Комплект оценочных материалов по дисциплине «Математическая логика»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа

1. Выберите один правильный ответ

Сколько наборов значений пропозиционных переменных имеет формула?

$$p_1 \to \left(p_2 \vee \left(\overline{p}_3 \wedge p_1\right)\right)$$

- A) 3,
- Б) 4,
- B) 8,
- Γ) 9.

Правильный ответ: В

Компетенции (индикаторы): УК-1, ОПК-1

2. Выберите один правильный ответ

Определить тип формулы логики высказываний:

$$A \rightarrow (A \rightarrow A)$$

- А) тавтология,
- Б) противоречие,
- В) выполнимая,
- Г) не формула.

Правильный ответ: А

Компетенции (индикаторы): УК-1, ОПК-1

3. Выберите один правильный ответ

Закончить определение.

Формула исчисления предикатов называется *тавтологией* (или общезначимой формулой), если:

- А) она принимает значение «истина» при любой интерпретации;
- Б) она принимает значение «истина» хотя бы в одной интерпретации;
- B) она не принимает значение «истина» ни в одной интерпретации.

Правильный ответ: А

Компетенции (индикаторы): УК-1, ОПК-1

4. Выберите все правильные варианты ответов

Какие из высказываний являются простыми (элементарными) высказываниями?

- A) 7 > 2,
- Б) $7 \ge 2$,

B) 7 = 2,

 Γ) 7 \neq 2.

Правильный ответ: А, В

Компетенции (индикаторы): УК-1, ОПК-1

5. Выберите все правильные варианты ответов

Какие из предложенных выражений не удовлетворяют определению формулы логики высказываний?

A) $(P_1 \overline{\wedge} \overline{P_2}) P_3 \overline{P_1}$

 $\mathrm{F})\left(\mathrm{P}_1 \wedge \mathrm{P}_2\right) \to \mathrm{P}_3$

 $\mathrm{B})\left(\overline{\mathrm{P}}_{1} \to \mathrm{P}_{2}\right) \to \left(\mathrm{P}_{1} \wedge \mathrm{P}_{2}\right)$

 $\Gamma) (P_1 \wedge P_2) \vee (P_1 \to) \leftrightarrow \overline{P}_3$

 $Д) P_1 \leftrightarrow (P_2 \lor P_3) \land$

Правильный ответ: А, Г, Д

Компетенции (индикаторы): УК-1, ОПК-1

6. Выберите все правильные варианты ответов

Какие из систем логических связок не являются полными?

A) {^,¯},

Б) {^,∨},

B) $\left\{ \overline{} \right\}$,

 Γ) $\{\vee,\bar{}\}$,

Д) {^, ^, }

Правильный ответ: Б, В

Компетенции (индикаторы): УК-1, ОПК-1

Задания закрытого типа на установление соответствия

1. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Формула логики высказываний		Равносильная формула
1)	$A \rightarrow B$	A)	$\overline{A} \vee \overline{B}$
2)	$\overline{A \vee B}$	Б)	$\frac{\overline{\overline{A}}}{\overline{A}}$
3)	A	B)	$\overline{A} \vee B$
4)	$\overline{A \wedge B}$	Γ)	$\overline{A} \wedge \overline{B}$

Правильный ответ:

TIP WEITH BITTE	ID V I I		
1	2	3	4
В	Γ	Б	A

Компетенции (индикаторы): УК-1

2. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

		1				
	Типы формул л высказыван				Определение	
1)	тождественно ложная	я формула	A)	формула	принимает	значение
				«истина»	хотя бы на одн	ом наборе
2)	выполнимая формула	ı	Б)	формула	принимает	значение
				«истина»	на всех набора	X
3)	тождественно истинная формула		B)	формула	не принимает	значение
				«истина»	ни на одном на	боре
	Правильный ответ:					
	1		2		2	

Компетенции (индикаторы): УК-1, ОПК-1

3. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Элементарное высказывание		Многочлен Жегалкина
1)	\overline{P}_1	A)	$P_1P_2 + P_1 + P_2$
2)	$P_1 \vee P_2$	Б)	$P_1 + 1$
3)	$P_1 \wedge P_2$	B)	$P_1 \cdot P_2$
	т •		

Правильный ответ:

В

1	2	3
Б	A	В

Компетенции (индикаторы): УК-1, ОПК-1

4. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

			,
	Предложение		Тип предложения
1)	$\forall_{\mathbf{x}} \mathbf{A}(\mathbf{x})$	A)	одноместный предикат
2)	$\forall_{x} A(x,y)$	Б)	двуместный предикат
3)	A(x,y)	B)	высказывание
Г	Грарилгиий отрет.		

Правильный ответ:

1	2	3
В	A	Б

Компетенции (индикаторы): УК-1, ОПК-1

5. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Законы логики		Формулы
1)	закон де Моргана	A)	$A \lor B = B \lor A$

2)	коммута	тивный закон	Б)	$(A \lor B) \land C =$	$= (A \wedge C) \vee (B \wedge C)$	
3)	3) дистрибутивный закон		B)	$(A \lor B) \lor$	$C = A \vee (B \vee C)$	
4)	ассоциа	гивный закон	Γ) $\overline{A \vee B} = \overline{A} \wedge \overline{B}$		$\overline{B} = \overline{A} \wedge \overline{B}$	
	Правильный ответ:					
	1	2	3 4		4	
	Г	Δ		Б	B	

Компетенции (индикаторы): УК-1, ОПК-1

Задания закрытого типа на установление правильной последовательности

- 1. Расположите в правильной последовательности шаги алгоритма построения многочлена Жегалкина для произвольной формулы логики высказываний.
 - A) выполнить преобразования вида $\overline{A} = A + 1$, $A \wedge B = A \cdot B$;
 - Б) открыть все скобки, учитывая, что $A \cdot A = A$;
 - В) выразить все логические операции через конъюнкцию и отрицание;
 - Γ) привести подобные слагаемые, учитывая, что A + A = 0.

Правильный ответ: В, А, Б, Г

Компетенции (индикаторы): УК-1, ОПК-1

Задания открытого типа

Задания открытого типа на дополнение

1. Напишите пропущенное слово (словосочетание).
– это всякое предложение, содержащее одну или несколько
переменных, определенных на соответствующем множестве.
Правильный ответ: предикат.
Компетенции (индикаторы): УК-1

2. Напишите пропущенное слово (словосочетание).

Формула логики высказываний называется тавтологией, если при всех наборах значений пропозиционных переменных она принимает значение _____.

Правильный ответ: истина (или 1).

Компетенции (индикаторы): УК-1

3. Напишите пропущенное слово (словосочетание).

Две формулы исчисления высказываний $F_1(p_1,p_2,\ldots,p_n)$ и $F_2(p_1,p_2,\ldots,p_n)$, образованные с помощью одних и тех же пропозиционных переменных, равносильны тогда и только тогда, когда их эквивалентность $F_1(p_1,p_2,\ldots,p_n) \leftrightarrow F_2(p_1,p_2,\ldots,p_n)$ – это ______

Правильный ответ: тавтология (или тождественно истинная формула).

Компетенции (индикаторы): УК-1, ОПК-1

4. Напишите пропущенное слово (словосочетание).

Условие тождественной истинности квантифицированного предиката: (n-1) - местный предикат, полученный из n - местного предиката $A(x_1,x_2,\ldots,x_n)$, определенного на множестве M, применением квантора общности по какой-либо переменной, является тождественно истинным тогда и только тогда, когда данный предикат $A(x_1,x_2,\ldots,x_n)$ - ______

Правильный ответ: тождественно истинный.

Компетенции (индикаторы): УК-1, ОПК-1

Задания открытого типа с кратким свободным ответом

1. Определить истинностное значение высказывания:

$$\left(\left(P\vee\overline{R}\right)\leftrightarrow\left(S\to T\right)\right)\to\left(S\wedge\overline{S}\right)$$

при заданном наборе значений пропозиционных переменных:

$$P = 0, R = 1, S = 1, T = 0.$$

(Ответ запишите в виде логической константы)

Правильный ответ: 0 (или «ложь»).

Компетенции (индикаторы): УК-1

2. Построить многочлен Жегалкина для формулы:

$$(P_1 \to (P_2 \to P_3)) \to ((P_1 \to P_2) \to (P_1 \to P_3)),$$

учитывая ее разновидность.

(Ответ запишите в виде логической константы)

Правильный ответ: 1.

Компетенции (индикаторы): УК-1

3. Для двух одноместных предикатов x < 2 и x > 2, определенных на множестве действительных чисел, найти область истинности их конъюнкции.

(Ответ запишите в виде промежутка)

Правильный ответ: Ø

Компетенции (индикаторы): УК-1, ОПК-1

4. Найти область истинности двуместного предиката, определённого на множестве R^2 :

$$(x^2 - 4)^2 + (y^2 - 9)^2 = 0$$

(Ответ запишите в виде упорядоченных пар)

Правильный ответ: (2;3), (2;-3), (-2;3), (-2;-3).

Компетенции (индикаторы): УК-1, ОПК-1

5. Найти область истинности двуместного предиката, определённого на множестве R^2 :

$$|\mathbf{x}| = -|\mathbf{y}|$$

(Ответ запишите в виде упорядоченных пар)

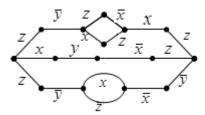
Правильный ответ: (0; 0).

Компетенции (индикаторы): УК-1, ОПК-1

6. Определить истинностное значение высказывания:

$$\forall_x \exists_y \ x + y = 7$$

(Ответ запишите в виде логической константы)


Правильный ответ: 1 (или «истина»)

Компетенции (индикаторы): УК-1

Задания открытого типа с развернутым ответом

1. Решить прикладную задачу, используя фундаментальные методы и язык математической логики.

Проанализировав логическую структуру последовательно-параллельной контактной схемы, выполнить ее упрощение в рамках равносильных преобразований.

Ответ дать в виде минимальной ДНФ и построить упрощенную схему.

Привести расширенное решение.

Время выполнения – 30 мин.

Ожидаемый результат:

1. Построим логическую структуру контактной схемы.

Учитывая, что ветвление соответствует логическому союзу «или» (операция дизъюнкция), а последовательное соединение – союзу «и» (операция конъюнкция), согласно условию, имеем три параллельные ветки:

$$F = F_1 \vee F_2 \vee F_3.$$

2. Рассмотрим каждую ветку отдельно.

Записываем операцию конъюнкция значком умножения, и упрощаем максимально, используя законы логики:

$$F_{1} = z\overline{y} \cdot (z\overline{x} \vee xz) \cdot xz = \overline{xy}z \vee x\overline{y}z$$

$$F_{2} = x \cdot y \cdot \overline{x} \cdot z = 0$$

$$F_{3} = z\overline{y} \cdot (x \vee z) \cdot \overline{x} \cdot \overline{y} = \overline{x} \cdot \overline{y} \cdot z \cdot (x \vee z) = (\overline{xy}z \cdot x) \vee (\overline{x} \cdot \overline{y} \cdot z) = 0 \vee (\overline{x} \cdot \overline{y} \cdot z) = \overline{x} \overline{y} z$$

Таким образом, исходная контактная схема реализуется функцией алгебры логики:

$$F = F_1 \lor F_2 \lor F_3 = \overline{x} \, \overline{y} \, z \lor x \, \overline{y} \, z \lor \overline{x} \, \overline{y} \, z$$

3. Упрощаем полученную формулу.

Формула F имеет структуру СНДФ. Упростим ее, используя равносильные преобразования. При необходимости можно использовать специальные алгоритмы минимизации ДНФ.

$$F = \overline{x} \, \overline{y} \, z \vee x \, \overline{y} \, z \vee \overline{x} \, \overline{y} \, z = \overline{x} \, \overline{y} \, z \vee x \, \overline{y} \, z = \overline{y} \, z (\overline{x} \vee x) = \overline{y} \, z \cdot 1 = \overline{y} \, z$$

То есть получили ДНФ в виде $F = \overline{y}z$.

4. Обоснование минимальности.

Видно, что эта форма является минимальной ДНФ для формулы F по всем критериям, так как она включает в себя минимальное количество букв, конъюнкций и отрицаний. При этом эта форма получена равносильными преобразованиями, поэтому описывает упрощенную контактную схему, выполняющую ту же работу, что и исходная. Упрощенная схема содержит всего два звена.

Ответ: минимальная ДНФ имеет вид \overline{y} z; соответствующая ей упрощенная схема имеет вид:

Критерии оценивания:

- реализация последовательно-параллельной контактной схемы формулой алгебры логики;
- использование алгоритма минимизации ДНФ, основанного на равносильных преобразованиях (возможно использование других известных алгоритмов минимизации ДНФ);
 - корректное выполнение преобразований;
 - упрощение построенной СНДФ;
 - корректные выводы, исходя из результатов.

Компетенции (индикаторы): УК-1, ОПК-1

2. Решить задачу, используя методы и язык математической логики. Дана формула алгебры логики:

$$(x \to (y \land z)) \land (\overline{(y \lor z) \to x}).$$

Реализовать поиск равносильных форм, соответствующих данной формуле, в виде:

- А) многочлена Жегалкина с помощью равносильных преобразований;
- Б) СНДФ, СНКФ с помощью таблицы истинности.

Привести расширенное решение.

Время выполнения -30 мин.

Ожидаемый результат:

Обозначим формулу:
$$F = (x \to (y \land z)) \land (\overline{(y \lor z) \to x}).$$

А) Используя алгоритм построения многочлена Жегалкина, преобразуем формулу F:

Таким образом, получили многочлен Жегалкина:

$$F = xyz + xy + xz + yz + y + z.$$

Б) Для получения СНДФ, СНКФ строим таблицу истинности.

x	y	Z	$y \wedge z$	$x \to (y \land z)$	$y \lor z$	$(y \lor z) \to x$	$\overline{(y \lor z) \to x}$	F
0	0	0	0	1	0	1	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	1	1	1	0	1	1
1	0	0	0	0	0	1	0	0
1	0	1	0	0	1	1	0	0
1	1	0	0	0	1	1	0	0
1	1	1	1	1	1	1	0	0

Ориентируясь на значения формулы F (последняя колонка), получаем совершенные нормальные формы:

СНДФ:

$$F = (\overline{x} \wedge \overline{y} \wedge z) \vee (\overline{x} \wedge y \wedge \overline{z}) \vee (\overline{x} \wedge y \wedge z)$$

СНКФ:

$$F = (x \lor y \lor z) \land (\overline{x} \lor y \lor z) \land (\overline{x} \lor y \lor \overline{z}) \land (\overline{x} \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{y} \lor \overline{z})$$

Ответ:

- A) многочлен Жегалкина xyz + xy + xz + yz + y + z;
- Б) СНДФ: $(\overline{x} \land \overline{y} \land z) \lor (\overline{x} \land y \land \overline{z}) \lor (\overline{x} \land y \land z)$;

CHK
$$\Phi$$
: $(x \lor y \lor z) \land (\overline{x} \lor y \lor z) \land (\overline{x} \lor y \lor \overline{z}) \land (\overline{x} \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{y} \lor \overline{z})$

Критерии оценивания:

- применение алгоритма построения многочлена Жегалкина, опирающегося на тождественные преобразования данной формулы;
 - использование законов логики при построении многочлена Жегалкина;
 - табличная реализация исходной формулы;

- построение совершенных нормальных форм, равносильных данной формуле;
 - корректные преобразования и выводы. Компетенции (индикаторы): УК-1, ОПК-1

Экспертное заключение

Представленный комплект оценочных материалов по дисциплине «Математическая логика» соответствует требованиям ФГОС ВО.

Предлагаемые оценочные материалы адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 01.03.02 Прикладная математика и информатика.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанные и представленные для экспертизы оценочные материалы рекомендуются к использованию в процессе подготовки обучающихся по указанному направлению.

Председатель учебно-методической комиссии института компьютерных систем и информационных технологий

Ветрова Н. Н.

Лист изменений и дополнений

Л⁄п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)
1.	Дополнен комплектом оценочных материалов	протокол заседания кафедры прикладной математики № $\frac{8}{2025}$ от $\frac{24.025}{2025}$	В.В. Малый