МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля» (ФГБОУ ВО «ЛГУ им. В. Даля»)

Институт технологий и инженерной механики Кафедра обработки металлов давлением и сварки

Могильная Е.П.

2023 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ «ТЕХНОЛОГИИ И МАШИНЫ ОБРАБОТКИ ДАВЛЕНИЕМ»

Научная специальность 2.5.7 Технологии и машины обработки давлением

Лист согласования РПУД

Рабочая программа учебной дисциплины «Технологии и машины обработки давлением» по специальности 2.5.7 Технологии и машины обработки давлением. $-\frac{17}{2}$ с.

Рабочая программа учебной дисциплины «Технологии и машины обработки давлением» составлена в соответствии с Федеральными государственными требованиями к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре (адъюнктуре), условиям их реализации, срокам освоения этих программ с учетом различных форм обучения, образовательных технологий и особенностей отдельных категорий аспирантов (адъюнктов), утвержденными приказом Министерства образования и науки Российской Федерации от 20 октября 2021 г. № 951 (с изменениями и дополнениями), зарегистрированными в Министерстве юстиции Российской Федерации 23.11.2021 за № 65943, учебного плана по специальности 2.5.7 Технологии и машины обработки давлением и Положения о рабочей программе учебной дисциплины в ФГБОУ ВО «ЛГУ им. В. Даля».

СОСТАВИТЕЛЬ:

канд. техн. наук, доцент Стоянов А.А.

Рабочая программа учебной дисциплины «Технологии и машины обработки давлением» утверждена на заседании кафедры обработки металлов давлением и сварки

« <u>11</u> » <u>04</u> 20 <u>23</u> года, протокол № <u>9</u> .	
Руководитель программы аспирантуры Л.А. Рябичева	
Переутверждена: «»20 г., протокол №	
Рекомендована на заседании учебно-методической комиссии институт технологий и инженерной механики «18» _042023г., протокол №3	a
Председатель учебно-методической комиссии института технологий инженерной механики — С.Н. Ясуник	

Структура и содержание дисциплины

1. Цели и задачи дисциплины, ее место в учебном процессе

Целями изучения дисциплины являются формирование знаний в областях теории и технологических основ процессов обработки металлов давлением, металлургических и физических процессах в материалах при обработке давлением, основ проектирования машин для обработки металлов давлением.

Задачами изучения дисциплины являются: приобретение знаний, необходимых для решения задач, связанных c разработкой высокоэффективных ресурсосберегающих технологий обработки давлением, проектирования технологической оснастки, методов штамповочного оборудования, робототехнических технологических И комплексов для производства кованных и штампованных изделий, методов управления параметрами технологических процессов для обеспечения стабильности качества и свойств получаемых изделий; приобретение обслуживания навыков эксплуатации оборудования автоматизации, применяемых в кузнечно-штамповочном производстве.

2. Место дисциплины в структуре ООП ВО

Дисциплина «Технологии и машины обработки давлением» относится к образовательной части учебного плана.

Содержание дисциплины является логическим продолжением, углублением обогащением знаний профессиональной И дисциплин направленности, освоенных аспирантами в процессе освоения основных профессиональных образовательных программ бакалавриата, специалитета, магистратуры, таких как «Технология конструкционных материалов», «Основы технологии машиностроения», «Теория обработки «Технология ковки и объемной штамповки», нагревательные устройства», «Технология листовой штамповки», «Кузнечноштамповочное оборудование» и служит основой для подготовки и сдачи кандидатского экзамена, подготовки диссертации и прохождения итоговой аттестации (оценки диссертации на предмет ее соответствия установленным критериям).

3. Требования к результатам освоения содержания дисциплины

Аспиранты, завершившие изучение дисциплины «Технологии и машины обработки давлением», должны:

знать:

современные процессы получения перспективных материалов и производство из них изделий, их преимущества и недостатки с позиций современного уровня развития техники и технологий;

области применения и методы решения нетиповых задач математического, физического, конструкторского, технологического, электротехнического характера при проектировании, изготовлении и

эксплуатации новой техники;

основные формы, средства и методы познавательной деятельности, основные этапы появления профессиональных знаний в области обработки давлением, их роль и место в практической и научной деятельности; основные способы и принципы организации учебно-познавательной деятельности; основные формы, виды и способы самообразования и саморазвития;

современное состояние науки в выбранной области, основные методы научно-исследовательской деятельности;

современные технологические системы кузнечно-штамповочного производства, системы управления и защиты технологических процессов обработки давлением;

закономерности и принципы организации преподавательской деятельности в высшей школе; основные виды современных образовательных технологий;

уметь:

излагать теоретический и практический материал, связанный с современными процессами получения перспективных материалов и производство из них изделий;

использовать различные методы проведения научных исследований и выполнения разработок при решении нетиповых задач математического, физического, конструкторского, технологического, электротехнического характера при проектировании, изготовлении и эксплуатации новой техники;

осознанно применять различные средства и методы познания для решения конкретных научных и практических задач в области обработки давлением; творчески решать научные, производственные задачи; самостоятельно критически мыслить, вырабатывать и отстаивать свою точку зрения; применять методы и средства повышения общекультурной и профессиональной компетенции;

выделять и систематизировать основные идеи в научных текстах; критически оценивать любую поступающую информацию, вне зависимости от источника; избегать автоматического применения стандартных формул и приемов при решении задач;

системно оценивать взаимное влияние процессов в технологических системах кузнечно-штамповочного производства творчески решать научные, производственные задачи; самостоятельно критически мыслить, вырабатывать и отстаивать свою точку зрения;

осуществлять выбор основных образовательных программ высшего профессионального образования в процессе преподавательской деятельности; осваивать в учебном процессе современные интерактивные средства; использовать новые результаты, полученные в ходе выполнения собственных исследований, для разработки разделов учебных дисциплин, формирования конспектов лекций и практических занятий, презентаций;

владеть:

основными понятиями и терминологическим материалом при описании современных процессов получения перспективных материалов и производство из них изделий;

навыками формулировки и решения нетиповые задач математического, физического, конструкторского, технологического, электротехнического характера при проектировании, изготовлении и эксплуатации новой техники;

методами саморазвития и повышения квалификации, систематизированными теоретическими и практическими знаниями учебно-познавательной деятельности, знаниями различных предметных областей, относящихся к разным видам профессиональной деятельности; методами повышения квалификации; навыками накопления, обработки и использования информации; методиками сравнительного и системного анализа;

навыками сбора, обработки, анализа и систематизации информации по теме исследования; навыками выбора методов и средств решения задач исследования;

методами оценки взаимного влияния процессов в технологических системах кузнечно-штамповочного производства, системах управления, методами защиты технологических процессов обработки давлением;

навыками проектирования и реализации основных образовательных программ высшего профессионального образования в процессе преподавательской деятельности; консультирования студентов при подготовке ими домашних заданий и курсовых работ.

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов (зач. ед.)
Общая учебная нагрузка (всего)	144
	(4,0 зач. ед)
Обязательная аудиторная учебная нагрузка (всего) в том числе:	36
Лекции	12
Семинарские занятия	-
Практические занятия	24
Лабораторные работы	-
Курсовая работа (курсовой проект)	-
Другие формы и методы организации образовательного процесса	-
Самостоятельная работа студента (всего)	108
Кандидатский экзамен по специальной дисциплине «Сварка, родственные процессы и технологии»	36
Форма аттестации	канд. экзамен

4.2. Содержание разделов дисциплины

ТЕМА 1. РАЗВИТИЕ ТЕОРИИ ПРОЦЕССОВ ОБРАБОТКИ МЕТАЛЛОВ ДАВЛЕНИЕМ В РОССИИ, ИСТОРИЯ РАЗВИТИЯ, РОЛЬ КАДРОВОГО ПОТЕНЦИАЛА.

Основные этапы развития теории процессов обработки металлов давлением и ее влияние на развитие технологических процессов и оборудования. Российская кузнечная школа, принципы соединения научных и практических целей. Структура и организация учебно-научных и производственных организаций. Организация и управление в обработке давлением. Роль науки о кузнечном деле в развитии производительных сил России. Объем фундаментальных и прикладных знаний, необходимых для успешной работы в области обработки давлением.

ТЕМА 2. ДЕФОРМАЦИЯ СПЛОШНОЙ СРЕДЫ.

Переменные Лагранжа и Эйлера. Тензоры деформаций. Девиатор деформации. Инвариантны тензора и девиатора деформации. Главные деформации, интенсивность деформаций сдвига. Течение сплошной среды. Поле вектора скорости. Тензор и девиатор скорости деформации, их инварианты. Главные скорости деформации, интенсивность скоростей деформаций сдвига. Степень деформации сдвига. Уравнение неразрывности и несжимаемости.

ТЕМА 3. НАПРЯЖЕНИЯ. ПЛАСТИЧЕСКОЕ СОСТОЯНИЕ.

Напряженное состояние. Тензор напряжений, девиатор напряжений и их инварианты. Главные нормальные и касательные напряжения. Напряжения на наклонной площадке. Уравнения связи напряженного и деформированного состояний. Простейшие реологические модели. Условия пластичности. Краевая задача теории пластичности. Методы решения краевых задач.

ТЕМА 4. СТРОЕНИЕ МЕТАЛЛОВ.

Анизотропия свойств монокристаллов. Дефекты кристаллического строения металлов. Механизмы деформации. Скольжение. Основы теории дислокаций. Пластическая деформация с позиций теории дислокации. Температурно-скоростные зависимости характеристик прочности и пластичности монокристаллов. Пластическая деформация и разрушение поликристаллов. Особенности деформации поликристаллов. Неравномерность деформации.

ТЕМА 5. МЕХАНИЗМЫ ДЕФОРМАЦИИ И УПРОЧНЕНИЯ ПОЛИКРИСТАЛЛОВ.

Влияние холодной деформации на структуру и свойства поликристаллов. Процессы, происходящие при нагреве наклепанного металла: возврат, полигонизация, рекристаллизация. Влияние нагрева на структуру и свойства наклепанного металла. Диаграмма рекристаллизации 1 рода. Горячая деформация поликристаллов. Особенности и механизмы. Механизмы термической пластичности. Влияние горячей деформации на

структуру и свойства. Диаграмма рекристаллизации 2 рода. Классификация процессов ОМД по температурным условиям.

ТЕМА 6. ФИЗИЧЕСКАЯ ПРИРОДА ТРЕНИЯ ПРИ ОБРАБОТКЕ ДАВЛЕНИЕМ.

Виды и законы трения. Зависимость сил трения от температуры, степени и скорости деформирования, давления, физико-химических свойств контактируемых поверхностей и др. факторов. Анизотропия трения. Методы экспериментального исследования трения. Смазки, их свойства, назначение и основные требования к ним.

ТЕМА 7. ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ, РАСЧЕТ СОПРОТИВЛЕНИЯ ДЕФОРМАЦИИ.

Сопротивление деформации: влияние температуры, степени деформации, скорости деформирования и внешней среды. Метод совместного решения дифференциального уравнения равновесия и уравнения пластичности, методы линий скольжения и характеристик, метод работ, вариационные методы. Сопоставление различных методов расчета усилий. Работа и мощность деформации. Тепловыделения в процессе деформации.

ТЕМА 8. ПЛАСТИЧНОСТЬ И ДЕФОРМИРУЕМОСТЬ МЕТАЛЛОВ И МЕТОДЫ ОПРЕДЕЛЕНИЯ.

Основные факторы, влияющие на пластичность, схема напряженного состояния, внешняя среда и др. Виды разрушения при пластической деформации. Феноменологические теории разрушения. Трещины. Теория Гриффитса. Накопление повреждений. Диаграмма пластичности. Деформация металлических материалов в состоянии сверхпластичности.

ТЕМА 9. ОЧАГ ДЕФОРМАЦИИ, СОВОКУПНОСТЬ ПАРАМЕТРОВ, ОПИСЫВАЮЩИХ ЕГО ГЕОМЕТРИЮ.

Условия захвата полосы валками. Трение при захвате И Влияние установившемся процессе прокатки. технологических И конструктивных параметров на условия захвата полосы валками. Анализ пластического течения в очаге деформации. отставание, расчетные формулы для их определения. Нейтральный угол. между характеристическими углами. Влияние технологических параметров на величину опережения. Уширение и факторы, влияющие на его величину. Неравномерность уширения в очаге деформации. Влияние формы (геометрии) очага деформации, внешних зон, температуры, условий трения и структурного состояния на величину уширения.

ТЕМА 10. КОНТАКТНЫЕ НАПРЯЖЕНИЯ ПРИ ПРОКАТКЕ (ПЛОСКАЯ ЗАДАЧА).

Дифференциальное уравнение контактных напряжений. Контактное напряжение в очаге деформации при постоянном значении коэффициента трения. Экспериментальные исследования распределения контактных напряжений и их зависимость от параметров процесса. Распределение деформаций и напряжений в объеме очага деформации в зависимости от фактора формы очага деформации.

ТЕМА 11. УСИЛИЕ ПРОКАТКИ И ФАКТОРЫ, ОПРЕДЕЛЯЮЩИЕ ЕГО ВЕЛИЧИНУ.

Влияние условий трения, натяжения, ширины полосы и внешних зон на контактное давление. Особенности расчета усилий в зависимости от фактора формы очага деформации. Энергия, затрачиваемая на прокатку, методы определения работы и мощности прокатки. Момент прокатки. Коэффициент плеча равнодействующей и методы его определения. Факторы, влияющие на положение равнодействующей. Температурные условия в очаге деформации. Расчет температуры металла при прокатке.

ТЕМА 12. КИНЕМАТИЧЕСКИЕ И ЭНЕРГОСИЛОВЫЕ ПАРАМЕТРЫ ПРОЦЕССА РАДИАЛЬНО-СДВИГОВОЙ ПРОКАТКИ.

Принципы построения очага деформации, расчет калибровки валков при больших углах подачи. Поперечная прокатка. Скоростные условия. Угол нейтрального сечения и условия вращения заготовки. Деформационные параметры. Силовые условия. Напряженное состояние металла.

4.3. Лекции

№ п/п	Название темы	Объем часов
1	Развитие теории процессов обработки металлов давлением в	1
•	России, история развития, роль кадрового потенциала	1
2	Деформация сплошной среды	1
3	Напряжения. Пластическое состояние	1
4	Строение металлов	1
5	Механизмы деформации и упрочнения поликристаллов	1
6	Физическая природа трения при обработке давлением	1
7	Экспериментальные методы определения, расчет сопротивления	1
/	деформации	1
8	Пластичность и деформируемость металлов и методы	1
0	определения	1
9	Очаг деформации, совокупность параметров, описывающих его	1
	геометрию	1
10	Контактные напряжения при прокатке (плоская задача)	1
11	Усилие прокатки и факторы, определяющие его величину	1
12	Кинематические и энергосиловые параметры процесса	1
12	радиально-сдвиговой прокатки	1
Итог	ro:	12

4.4. Практические занятия

№ п/п	Название темы	Объем часов
1	Переменные Лагранжа и Эйлера. Тензоры деформаций	2
2	Течение сплошной среды. Поле вектора скорости	2
3	Тензор напряжений, девиатор напряжений и их инварианты	2
4	Уравнения связи напряженного и деформированного состояний	2
5	Дислокационная теория пластической деформации	2
6	Горячая деформация поликристаллов	2
7	Исследование зависимости сил трения от температуры, степени	2

	и скорости деформирования	
8	Сопоставление различных методов расчета усилий.	2
9	Феноменологические теории разрушения	2
10	Влияние технологических параметров на величину опережения при прокатке	2
11	Распределение деформаций и напряжений в объеме очага деформации в зависимости от фактора формы очага деформации при прокатке	2
12	12 Энергия, затрачиваемая на прокатку, методы определения работы и мощности прокатки	
Ито	го:	24

4.5. Лабораторные работы. Учебным планом лабораторные работы не предусмотрены.

4.6. Самостоятельная работа обучающихся

No	Название темы	Вид СРС	Объем
п/п			часов
1	2	3	4
1	Тема 1. Развитие теории процессов обработки металлов давлением в россии, история развития, роль кадрового потенциала. Основные этапы развития теории процессов обработки металлов давлением и ее влияние на развитие технологических процессов и оборудования. Российская кузнечная школа, принципы соединения научных и практических целей. Структура и организация учебно-научных и производственных организаций. Организация и управление в обработке давлением. Роль науки о кузнечном деле в развитии производительных сил россии. Объем фундаментальных и прикладных знаний, необходимых для успешной работы в области обработки давлением Тема 2. Деформация сплошной среды.	изучение	9
2	l —	информации по темам. Подготовка к экзамену	9
3	Тема 3. Напряжения. Пластическое состояние. Напряженное состояние. Тензор напряжений, девиатор напряжений и их инварианты. Главные нормальные и касательные напряжения. Напряжения на наклонной площадке. Уравнения		9

	1 1		
	связи напряженного и деформированного		
	состояний. Простейшие реологические модели.		
	Условия пластичности. Краевая задача теории		
	пластичности. Методы решения краевых задач		
	Тема 4. Строение металлов. Анизотропия		
	свойств монокристаллов. Дефекты		
	кристаллического строения металлов.		
	Механизмы деформации. Скольжение. Основы		
	теории дислокаций. Пластическая деформация с		
4	позиций теории дислокации. Температурно-	9	
	скоростные зависимости характеристик		
	прочности и пластичности монокристаллов.		
	Пластическая деформация и разрушение		
	поликристаллов. Особенности деформации		
	поликристаллов. Неравномерность деформации.		
	Тема 5. Механизмы деформации и упрочнения		
	поликристаллов. Влияние холодной деформации		
	на структуру и свойства поликристаллов.		
	Процессы, происходящие при нагреве		
	наклепанного металла: возврат, полигонизация,		
	рекристаллизация. Влияние нагрева на структуру		
_	и свойства наклепанного металла. Диаграмма	0	
5	рекристаллизации 1 рода. Горячая деформация	9	
	поликристаллов. Особенности и механизмы.		
	Механизмы термической пластичности. Влияние		
	<u> </u>		
	горячей деформации на структуру и свойства.		
	Диаграмма рекристаллизации 2 рода.		
	Классификация процессов омд по		
	температурным условиям		
	Тема 6. Физическая природа трения при Поиск, анализ,		
	обработке давлением. Виды и законы трения. структурирование и		
	Зависимость сил трения от температуры, степени изучение		
	и скорости деформирования, давления, физико- информации по		
6	химических свойств контактируемых темам. Подготовка	9	
	поверхностей и др. Факторов. Анизотропия к экзамену	,	
	трения. Методы экспериментального		
	исследования трения. Смазки, их свойства,		
	назначение и основные требования к ним.		
	Тема 7. Экспериментальные методы		
	определения, расчет сопротивления деформации.		
	Сопротивление деформации: влияние		
	температуры, степени деформации, скорости		
	деформирования и внешней среды. Метод		
	• • •		
7	совместного решения дифференциального	9	
	уравнения равновесия и уравнения пластичности,		
	методы линий скольжения и характеристик,		
	метод работ, вариационные методы.		
	Сопоставление различных методов расчета		
	усилий. Работа и мощность деформации.		
	Тепловыделения в процессе деформации		
	Тема 8. Пластичность и деформируемость Поиск, анализ,		
8	металлов и методы определения. Основные структурирование и	9	
	метынов и методы определения. Основные структурирование и		

	1	
	факторы, влияющие на пластичность, схема изучение	
	напряженного состояния, внешняя среда и др. информации по	
	Виды разрушения при пластической темам. Подготовка	
	деформации. Феноменологические теории к экзамену	
	разрушения. Трещины. Теория гриффитса.	
	Накопление повреждений. Диаграмма	
	пластичности. Деформация металлических	
	материалов в состоянии сверхпластичности	
	Тема 9. Очаг деформации, совокупность	
	параметров, описывающих его геометрию.	
	Условия захвата полосы валками. Трение при	
	захвате и установившемся процессе прокатки.	
	Влияние технологических и конструктивных	
	параметров на условия захвата полосы валками.	
	Анализ скоростей пластического течения в очаге	
	деформации. Опережение, отставание, расчетные	
9	формулы для их определения. Нейтральный угол.	9
	Связь между характеристическими углами.	
	Влияние технологических параметров на	
	величину опережения. Уширение и факторы,	
	влияющие на его величину. Неравномерность	
	уширения в очаге деформации. Влияние формы	
	(геометрии) очага деформации, внешних зон,	
	температуры, условий трения и структурного	
	состояния на величину уширения.	
	Тема 10. Контактные напряжения при прокатке	
	(плоская задача). Дифференциальное уравнение	
	контактных напряжений. Контактное	
	напряжение в очаге деформации при постоянном	
	значении коэффициента трения.	
10	Экспериментальные исследования распределения	9
	контактных напряжений и их зависимость от	
	параметров процесса. Распределение	
	деформаций и напряжений в объеме очага	
	деформации в зависимости от фактора формы	
	очага деформации	
	Тема 11. Усилие прокатки и факторы,	
	определяющие его величину. Влияние условий	
	трения, натяжения, ширины полосы и внешних	
	зон на контактное давление. Особенности	
	расчета усилий в зависимости от фактора формы	
	очага леформации Энергия затрачиваемая на Поиск, анализ,	
11	прокатку метолы определения работы и структурирование и	9
	мошности прокатки Момент прокатки изучение	-
	Коэффициент плена равнолействующей и информации по	
	метолы его определения Факторы вличношие на темам. Подготовка	
	положение равнодействующей. Температурные к экзамену	
	условия в очаге деформации. Расчет	
	температуры металла при прокатке	
	Тема 12. Кинематические и энергосиловые	
12	параметры процесса радиально-сдвиговой	9
	прокатки. Принципы построения очага	,
<u> </u>	пропатии принципи построении о ши	

деформации, расчет калибровки валков при больших углах подачи. Поперечная прокатка.	
Скоростные условия. Угол нейтрального сечения и условия вращения заготовки. Деформационные параметры. Силовые условия. Напряженное	
состояние металла.	
Итого:	108

4.7. Курсовые проекты. Учебным планом выполнение курсового проекта не предусмотрено.

5. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

- традиционные объяснительно-иллюстративные технологии, которые обеспечивают доступность учебного материала для большинства студентов, системность, отработанность организационных форм и привычных методов, относительно малые затраты времени;
- технологии проблемного обучения, направленные на развитие познавательной активности, творческой самостоятельности студентов и предполагающие последовательное и целенаправленное решение студентом познавательных задач;
- технологии развивающего обучения, позволяющие ориентировать учебный процесс на потенциальные возможности студентов, их реализацию и развитие;
- технологии концентрированного обучения, суть которых состоит в создании максимально близкой к естественным психологическим особенностям человеческого восприятия структуры учебного процесса и которые дают возможность глубокого и системного изучения содержания учебных дисциплин за счет объединения занятий в тематические блоки.

6. Формы контроля освоения дисциплины

Текущая аттестация студентов производится в дискретные временные интервалы лектором и преподавателем, ведущими лабораторные работы и практические занятия по дисциплине в следующих формах:

- комбинированный контроль усвоения теоретического материала (устно или письменно);
 - реферат;
- программа-минимум кандидатского экзамена по специальной дисциплине.

Фонды оценочных средств, включающие контрольные вопросы для комбинированного контроля усвоения теоретического материала (устно или письменно), программы-минимум для подготовки к кандидатскому экзамену, примеры тем рефератов, методы контроля, позволяющие оценить результаты текущей и промежуточной аттестации обучающихся по данной дисциплине, помещаются в приложении к рабочей программе в соответствии с Положением о фонде оценочных средств и Порядком подготовки и проведения кандидатских

экзаменов по истории и философии науки, иностранному языку, специальной дисциплине.

Промежуточная аттестация по результатам освоения дисциплины проходит в форме кандидатского экзамена (включает в себя ответ на теоретические вопросы и защиту реферата).

Подготовка и проведение кандидатского экзамена регламентируется Порядком подготовки и проведения кандидатских экзаменов по истории и философии науки, иностранному языку, специальной дисциплине, утвержденным приказом ГОУ ВПО ЛНР «ЛНУ им. В. ДАЛЯ» от 28 декабря 2018 года № 467-04.

В экзаменационную ведомость и зачетную книжку выставляются оценки по национальной шкале, приведенной в таблице.

Шкала	Характеристика знания предмета и ответов
оценивания	
экзамена	
отлично (5)	Студент глубоко и в полном объеме владеет программным
	материалом. Грамотно, исчерпывающе и логично его излагает в
	устной или письменной форме. При этом знает рекомендованную
	литературу, проявляет творческий подход в ответах на вопросы и
	правильно обосновывает принятые решения, хорошо владеет
	умениями и навыками при выполнении практических задач.
хорошо (4)	Студент знает программный материал, грамотно и по сути
	излагает его в устной или письменной форме, допуская
	незначительные неточности в утверждениях, трактовках,
	определениях и категориях или незначительное количество
	ошибок. При этом владеет необходимыми умениями и навыками
	при выполнении практических задач.
удовлетво-	Студент знает только основной программный материал,
рительно (3)	допускает неточности, недостаточно четкие формулировки,
	непоследовательность в ответах, излагаемых в устной или
	письменной форме. При этом недостаточно владеет умениями и
	навыками при выполнении практических задач. Допускает до
	30% ошибок в излагаемых ответах.
неудовлетво-	Студент не знает значительной части программного материала.
рительно (2)	При этом допускает принципиальные ошибки в доказательствах,
	в трактовке понятий и категорий, проявляет низкую культуру
	знаний, не владеет основными умениями и навыками при
	выполнении практических задач. Студент отказывается от
	ответов на дополнительные вопросы.

7. Учебно-методическое и программно-информационное обеспечение дисциплины:

а) основная литература:

1. Гуськов А.В., Теория обработки металлов давлением: учебное пособие / Гуськов А.В. - Новосибирск: Изд-во НГТУ, 2015. - 159 с. - ISBN 978-5-7782-2765-1 - Текст: электронный // ЭБС "Консультант студента": [сайт]. - URL: http://www.studentlibrary.ru/book/ISBN9785778227651.html.

- 2. Новиков И.И., Металловедение: учеб . В 2 т. Т. 1. Основы металловедения / Новиков И.И., Золоторевский В.С., Портной В.К., Белов Н.А., Ливанов Д.В., Медведева С.В., Аксёнов А.А., Евсеев Ю.В. М.: МИСиС, 2014. 496 с. ISBN 978-5-87623-191-8 Текст: электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN 9785876231918.html.
- 3. Воронцов А.Л., Теория и расчеты процессов обработки металлов давлением. В 2 т. Т. 1 : учеб. пособие / Воронцов А.Л. М. : Издательство МГТУ им. Н. Э. Баумана, 2014. 396 с. ISBN 978-5-7038-3917-1 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785703839171.html.
- 4. Воронцов А.Л., Теория и расчеты процессов обработки металлов давлением. В 2 т. Т. 2 : учеб. пособие / Воронцов А.Л. М. : Издательство МГТУ им. Н. Э. Баумана, 2014. 441 с. ISBN 978-5-7038-3918-8 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785703839188.html.
- 5. Сторожев М. В. Теория обработки металлов давлением [Текст] : учебник / М. В. Сторожев, Е. А. Попов. 4-е изд., перераб. и доп. М. : Машиностроение, 1977. 423 с.

б) дополнительная литература:

- 6. Третьяков А.Ф., Материаловедение и технологии обработки материалов: учеб. пособие / А.Ф. Третьяков, Л.В. Тарасенко М.: Издательство МГТУ им. Н. Э. Баумана, 2014. 541 с. ISBN 978-5-7038-3889-1 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785703838891.html.
- 7. Колесников А.Г., Технологическое оборудование прокатного производства: учебное пособие / А.Г. Колесников, Р.А. Яковлев, А.А. Мальцев М.: Издательство МГТУ им. Н. Э. Баумана, 2014. 158 с. ISBN 978-5-7038-4004-7 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785703840047.html.
- 8. Лавриненко Ю.А., Объемная штамповка на автоматах : учеб. пособие / Ю.А. Лавриненко, С.А. Евсюков, В.Ю. Лавриненко М. : Издательство МГТУ им. Н. Э. Баумана, 2014. 259 с. ISBN 978-5-7038-3786-3 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN 9785703837863.html.
- 9. Димитриенко Ю.И., Механика сплошной среды. В 4 т. Т. 1. Тензорный анализ: учеб. пособие / Ю.И. Димитриенко М.: Издательство МГТУ им. Н. Э. Баумана, 2011. 463 с. ISBN 978-5-7038-3437-4 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785703834374.html.
- 10. Специальные виды штамповки: *теория* и технология штамповки поковок из гранул алюминиевых сплавов [Электронный ресурс] /

- Белокопытов В.И., Губанов И.Ю. Красноярск : СФУ, 2013. http://www.studentlibrary.ru/book/ISBN9785763828061.html.
- 11. Гун Г. Я. Теоретические основы обработки металлов давлением. (Теория пластичности) [Текст] : учебник / Г. Я. Гун ; под ред. академика АН КазССР П. И. Полуха. М. : Металлургия, 1980. 456 с.
- 12. Компьютерное моделирование обработки давлением порошковых пористых заготовок [Текст] / Л. А. Рябичева [и др.]; М-во образования и науки Украины, Восточноукр. нац. ун-т им. В. Даля. Луганск: [Ноулидж], 2013. 205 с. Библиогр.: с. 195-205. ISBN 978-617-579-795-2.
- 13. Колмогоров В.Л. Механика обработки металлов давлением: учебник для вузов /В.Л. Колмогоров. 2-е изд. Екатеринбург: УГТУ УПИ. 2001.
- 14. Кучеряев Б.В. Механика сплошных сред: учебник для вузов / Б.В. Кучеряев. Москва: МИСиС. 2000.
- 15. Осадчий В.Я. Теория и расчеты технологических параметров штамповкивыдавливанием: учебное пособие для вузов / В.Я. Осадчий, А.Л. Воронцов, И.И.Безносиков. Москва: МГАПИ, 2001.
- 16. Охрименко Я.М. Теория процессов ковки: учебное пособие для вузов / Я.М.Охрименко, В.А. Тюрин. Москва: Высшая школа. 1977.
- 17. Теория ковки и штамповки: учебное пособие для вузов / под ред. Е.П. Унксоваи А.Г. Овчинникова. Москва: Машиностроение, 1993.
- 18. Теория прокатки: справочник / сост. А.И. Целиков, А.Д. Томленов, В.И. Зюзин[и др.]. Москва: Металлургия, 1982.
- 19. Технология и оборудование трубного производства: учебник для вузов. / В.Я.Осадчий [и др.]. Москва: Интермет Инжиниринг, 2001.
- 20. Технология обработки давлением цветных металлов и сплавов: учебник длявузов / А.В. Зиновьев, А.И. Колпашников, П.И. Полухин [и др.]. Москва: Металлургия,1992.
- 21. Технология производства труб: учебник для вузов / И.Н. Потапов, А.П.Коликов, В.Н. Данченко [и др.]. Москва: Металлургия, 1994.
- 22. Тюрин В.А. Теория обработки металлов давлением: учебник для вузов / В.А.Тюрин, А.И. Мохов; под ред. проф. В.А. Тюрина. Волгоград: РПК «Политехник», 2000.
- 23. Физическое металловедение: учебник для вузов / С.В. Грачев [и др.]. Екатеринбург: УГТУ УПИ, 2000.
- 24. Целиков А.И. Теория продольной прокатки: учебник для вузов / А.И. Целиков, Г.С. Никитин, С.Е. Рокотян. М.: Металлургия, 1980.
- 25. Чернышев В.Н. Обработка металлов давлением в контролируемых средах / В.Н. Чернышев, Б.Л. Линецкий, А.В. Крупин. Москва: Металлургия, 1993.
- 26. Щерба В.Н. Технология прессования металлов: учебник для вузов / В.Н.Щерба, Л.Х. Райтбарг. Москва: Металлургия. 1995.
- 27. Экспериментальные методы механики деформируемых твердых тел(технологические задачи обработки давлением) / В.К. Воронцов, П.И. Полухин, В.А.Белевитин, В.В. Бринза. Москва: Металлургия, 1990.

28. Технология прокатного производства: справочник: в 2 книгах / под ред. В.И. Зюзина и А.В. Третьякова. Москва: Металлургия. 1991.

в) Интернет-ресурсы:

- 1. Министерство образования и науки Российской Федерации http://минобрнауки.pф/
- 2. Федеральная служба по надзору в сфере образования и науки http://obrnadzor.gov.ru/
- 3. Портал Федеральных государственных образовательных стандартов высшего образования http://fgosvo.ru
 - 4. Федеральный портал «Российское образование» http://www.edu.ru/
- 5. Информационная система «Единое окно доступа к образовательным ресурсам» http://window.edu.ru/
- 6. Федеральный центр информационно-образовательных ресурсов http://fcior.edu.ru/

Электронные библиотечные системы и ресурсы

Электронно-библиотечная система «Консультант студента» - http://www.studentlibrary.ru/cgi-bin/mb4x

Электронно-библиотечная система «StudMed.ru» - https://www.studmed.ru

Информационный ресурс библиотеки образовательной организации

Научная библиотека имени А. Н. Коняева – http://biblio.dahluniver.ru/

8. Материально-техническое обеспечение дисциплины

Освоение дисциплины предполагает использование академических аудиторий, соответствующих действующим санитарным и противопожарным правилам и нормам.

На лекционных и практических занятиях используются раздаточный материал, наглядные пособия, мультимедийный проектор EPSON, ноутбук, наглядные пособия.

Прочее: рабочее место преподавателя, оснащенное компьютером с доступом в Интернет.

Программное обеспечение:

Функциональное назначение	Бесплатное программное обеспечение	Ссылки
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu
Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx
Браузер	Opera	http://www.opera.com

Почтовый клиент	Mozilla Thunderbird	http://www.mozilla.org/ru/thunderbird
Файл-менеджер	Far Manager	http://www.farmanager.com/download.php
Архиватор	7Zip	http://www.7-zip.org/
Графический редактор	GIMP (GNU Image Manipulation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator
Аудиоплейер	VLC	http://www.videolan.org/vlc/