Комплект оценочных материалов по дисциплине «Операционное исчисление»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа

1. Выберите один правильный ответ

Найти показатель \bar{p} оста s_0 функции $f(t)=t^2$, используя определение $s_0 = infs, \ s > 0, \ \lim_{t \to \infty} |f(t)| e^{-st} < M, \ M < \infty$:

- A) -2
- Б) 0
- B) -5
- Γ) 3

Правильный ответ: Б

Компетенции (индикаторы): ОПК-1

2. Выберите один правильный ответ

Лапласа $F(p) = \int_0^\infty e^{-pt} f(t) dt$ для функции Вычислить интеграл Хэвисайда:

$$\eta(t) = \begin{cases} 1, t > 0 \\ 0, t < 0 \end{cases}$$

- A) $\frac{p-1}{p^2}$

Правильный ответ: В

Компетенции (индикаторы): ОПК-1

3. Выберите один правильный ответ

По определению и, используя линейность, найти изображение функции

$$\sin t = \frac{1}{2i} (e^{it} - e^{-it})$$
:

- A) $\frac{1}{p^2}$ B) $\frac{1}{p^2+1}$ B) $\frac{p}{p^2+1}$
- Γ) $\frac{1}{p-1}$

Правильный ответ: Б

Компетенции (индикаторы): ОПК-1

4. Выберите один правильный ответ

Используя теорему подобия: если $f(t) \to F(p)$ и $\alpha > 0$, тогда $f(\alpha t) o rac{1}{lpha} F\left(rac{p}{lpha}
ight)$, найти изображение функции $\cos^2 \alpha \ t = rac{1 + \cos 2 lpha t}{2}$: A) $rac{p^2}{p(p^2 + 4 lpha^2)}$

A)
$$\frac{p^2}{p(p^2+4\alpha^2)}$$

$$\mathbf{b})\frac{p+2\alpha^2}{(p^2+4\alpha^2)}$$

$$B) \frac{p^2 + 2\alpha^2}{p(p^2 + 4\alpha^2)}$$

$$\Gamma)\frac{2}{p(p^2+4\alpha^2)}$$

Правильный ответ: В

Компетенции (индикаторы): ОПК-1

Задания закрытого типа на установление соответствия

1. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Функция-оригинал		Порядок роста
1)	$\eta(t)$	A)	ln 2
2)	$t2^t$	Б)	3
3)	sin t e ^t	B)	0
4)	$(t^2+1)e^{3t}$	Γ)	1

Правильный ответ:

1	2	3	4
В	A	Γ	Б

Компетенции (индикаторы): ОПК-1

2. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Функция-оригинал		Изображение по Лапласу
1)	$e^{\alpha t}$	A)	$\frac{10}{p^2 + 25}$
2)	t^n	Б)	$\frac{1}{p-\alpha}$, Re $p > Re \alpha$
3)	$ch t = \frac{1}{2}(e^t + e^{-t})$	B)	$\frac{n!}{p^{n+1}}$
4)	2 sin 5 <i>t</i>	Γ)	$\frac{p}{p^2-1}$

Правильный ответ.

TIPUDINIBINI CIDET.				
	1	2	3	4
	Б	В	Γ	A

Компетенции (индикаторы): ОПК-1

3. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Производная $f'(t)$ функции-		Изображение $f'(t)$ по Лапласу
	оригинала		
1)	$(e^{-t}cos3t)'$	A)	$\frac{p}{p^2+1}$
2)	(t^2) '	Б)	$p\frac{p+1}{(p+1)^2+9}-1$
3)	(sin <i>t</i>)'	B)	$\frac{2}{p-2}$
4)	$(e^{2t})'$	Γ)	$\frac{2}{p^2}$

Правильный ответ:

1	2	3	4
Б	Γ	A	В

Компетенции (индикаторы): ОПК-1

4. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Функция-оригинал		Изображение по Лапласу по
			формуле дифференцирования
			изображения
1)	t² cos a t	A)	$p^2(p^4-12a^2)$
			$\frac{(p^4+4a^4)^2}{(p^4+4a^4)^2}$
2)	t² sin a t	Б)	4
			$(2p+1)^2$
3)	$t \cos a t \cdot chat$	B)	$2a(3p^2-a^2)$
			$(p^2 + a^2)^3$
4)	$te^{-\frac{t}{2}}$	Γ)	$\frac{2p(p^2 - 3a^2)}{(p^2 + a^2)^3}$
			$(p^2 + a^2)^3$

Правильный ответ:

1	2	2	4
1	2	3	4
Γ	В	A	Б

Компетенции (индикаторы): ОПК-1

Задания закрытого типа на установление правильной последовательности

1. Расположите функции-оригиналы по возрастанию параметра s_0 (параметра роста):

A)
$$\frac{1}{2}e^t \sin 2t$$

Б)
$$\bar{t}^5 5^t$$

B) sin 3 t cos 7 t

$$\Gamma$$
) t^3e^{2t+1}

Правильный ответ: В, А, Б, Г

Компетенции (индикаторы): ОПК-1

2. Расположите изображения по Лапласу F(p) в порядке возрастания числа их полюсов:

A)
$$\frac{p}{(p^2+1)^2}$$
B) $\frac{p}{p^2+1}$

$$\mathsf{E})\,\frac{p}{p^2+1}$$

B)
$$\frac{1}{p-1}$$

 Γ) $2\cos 3t\sin(t+1)$

Правильный ответ: Г, В, Б, А

Компетенции (индикаторы): ОПК-1

3. Расположите значения функции-оригинала x(t) на множестве $t \in$ $\{\frac{\pi}{4}, \frac{\pi}{2}, \pi, \frac{3}{2}\pi\}$ в порядке их убывания, если x(t) является решением уравнения:

$$x^{'''} + x^{'} = t, x(0) = 0, x'(0) = -1, x''(0) = 0$$

A)
$$\chi\left(\frac{\pi}{4}\right)$$

Б)
$$\chi\left(\frac{\pi}{2}\right)$$

B)
$$x(\pi)$$

$$\Gamma$$
) $x\left(\frac{3}{2}\pi\right)$

Правильный ответ: Г, В, А, Б

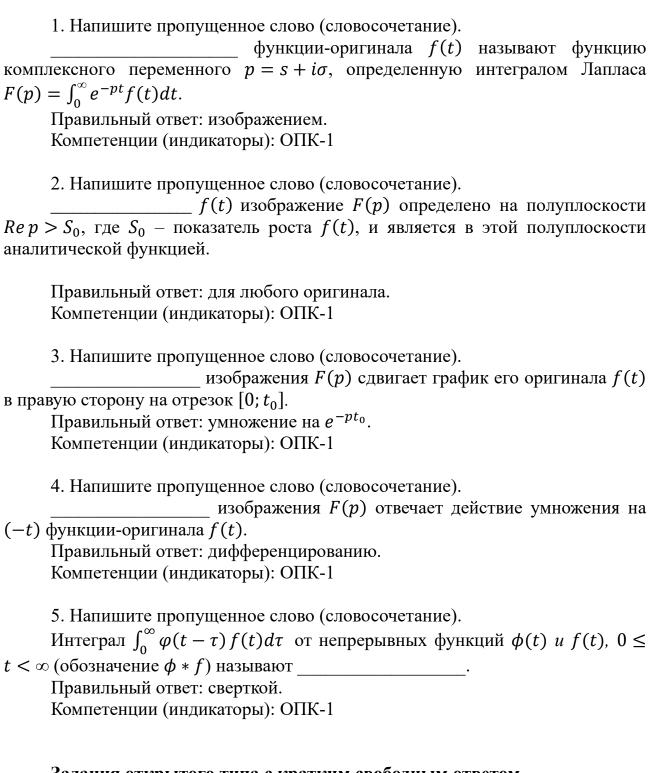
Компетенции (индикаторы): ОПК-1

Расположите функции-оригиналы в порядке возрастания действительных полюсов их изображений по Лапласу:

A).
$$\eta(t)$$

Б).
$$t^2 \sin a t$$

B)
$$e^{t} - t - 1$$


$$\Gamma$$
) sin 3 t cos 7 t

Правильный ответ: Г, А, Б, В

Компетенции (индикаторы): ОПК-1

Задания открытого типа

Задания открытого типа на дополнение

Задания открытого типа с кратким свободным ответом

1. Чему равно преобразование Лапласа производной функции-оригинала $f(t) = e^{-t}\cos 3t$? (Ответ запишите в виде функции)

Правильный ответ: $L[f'(t)] = p \frac{p+1}{(p+1)^2+9} - 1$.

Компетенции (индикаторы): ОПК-1

2. Найти промежуток сдвига вправо функции-оригинала $\eta(t)$ при умножении её преобразования Лапласа $\frac{1}{p}$ на e^{-3p} (Ответ запишите в виде интервала)

Правильный ответ: [0,3].

Компетенции (индикаторы): ОПК-1

3. Найти значение функции-оригинала f(t) в точке $t=\pi$, если её преобразование Лапласа F(p) имеет вид $\frac{p^2+2}{p(p^2+4)}$ (Ответ запишите в виде числа)

Правильный ответ: 1.

Компетенции (индикаторы): ОПК-1

4. Найти наибольшее значение функции-оригинала f(t) на отрезке $[0;\pi]$ при известном преобразовании $\frac{1}{p^2+1}$ (Ответ запишите в виде числа)

Правильный ответ: 1.

Компетенции (индикаторы): ОПК-1

5. Найти сумму наибольшего и наименьшего значений функции-оригинала f(t) на отрезке [0;ln2], если $F[f(t)]=rac{1}{p-1}$ (Ответ запишите в виде числа)

Правильный ответ: 3.

Компетенции (индикаторы): ОПК-1

Задания открытого типа с развернутым ответом

1. Решить задачу, используя методы операционного исчисления: Найти оригинал f(t), если

$$F(p) = \frac{p+2}{(p+1)(p-2)(p^2+4)}.$$

Привести расширенное решение.

Время выполнения – 30 мин.

Ожидаемый результат:

1. Учитывая, что функция $F(p) = \frac{F_1(p)}{F_2(p)}$ мероморфная, найдем её полюса, которые совпадают с нулями знаменателя

$$F_2(p) = 0 \Rightarrow (p+1)(p-2)(p^2+4) = 0$$

 $\Rightarrow p_1 = -1, p_2 = 2, p_3 = 2i, p_4 = -2i$

2. Все полюса простые, поэтому, в духе формулы второй теоремы обращения, предварительно вычислим $F_2(p)$:

обращения, предварительно вычислим
$$F_2'(p)$$
:
$$F_2(p) = (p^2 - p - 2)(p^4 + 4) = p^4 - p^3 + 2p^2 - 4p - 8$$

$$\Rightarrow F_2'(p) = 4p^3 - 3p^2 + 4p - 4.$$

3. Находим оригинал по формуле второй теоремы обращения:

$$f(t) = \sum_{k=1}^{4} \frac{p_k + 2}{4p_k^3 - 3p_k^2 + 4p_k - 4} e^{p_k t} =$$

$$= -\frac{1}{15}e^{-t} + \frac{4}{32 - 12 + 8 - 4}e^{2t} +$$

$$+ \frac{2i + 2}{4 \cdot 8i^3 - 3 \cdot 4i^2 + 4 \cdot 2i - 4}e^{2it} + \frac{-2i + 2}{-32i^3 - 12i^2 - 8i - 4}e^{-2it} =$$

$$= -\frac{1}{15}e^{-t} + \frac{1}{6}e^{2t} + \frac{-1 + 2i}{20}e^{2it} + \frac{-1 - 2i}{20}e^{-2it} =$$

$$= -\frac{1}{15}e^{-t} + \frac{1}{6}e^{2t} - \frac{1}{10}\left(\frac{1}{2}\left(e^{2it} + e^{-2it}\right)\right) + \frac{2i}{20} \cdot \frac{2i}{2i}\left(e^{2it} - e^{-2it}\right) =$$

$$= -\frac{1}{15}e^{-t} + \frac{1}{6}e^{2t} - \frac{1}{10}\cos 2t - \frac{1}{5}\sin 2t,$$
Then, one can be a sum of the proof of the

поскольку $\cos t = \frac{1}{2} (e^{it} + e^{-it})$, $\sin t = \frac{1}{2i} (e^{it} - e^{-it})$.

Other: $f(t) = -\frac{1}{15}e^{-t} + \frac{1}{6}e^{2t} - \frac{1}{10}\cos 2t - \frac{1}{5}\sin 2t$.

Критерии оценивания:

- нахождение полюсов мероморфной функции $F(p) = \frac{F_1(p)}{F_2(p)}$;
- вычисление $F_{2}^{'}(p)$ в рамках использования второй теоремы обращения;
- нахождение оригинала по формуле $f(t) = \sum_{k=1}^n \frac{F_1(p_k)}{F_2(p_k)} e^{p_k t}$.

Компетенции (индикаторы): ОПК-1, ОПК-2, ОПК-7

2. Решить задачу, используя методы операционного исчисления:

С помощью формулы Дюамеля решить уравнение с заданными начальными условиями:

$$x'' - 4x = t - 1$$
$$x(0) = x'(0) = 0$$

Привести расширенное решение.

Время выполнения – 30 мин.

Критерии оценивания:

- построение вспомогательной задачи Коши;
- построение операторного уравнения;
- нахождение функции-оригинала вспомогательной задачи Коши;
- нахождение решения основной задачи с помощью формулы Дюамеля.

Ожидаемый результат:

1. Рассмотрим вспомогательную задачу Коши:

$$x_1^{''} - 4x_1 = 1$$

 $x_1(0) = x_1^{'}(0) = 0.$

2. Пусть $x_1(t) \to X_1(p), x_1''(t) \to p^2 X_1(p), 1 \to \frac{1}{p}$.

Тогда операторное уравнение будет иметь вид

$$X_1(p)(p^2-4) = \frac{1}{p} \Rightarrow X_1(p) = \frac{1}{p(p^2-4)}$$

3. Переходя к оригиналам, находим

$$X_1(p) = \frac{1}{p(p^2 - 4)} = \frac{1}{4} \left(\frac{p}{p^2 - 4} - \frac{1}{p} \right) \to \frac{1}{4} (ch2t - 1).$$

Таким образом, $x_1(t) = \frac{1}{4}(ch2t-1)$.

4. Далее, используя формулу Дюамеля, получим

$$\begin{split} x(t) &= \int_0^t (\tau - 1) \frac{1}{4} 2sh2(t - \tau) d\tau = -\int_0^t (\tau - 1) \frac{1}{4} d\left(ch\left(2(t - \tau)\right)\right) = \\ &= -(\tau - 1) \frac{1}{4} ch2(t - \tau)|_0^t + \int_0^t \frac{1}{4} ch\left(2(t - \tau)\right) d(\tau - 1) = \\ &= \frac{1}{8} (sh2(t - \tau) - 2(\tau - 1)ch2(t - \tau)) \Big|_0^t = \frac{1}{8} (sh2t - 2ch2t - 2t + 2). \end{split}$$
 Other:
$$x(t) = \frac{1}{8} (sh2t - 2ch2t - 2t + 2).$$

Критерии оценивания:

- построение вспомогательной задачи Коши;
- построение операторного уравнения;
- нахождение функции-оригинала вспомогательной задачи Коши;
- нахождение решения основной задачи с помощью формулы Дюамеля. Компетенции (индикаторы): ОПК-1, ОПК-2, ОПК-7

Экспертное заключение

Представленный комплект оценочных материалов по дисциплине «Операционное исчисление» соответствует требованиям ФГОС ВО.

Предлагаемые оценочные материалы адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 01.03.02 Прикладная математика и информатика.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанные и представленные для экспертизы оценочные материалы рекомендуются к использованию в процессе подготовки обучающихся по указанному направлению.

Председатель учебно-методической комиссии института компьютерных систем и информационных технологий

Ветрова Н. Н.

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)
1.	Дополнен комплектом оценочных материалов	протокол заседания кафедры прикладной математики № 8 от 24.025	В.В. Малый