ: Б				
2. Получение рельефа требуемой конфигурации в диэлектрических и				
металлических пленках, нанесенных на поверхность полупроводниковых или				
диэлектрических подложек, называется				
А) диффузией				
Б) литографией				
В) ионной имплантацией				
Правильный ответ: Б				
3. При применении методов термического испарения следует учитывать, что				
испарение соединений сопровождается				
А) рекомбинацией				
Б) адгезией				
В) диссоциацией				
Правильный ответ: В				
Вставьте пропущенное слово				
4. Метод нагрева с помощью электронной бомбардировки при нанесении				
тонких пленок заключается в том, что испаряемое вещество, которое должно				
быть нагрето, размещается на электроде с высокимпотенциалом				
или само используется в качестве такого электрода				
А) положительным				
Б) химическим				
В) отрицательным				

5. Катодное распыление основано на явлении _____

бомбардировке его ионизированными молекулами разряженного газа.

Правильный ответ: А

Вставьте пропущенное слово

при

А) восстановления					
Б) разрушения					
В) загрязнения					
Правильный ответ: Б					
Вставьте пропущенное слово					
6. Эффективность ионного распыления характеризуется коэффициентом					
распыления, который равен числу, распыляемых под					
воздействием одного иона.					
А) атомов					
Б) электронов					
В) фотонов					
Правильный ответ: А					
Вставьте пропущенное слово					
7. Наиболее удачно экспериментальные результаты по ионному распылению					
объясняются с позиций					
А) тлеющего разряда					
Б) зонной теории					
В) импульсного механизма					
Правильный ответ: В					
8. Собственное удельное сопротивление кремния составляет величину					
А) 47 кОм×см					
Б) 108 кОм×см					
В) 230 кОм×см					
Правильный ответ: В					
9. Диффузией называют перенос вещества, обусловленный хаотическим					
тепловым движением атомов, возникающий при наличии градиента					
а) концентрации					
б) потенциала					
в) температуры					
Правильный ответ: А					
10. Скорость процесса диффузии определяется коэффициентом					
а) сегрегации					
б) диффузии					
в) распределения					
Правильный ответ: Б					
11. Математическое описание диффузионных процессов, предложенное Фиком					
в виде двух законов, основано на уравнениях					
а) вязкости					
б) массопереноса					
в) теплопроводности					

12. Исходной предпосылкой для анализа условий роста эпитаксиальных слоев

Правильный ответ: В

является изучение термодинамики и кинетики...

- а) химических реакций
- б) диффузионных процессов
- в) теплообмена

Правильный ответ: А

Критерии и шкала оценивания по оценочному средству тесты

Шкала	Критерий оценивания		
оценивания			
(интервал			
баллов)			
5	Тесты выполнены на высоком уровне (правильные ответы даны на 90-100% тестов)		
4	Тесты выполнены на среднем уровне (правильные ответы даны на 75-89% тестов)		
3	Тесты выполнены на низком уровне (правильные ответы даны на 50-74% тестов)		
2	Тесты выполнены на неудовлетворительном уровне (правильные ответы даны менее чем на 50% тестов)		

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)
		изменения и дополнения	

Экспертное заключение

Представленный фонд оценочных средств (далее - ФОС) *по дисциплине «Технология получения структур микроэлектроники»* соответствует требованиям ГОС ВО.

Предлагаемые формы и средства текущего и промежуточного контроля адекватны целям и задачам реализации основной образовательной программы по научной специальности 2.2.3. Технология и оборудование для производства материалов и приборов электронной техники.

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебнометодическое обеспечение самостоятельной работы обучающегося представлены в полном объеме.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанный и представленный для экспертизы фонд оценочных средств рекомендуется к использованию в процессе подготовки аспирантов по указанной научной специальности.

Председатель учебно-методической комиссии института технологий и инженерной механики

layum С. Н. Ясуник