Комплект оценочных материалов по дисциплине «Математическая экономика»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа

1. Выберите один правильный ответ

Какой принцип лежит в основе модели Марковица?

- А) Минимизация транзакционных издержек
- Б) Максимизация доходности без учета риска
- В) Минимизация риска при заданной доходности
- Г) Максимизация ликвидности

Правильный ответ: В

Компетенции: ОПК-3, ПК-1

2. Выберите один правильный ответ

Что означает убывающая предельная полезность дохода?

- А) С увеличением дохода полезность уменьшается
- Б) Каждая дополнительная единица дохода приносит меньше полезности, чем предыдущая
 - В) Полезность дохода не зависит от его величины
 - Г) Полезность дохода увеличивается пропорционально его росту

Правильный ответ: Б

Компетенции: ОПК-3, ПК-1

3. Выберите один правильный ответ

Что такое наращение денежных сумм?

- А) Увеличение стоимости денег с учетом процентов за определенный период
 - Б) Уменьшение стоимости денег с учетом инфляции
 - В) Пересчет будущей стоимости денег в текущую
 - Γ) Расчет стоимости денег без учета времени

Правильный ответ: А

Компетенции: ОПК-3, ПК-1

4. Выберите один правильный ответ

Какой метод снижения риска предполагает распределение инвестиций между разными активами?:

- А) Хеджирование
- Б) Диверсификация
- В) Страхование
- Г) Лимитирование

Правильный ответ: Б

Компетенции: ОПК-3, ПК-1

5. Выберите один правильный ответ

Предельная полезность первой единицы блага равна 300. При потреблении первых трех единиц блага предельная полезность каждой последующей единицы уменьшается в 2 раза. Предельная полезность каждой последующей единицы блага при дальнейшем потреблении падает в 5 раз. Найти совокупную полезность 5 единиц блага.

- A) 500
- Б) 445
- B) 20
- Γ) 543

Правильный ответ: Г

Компетенции: ОПК-3, ПК-1

6. Выберите один правильный ответ

Какая из следующих задач является задачей линейного программирования?

- А) Минимизация квадратичной функции
- Б) Максимизация линейной функции при линейных ограничениях
- В) Решение системы нелинейных уравнений
- Г) Оптимизация функции с экспоненциальными членами

Правильный ответ: Б

Компетенции: ОПК-3, ПК-1

7. Выберите один правильный ответ

Какая из следующих функций является нелинейной?

- A) f(x) = 2x + 3
- $F(x) = x^2 + 3x + 2$
- B) f(x) = 5x
- $\Gamma) f(x) = 10$

Правильный ответ: Б

Компетенции: ОПК-3, ПК-1

8. Выберите один правильный ответ

Какой принцип лежит в основе динамического программирования?

- А) Принцип оптимальности Беллмана
- Б) Принцип максимизации прибыли
- В) Принцип минимальных затрат
- Г) Принцип равновесия Нэша

Правильный ответ: А

Компетенции: ОПК-3, ПК-1

9. Выберите один правильный ответ

Какая модель используется для анализа рисков в управленческих решениях?

- А) Модель Монте-Карло
- Б) Линейная регрессия
- В) Факторный анализ
- Г) Кластерный анализ

Правильный ответ: А

Компетенции: ОПК-3, ПК-1

10. Выберите один правильный ответ

Какая из задач относится к динамическому программированию?

- А) Задача коммивояжера
- Б) Задача о назначениях
- В) Задача о рюкзаке
- Г) Задача о кратчайшем пути

Правильный ответ: В

Компетенции: ОПК-3, ПК-1

Задания закрытого типа на установление соответствия

1. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Понятие теории инфляции		Описание понятия
1)	Инфляция	A)	Снижение общего уровня цен
2)	Дефляция	Б)	Одновременный рост инфляции и безработицы
3)	Стагфляция	B)	Чрезвычайно высокий темп роста цен
4)	Гиперинфляция	Γ)	Устойчивый рост общего уровня цен

Правильный ответ:

1	2	3	4
Γ	A	Б	В

Компетенции: ОПК-3, ПК-1

2. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

Вид неопределенности	Математическое выражение
_	неопределенности, где P_t –
	прогнозируемость наступления
	события, t – время, t_k –
	конечное время
	прогнозирования события

1)	Полная неопределенность	A)	$\lim_{t \to t_k} P_t = 1$
2)	Полная определенность	Б)	$\lim_{t \to t_k} P_t = 0$
3)	Частичная неопределенность	B)	$0 < \lim_{t \to t_k} P_t < 1$

Правильный ответ:

1	2	3
Б	A	В

Компетенции: ОПК-3, ПК-1

3. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	·				
	Стандартн	юе отклонение		Коэффиц	циент вариации
	доходности а	ктива / ожидаемая			
	дох	одность			
1)	159	% / 10%	A)		1,6
2)	309	% / 15%	Б)		2
3)	249	% / 15%	B)		1,125
4)	189	% / 16%	Γ)		1,5
	Правильный о	твет:			
	1	2		3	4

1	2	3	4
Γ	Б	A	В

Компетенции: ОПК-3, ПК-1

4. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Метод финансовых расчетов		Описание метода
1)	Анализ сценариев	A)	Моделирование множества случайных исходов для оценки рисков
2)	Монте-Карло	Б)	Построение графической модели возможных решений и их последствий
3)	Дерево решений	B)	Приведение будущих денежных потоков к текущей стоимости
4)	Дисконтирование	Γ)	Оценка результатов при различных предположениях

Правильный ответ:

1	2	3	4
Γ	A	Б	В

Компетенции: ОПК-3, ПК-1

5. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Экономическое понятие			Описа	ние понятия
1)	Функция полез	зности	A)	График,	показывающий
				комбинации ј	риска и доходности
				с одинаковой	полезностью
2)	Кривая безразл	пичия	Б)	Изменение	полезности при
				увеличении	дохода на одну
				единицу	
3)	3) Ожидаемая полезность		B)	Функция,	отражающая
			предпочтения	и инвестора	
4)	4) Предельная полезность		Γ)	Средневзвеш	енная полезность
				всех возможн	ых исходов
	Правильный ответ:				
	1 2			3	4
	В	A		Γ	Б

6. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	_			_		
	Вероятно	сть разорения		Вероятност	ь, что компания не	
	страховой	компании за год		разорится	в течение 3 лет (с	
				точносты	ю до тысячных)	
1)		0,01	A)		0,729	
2)		0,1	Б)		0,970	
3)		0,02	B)		0,512	
4)		0,2	Γ)		0,941	
	Правильный ответ:					
	1	2		2	1	

Компетенции: ОПК-3, ПК-1

Б

7. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

Γ

В

	Цена товара (p, тыс. руб.)		Прибыль (Р, тыс. руб.) от
			продажи товара, если издержки
			на его производство $C(x) =$
			50 + 3x, где объем
			производства $x = 10$
1)	8	A)	0
2)	9	Б)	10
3)	10	B)	20
4)	11	Γ)	30

Правильный ответ:

правильный ответ.							
1	2	3	4				

A	Б	В	Γ
---	---	---	---

8. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

		е линейного ммирования		Определ	пение поняти	R	
1)	Целевая функт	Rиј	A)	Алгоритм линейного пр	1	задач ания	
2) Ограничение			Б)	Функция, которую необходимо максимизировать или минимизировать			
3)	3) Симплекс-метод			Задача, связа используемая оптимального	и для а	одной, нализа	
4)	Двойственная	задача	Γ)	Условие, допустимые переменных	ограничив	ающее	
	Правильный ответ:						
	1	2		3	4		
Б Г				Δ	R		

Компетенции: ОПК-3, ПК-1

9. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Метод решения задач нелинейного программирования		Описание метода
1)	Метод Ньютона	A)	Метод преобразования задачи с ограничениями в задачу без ограничений
2)	Метод градиентного спуска	Б)	Метод решения задач с ограничениями через введение множителей Лагранжа
3)	Метод Лагранжа	B)	Метод, основанный на движении в направлении антиградиента
4)	Метод штрафных функций	Γ)	Итеративный метод, использующий вторые производные для нахождения минимума

Правильный ответ:

1	2	3	4
Γ	В	Б	A

Компетенции: ОПК-3, ПК-1

10. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

				<u> </u>		
	Тип транс	портной задачи		Характер	оистика задачи	
1)	Закрытая		A)	Сумма запас	ов не равна сумме	
			потребностей			
2)	Открытая		Б)	Количество з	аполненных клеток	
				в опорном п	лане меньше, чем	
				(m+n-1),	где т – количество	
				поставщиков	, п – количество	
				потребителей	Í	
3)	Вырожденная		B)	Сумма запа	сов равна сумме	
			потребностей			
4)	Невырожденна	ая		Опорный пла	ан содержит ровно	
				(m + n - 1)	положительных	
				компонент, г	де m – количество	
				поставщиков	, п – количество	
				потребителей	Í	
	Правильный с	твет:				
	1	2		3	1	

_			
1	2	3	4
В	A	Б	Γ

Компетенции: ОПК-3, ПК-1

Задания закрытого типа на установление правильной последовательности

- 1. Установите последовательность построения функции полезности:
- А) Оценка полезности каждого уровня дохода
- Б) Построение графика функции полезности
- В) Определение возможных уровней дохода
- Г) Анализ отношения инвестора к риску

Правильный ответ: В, А, Б, Γ Компетенции: ОПК-3, ПК-1

- 2. Установите последовательность построения модели Марковица:
- А) Расчет ожидаемой доходности и риска портфеля
- Б) Сбор данных о доходности активов
- В) Построение границы эффективности
- Г) Выбор оптимального портфеля

Правильный ответ: Б, A, B, Γ Компетенции: ОПК-3, ПК-1

- 3. Установите последовательность применения метода Монте-Карло для оценки инвестиционного проекта:
 - А) Многократный расчет NPV
 - Б) Определение распределения вероятностей для ключевых переменных
 - В) Генерация случайных значений переменных
 - Г) Анализ результатов моделирования

Правильный ответ: Б, В, А, Г Компетенции: ОПК-3, ПК-1

- 4. Установите последовательность оценки рисков проекта:
- А) Разработка мер по снижению рисков
- Б) Количественная оценка вероятности и последствий
- В) Ранжирование рисков по значимости
- Г) Идентификация рисков Правильный ответ: Г, Б, В, А Компетенции: ОПК-3, ПК-1
- 5. Установите последовательность решения транспортной задачи:
- А) Построение начального опорного плана и проверка его на оптимальность
 - Б) Проверка сбалансированности задачи
 - В) Улучшение плана (перераспределение грузов)
 - Г) Получение оптимального решения

Правильный ответ: Б, А, В, Г Компетенции: ОПК-3, ПК-1

- 6. Установите последовательность этапов математического моделирования управленческих решений:
 - А) Интерпретация результатов и принятие решения
 - Б) Построение математической модели
 - В) Расчетные исследования на основании математической модели
 - Г) Постановка задачи, сбор и анализ данных

Правильный ответ: Г, Б, В, А Компетенции: ОПК-3, ПК-1

- 7. Установите последовательность решения задачи оптимального управления:
- А) Проверка условий оптимальности и нахождение оптимального управления
 - Б) Формулировка задачи (целевой функционал и ограничения)
 - В) Применение принципа максимума Понтрягина
 - Г) Решение системы дифференциальных уравнений

Правильный ответ: Б, В, Г, А Компетенции: ОПК-3, ПК-1

8. Функц	ия издержек зад	цана как $C(x)$	(c) = 1000 -	$+50x + 0.2x^2$, 1	де :	х – объем
производства.	Расположите	значения	объемов	производства	В	порядке
возрастания ср	едних издержек	а, которые о	ни дают:			
A) $x = 10$	00					
Б) $x = 20$	00					
B) $x = 25$	50					
Γ) $x = 40$	00					

Правильный ответ: А, Б, В, Г Компетенции: ОПК-3, ПК-1

Задания открытого типа

Задания открытого типа на дополнение

	1. Напишите пропущенное слово (словосоч	нетани	ıe).	
	Экономический –		· ·	получения
хозяй	ийствующими субъектами экономических пото	ерь св	ыше прогнозні	ых величин.
	Правильный ответ: риск.			
	Компетенции: ОПК-3, ПК-1			
	2. Напишите пропущенное слово (словосоч	нетани	te).	
	Модель – это модель, к	котора	я учитывает б	езрисковый
актив	ив при построении оптимального портфеля.			
	Правильный ответ: Тобина.			
	Компетенции: ОПК-3, ПК-1			
	3. Напишите пропущенное слово (словосоч	іетани	re).	
			ой инвестор	лостигает
макси	симальной полезности при заданных огранич	-	-	
	Правильный ответ: оптимум.			
	Компетенции: ОПК-3, ПК-1			
	4. Напишите пропущенное слово (словосоч	нетани	re).	
	Процентная – это пл		· ·	е кредитом.
вырах	аженная в процентах от суммы кредита за			
год).		1 ,	1	, , ,
	Правильный ответ: ставка.			
	Компетенции: ОПК-3, ПК-1			
	5. Напишите пропущенное слово (словосоч	іетани	re).	

В задаче динамического программирования принцип утверждает, что оптимальное решение на каждом шаге зависит только от текущего состояния и не зависит от предыдущих решений. Правильный ответ: оптимальности Беллмана. Компетенции: ОПК-3, ПК-1 6. Напишите пропущенное слово (словосочетание). Вероятность разорения в классической задаче о разорении стремится к нулю, если начальный капитал стремится к ______. Правильный ответ: бесконечности. Компетенции: ОПК-3, ПК-1 7. Напишите пропущенное слово (словосочетание). Если в симплекс-методе все коэффициенты в строке целевой функции неотрицательны, то текущее решение является Правильный ответ: оптимальным. Компетенции: ОПК-3, ПК-1 8. Напишите пропущенное слово (словосочетание). Транспортная задача является частным случаем задачи программирования.

Задания открытого типа с кратким свободным ответом

1. Как называется экономическое состояние в деятельности предприятия, когда текущие затраты на дополнительный объем производства равны выручке, полученной от реализации этой продукции?

Правильный ответ: точка безразличия.

Компетенции: ОПК-3, ПК-1

Правильный ответ: линейного. Компетенции: ОПК-3, ПК-1

2. Как называется линия, которая показывает оптимальные комбинации риска и доходности для всех возможных портфелей?

Правильный ответ: эффективная граница.

Компетенции: ОПК-3, ПК-1

3. Инвестор формирует рисковый портфель из двух активов. Доходность первого актива составляет 10% с риском (стандартным отклонением) 15%, а второго – 20% с риском 25%. Коэффициент корреляции между доходностями активов равен 0,5. Определите долю первого актива в портфеле, при которой риск портфеля будет минимальным. (Ответ запишите в долях единицы)

Правильный ответ: 0,64.

4. Предприниматель рассматривает два инвестиционных проекта. Первый проект с вероятностью 60% принесет прибыль в размере 200 000 рублей, а с вероятностью 40% убыток в размере 50 000 рублей. Второй проект с вероятностью 70% принесет прибыль в размере 150 000 рублей, а с вероятностью 30% убыток в размере 30 000 рублей. На основе ожидаемой прибыли выбрать, какой проект выгоднее? (Ответ запишите в виде «1» или «2»)

Правильный ответ: 1.

Компетенции: ОПК-3, ПК-1

5. Фирма имеет выручку 1 млн. руб. и затраты 0,8 млн. руб. Найдите рентабельность продаж в процентах. (Ответ запишите в виде числа)

Правильный ответ: 20.

Компетенции: ОПК-3, ПК-1

6. Функция прибыли задается выражением $P(x) = 200x - x^2$, где x – объем продаж. Найдите максимальную прибыль. (Ответ запишите в виде числа) Правильный ответ: 10000.

Компетенции: ОПК-3, ПК-1

7. Компания планирует увеличить выпуск продукции на 10%. Текущая выручка составляет 500000 рублей. Найдите ожидаемую выручку после увеличения выпуска в руб. (Ответ запишите в виде числа)

Правильный ответ: 550000. Компетенции: ОПК-3, ПК-1

8. Функция издержек задается выражением $C(x) = 30 + 5x + 0.1x^2$, где x – объем производства. Найдите предельные издержки при x = 10. (Ответ запишите в виде числа)

Правильный ответ: 7.

Компетенции: ОПК-3, ПК-1

Задания открытого типа с развернутым ответом

1. На предприятии осуществлены реконструкция и техническое перевооружение производства, на проведение которых было израсходовано 5 млн. руб. В результате этого денежные поступления по годам за расчетный период составили: 1 год — 1,2 млн. руб., 2 год — 1,8 млн. руб., 3 год — 2,0 млн. руб., 4 год — 2,5 млн. руб., 5 год — 1,5 млн. руб. Ставка дисконта составляет 20% годовых. Определите срок окупаемости с использованием дисконтированных поступлений и без учета дисконтированных поступлений.

Привести расширенное решение.

Время выполнения – 40 мин.

Ожидаемый результат:

1. Определим срок окупаемости инвестиций без учета дисконтирования денежных поступлений на основе среднегодовой величины денежных поступлений.

Годовые доходы
$$P_k = \frac{1,2+1,8+2,0+2,5+1,5}{5} = 1,8$$
 млн. руб. $PP = \frac{5}{1,8} = 2,78$ года

2. Определим срок окупаемости инвестиций без учета дисконтирования денежных поступлений на основе нарастания денежных средств по годам до достижения величины капитальных вложений.

В этом случае срок окупаемости составит 3 года, так как за эти годы накапливается достаточная сумма денежных средств для покрытия капитальных вложений: 1,2+1,8+2,0=5 млн. руб.

3. Определим срок окупаемости инвестиций с учетом дисконтирования денежных поступлений на основе среднегодовой величины денежных поступлений.

Дисконтированные суммы денежных поступлений по годам составят:

Первый год:
$$\frac{P_k}{(1+i)^{n_1}} = \frac{1,2}{(1+0,2)} = 1$$
 млн. руб. Второй год: $\frac{P_k}{(1+i)^{n_2}} = \frac{1,8}{(1+0,2)^2} = 1,25$ млн. руб. Третий год: $\frac{P_k}{(1+i)^{n_3}} = \frac{2}{(1+0,2)^3} = 1,16$ млн. руб. Четвертый год: $\frac{P_k}{(1+i)^{n_4}} = \frac{2,5}{(1+0,2)^4} = 1,2$ млн. руб. Пятый год: $\frac{P_k}{(1+i)^{n_5}} = \frac{1,5}{(1+0,2)^5} = 0,6$ млн. руб.

Среднегодовая величина дисконтированных денежных поступлений составит:

$$P_k=rac{1+1,25+1,16+1,2+0,6}{5}=1,042$$
 млн. руб. $PP=rac{5}{1,042}=4,79$ года

4. Определим срок окупаемости инвестиций с учетом дисконтирования денежных поступлений на основе нарастания дисконтированных денежных поступлений до момента покрытия капитальных вложений.

$$PP = 4 + \frac{0,39}{0.6} = 4,65$$
 года

Таким образом, можно сделать следующие выводы. Сроки окупаемости капитальных вложений, вычисленные на основе различных методов, существенно разнятся. Самым объективным сроком окупаемости является 4,65 года.

Ответ: Срок окупаемости с использованием дисконтированных поступлений составляет 4,65 года и без учета дисконтированных поступлений составляет 2,78 года.

Критерии оценивания:

- определение срока окупаемости инвестиций без учета дисконтирования денежных поступлений на основе среднегодовой величины денежных поступлений;
- определение срока окупаемости инвестиций без учета дисконтирования денежных поступлений на основе нарастания денежных средств по годам до достижения величины капитальных вложений;
- определение срока окупаемости инвестиций с учетом дисконтирования денежных поступлений на основе среднегодовой величины денежных поступлений;
- определение срока окупаемости инвестиций с учетом дисконтирования денежных поступлений на основе нарастания дисконтированных денежных поступлений до момента покрытия капитальных вложений.

2. Потребитель покупает три товара X,Y,Z, цены которых соответственно равны Px=100 руб., Py=70 руб., Pz=50 руб. Функции общей полезности разных благ: $F(TU(x))=3\sqrt{Qx}, F(TU(y))=5\sqrt{Qy}, F(TU(z))=5\sqrt{Qz}$.

Определить:

- 1) каким образом потребитель может использовать денежный запас 500 руб. для достижения максимальной полезности при потреблении и рассчитать ее количественно;
- 2) то же, если при покупке более, чем двух товаров Px снижается на 25%, а Py на 50%.

Привести расширенное решение.

Время выполнения – 40 мин.

Ожидаемый результат:

1. Найдем предельную полезность каждого блага, учитывая, что функция предельной полезности это производная от функции общей полезности блага.

$$MU(x) = (TU(x))' = (3\sqrt{Qx})' = \frac{3}{2\sqrt{Qx}}$$

$$MU(y) = (TU(y))' = (5\sqrt{Qy})' = \frac{5}{2\sqrt{Qy}}$$

$$MU(z) = (TU(z))' = (5\sqrt{Qz})' = \frac{5}{2\sqrt{Qz}}$$

2. Найдем количества товара X и Y, приносящие потребителю максимум полезности при заданных ограничениях по ценам и доходу.

$$\frac{MU(X)}{MU(Y)} = \frac{P(X)}{P(Y)}$$

$$\frac{\frac{3}{2\sqrt{Qx}}}{\frac{5}{2\sqrt{Qy}}} = \frac{100}{70}, \quad \frac{9Qy}{25Qx} = \frac{10}{7},$$

$$63Qy = 250Qx$$

$$500 = 100Qx + 70Qy, \quad 500 = \frac{100.63Qy}{250} + 70Qy$$
$$Qy = 5.25, \quad Qx = \frac{63.5.25}{250} = 1.323$$

Таким образом, потребитель получит максимум полезности, если будет потреблять количество товара X=1,323 ед. и Y=5,25 ед.

3. Найдем количества товара X, Y, Z, приносящие потребителю максимум полезности, если при покупке более, чем двух товаров Px снижается на 25%, а Py — на 50%.

Потребитель потребляет три товара X, Y, Z.

Новые цены товаров Px = 75 руб., Py = 35 руб., Pz = 50 руб.

$$\frac{MU(X)}{MU(Y)} = \frac{P(X)}{P(Y)}$$

$$\frac{\frac{3}{2\sqrt{Qx}}}{\frac{5}{2\sqrt{Qy}}} = \frac{75}{50}, \quad \frac{9Qy}{25Qx} = \frac{15}{7}, \quad 63Qy = 375Qx$$

$$\frac{MU(Y)}{MU(Z)} = \frac{P(Y)}{P(Z)}$$

$$\frac{\frac{5}{2\sqrt{Qy}}}{\frac{5}{2\sqrt{Qz}}} = \frac{35}{50}, \quad 50Qz = 35Qy$$

$$500 = 75Qx + 35Qy + 50Qz$$

$$Qx = \frac{63Qy}{375}, \quad Qz = \frac{35Qy}{50}$$

$$500 = \frac{75 \cdot 63Qy}{375} + 35Qy + \frac{50 \cdot 35Qy}{50}$$

$$Qy = 6,05, \quad Qx = \frac{63 \cdot 6,05}{375} = 1,017, \quad Qz = \frac{35 \cdot 6,05}{50} = 4,24$$

Потребитель получит максимум полезности, если будет потреблять количество товара X = 1,017 ед., Y = 6,05 ед., Z = 4,24 ед.

Ответ: 1) потребитель получит максимум полезности, если будет потреблять количество товара X = 1,323 ед. и Y = 5,25 ед.; 2) потребитель получит максимум полезности, если будет потреблять количество товара X = 1,017 ед., Y = 6,05 ед., Z = 4,24 ед.

Критерии оценивания:

- нахождение предельной полезности каждого блага;
- нахождение количества товара X и Y, приносящие потребителю максимум полезности при заданных ограничениях по ценам и доходу;
- нахождение количества товара X,Y,Z, приносящие потребителю максимум полезности, если при покупке более, чем двух товаров Px снижается на 25%, а Py на 50%.

Компетенции: ОПК-3, ПК-1

3. Максимизировать линейную целевую функцию:

$$Z_{max} = -x_4 + x_5$$

при ограничениях:

$$\begin{cases} x_1 + x_4 - 2x_5 = 1 \\ x_2 - 2x_4 + x_5 = 2 \\ x_3 + 3x_4 + x_5 = 3 \end{cases}$$

и условиях неотрицательности: x_1 , x_2 , x_3 , x_4 , $x_5 \ge 0$.

Привести расширенное решение.

Время выполнения – 50 мин.

Ожидаемый результат:

1. Данная система уравнений – ограничений совместна, так как ранги матрицы системы

$$\begin{pmatrix} 1 & 0 & 0 & 1 & -2 \\ 0 & 1 & 0 & -2 & 1 \\ 0 & 0 & 1 & 3 & 1 \end{pmatrix}$$

и расширенной матрицы системы:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & -2 & 1 \\ 0 & 1 & 0 & -2 & 1 & 2 \\ 0 & 0 & 1 & 3 & 1 & 3 \end{pmatrix}$$

совпадают и равны 3. Следовательно, система уравнений совместна и три базисных переменных можно выразить через две свободные переменные. Выразим, например, x_1 , x_2 , x_3 через x_4 и x_5 , то есть приведем систему к единичному базису:

$$\begin{cases} x_1 = 1 - x_4 + 2x_5 \\ x_2 = 2 + 2x_4 - x_5 \\ x_3 = 3 - 3x_4 - x_5 \end{cases}$$

2. Линейную функцию $Z_{max} = -x_4 + x_5$ выразим через свободные переменные x_4 и x_5 (в данном задании уже выражена). Теперь при $x_4 = 0$ и $x_5 = 0$ базисные переменные окажутся равными: $x_1 = 1$, $x_2 = 2$, $x_3 = 3$. Таким образом, первое допустимое решение системы уравнений есть (1, 2, 3, 0, 0). При найденном допустимом решении линейная функция Z имеет значение 0, то есть $Z_1 = 0$.

Теперь попытаемся увеличить значение Z_1 : увеличение x_4 уменьшит Z_1 , так как перед x_4 стоит отрицательный коэффициент, а увеличение x_5 дает увеличение Z_1 . Поэтому увеличиваем x_5 так, чтобы x_1 , x_2 , x_3 не стали отрицательными, оставив $x_4=0$. Из второго уравнения системы уравнений – ограничений видим, что x_5 можно увеличивать до 2. Тогда значения переменных будут: $x_1=5$, $x_2=0$, $x_3=1$, $x_4=0$, $x_5=2$ или (5, 0, 1, 0, 2).

Значение линейной функции Z при втором допустимом решении равно $Z_2=2$. Величина на втором шаге увеличилась.

Далее примем за свободные переменные x_2 и x_4 , то есть именно те, которые в новом решении имеют нулевые значения. С этой целью выразим из второго уравнения системы x_5 через x_2 и x_4 . Получим:

$$x_5 = 2 - x_2 + x_4$$

Тогда

$$\begin{cases} x_1 = 5 - 2x_2 + 3x_4 \\ x_3 = 1 + x_2 - 5x_4 \\ x_5 = 2 - x_2 + 2x_4 \\ Z = 2 - x_2 + x_4 \end{cases}$$

Снова попытаемся увеличить значение Z: увеличение x_4 дает увеличение Z, так как перед x_4 стоит положительный коэффициент. Поэтому увеличиваем x_4 так, чтобы x_1 , x_3 , x_5 не стали отрицательными, оставив $x_2 = 0$. Из второго уравнения последней системы видим, что для неотрицательности x_3 значение x_4 можно увеличивать до

$$1 - 5x_4 \ge 0$$
, $5x_4 \le 1$, $x_4 \le \frac{1}{5}$

To есть возьмем $x_4 = \frac{1}{5}$.

При этом условии новое решение будет: $x_1 = \frac{28}{5}$, $x_2 = 0$, $x_3 = 0$, $x_4 = \frac{1}{5}$, $x_5 = \frac{12}{5}$ или $(\frac{28}{5}, 0, 0, \frac{1}{5}, \frac{12}{5})$.

Значение линейной функции Z при третьем допустимом решении равно $Z_3 = \frac{11}{5}$. Величина на третьем шаге увеличилась.

Выразим теперь x_1 , x_4 , x_5 через свободные x_2 , x_3 :

$$\begin{cases} x_1 = \frac{28}{5} - \frac{5}{3}x_3 - \frac{7}{5}x_2 \\ x_4 = \frac{1}{5} - \frac{1}{5}x_3 + \frac{1}{5}x_2 \\ x_5 = \frac{11}{5} - \frac{1}{5}x_3 - \frac{3}{5}x_2 \\ Z = \frac{11}{5} - \frac{1}{5}x_3 - \frac{4}{5}x_2 \end{cases}$$

3. Так как в последней линейной функции обе свободные переменные входят с отрицательными коэффициентами, то наибольшее значение Z достигается при $x_2=0$, $x_3=0$.

Это означает, что решение $(\frac{28}{5},\ 0,\ 0,\ \frac{1}{5},\ \frac{12}{5})$ является оптимальным. Тогда $Z_{max}=\frac{11}{5}$

Ответ: $(\frac{28}{5}, 0, 0, \frac{1}{5}, \frac{12}{5})$ – оптимальное решение, $Z_{max} = \frac{11}{5}$.

Критерии оценивания:

- получение начального решения;
- выражение функции только через свободные переменные;
- проверка решения на оптимальность.

Компетенции: ОПК-3, ПК-1

4. Дана таблица сложившейся структуры производства:

	іая Валовая
№ производства 1 2 3 продук	ция продукция X_i

1	Промышленность	62	12	5	92	171
2	Строительство	0	0	0	29	29
3	Сельское хоз-во	19	0	11	18	48
	Всего	81	12	16	139	248

Определить:

- а) матрицу прямых затрат, матрицу полных затрат и матрицу косвенных затрат;
- б) сбалансированные уровни производства валовой продукции следующий период, если план по конечной продукции В промышленности в 100 ед., в строительстве в 30 ед., в сельском хозяйстве в 20 ед.
 - в) матрицу межотраслевых поставок продукции для планового года;

Сведите в таблицу той же формы всю полученную информацию для планового года.

Привести расширенное решение.

Время выполнения – 40 мин.

Ожидаемый результат:

1. Определим матрицу прямых затрат $a_{ij} =$

$$A = \begin{pmatrix} 0.36 & 0.41 & 0.10 \\ 0 & 0 & 0 \\ 0.11 & 0 & 0.23 \end{pmatrix}$$

Данная матрица продуктивна, так как $\sum_{i=1}^{n} a_{ii} < 1, \sum_{i=1}^{n} a_{ii} < 1$

Определим матрицу S = E - A

$$S = \begin{pmatrix} 0.64 & -0.41 & -0.10 \\ 0 & 1 & 0 \\ -0.11 & 0 & 0.77 \end{pmatrix}$$

$$\det S = 0.64 \cdot 0.77 + (-0.11) \cdot 0.10 = 0.48$$

Матрица S невырожденная, так как $\det S \neq 0$.

Матрицу полных затрат $B = S^{-1}$ найдем методом присоединенной

Матрицу полных затрат
$$B = S^{-1}$$
 найдем методом присоединенной матрицы. Для этого вычислим алгебраические дополнения матрицы S :
$$S_{11} = \begin{vmatrix} 1 & 0 \\ 0 & 0.77 \end{vmatrix} = 0.77; \quad S_{12} = -\begin{vmatrix} 0 & 0 \\ -0.11 & 0.77 \end{vmatrix} = 0; \quad S_{13} = \begin{vmatrix} 0 & 1 \\ -0.11 & 0 \end{vmatrix} = 0.11;$$

$$S_{21} = -\begin{vmatrix} -0.41 & -0.10 \\ 0 & 0.77 \end{vmatrix} = 0.32; \quad S_{22} = \begin{vmatrix} 0.64 & -0.10 \\ -0.11 & 0.77 \end{vmatrix} = 0.48;$$

$$S_{23} = -\begin{vmatrix} 0.64 & -0.41 \\ -0.11 & 0 \end{vmatrix} = 0.05; \quad S_{31} = \begin{vmatrix} -0.41 & -0.10 \\ 1 & 0 \end{vmatrix} = 0.10;$$

$$S_{32} = -\begin{vmatrix} 0.64 & -0.10 \\ 0 & 0 \end{vmatrix} = 0; \quad S_{33} = \begin{vmatrix} 0.64 & -0.41 \\ 0 & 1 \end{vmatrix} = 0.64.$$

Присоединенная матрица S^{V}

$$S^{V} = \begin{pmatrix} 0.77 & 0 & 0.11 \\ 0.32 & 0.48 & 0.05 \\ 0.10 & 0 & 0.64 \end{pmatrix}$$
$$(S^{V})^{T} = \begin{pmatrix} 0.77 & 0.32 & 0.10 \\ 0 & 0.48 & 0 \\ 0.11 & 0.05 & 0.64 \end{pmatrix}$$

Матрица полных затрат $B = S^{-1}$:

$$B = \frac{1}{\det S} \cdot (S^V)^T = \frac{1}{0.48} \cdot \begin{pmatrix} 0.77 & 0.32 & 0.10 \\ 0 & 0.48 & 0 \\ 0.11 & 0.05 & 0.64 \end{pmatrix} = \begin{pmatrix} 1.60 & 0.67 & 0.20 \\ 0 & 1 & 0 \\ 0.23 & 0.10 & 1.34 \end{pmatrix}$$

Матрицу косвенных затрат C определим по формуле C = B - A - E:

$$C = \begin{pmatrix} 0.24 & 0.26 & 0.10 \\ 0 & 1 & 0 \\ 0.12 & 0.10 & 0.11 \end{pmatrix}$$

2. Сбалансированный уровень производства валовой продукции рассчитывается по основному уравнению $X = B \cdot Y$

$$X = \begin{pmatrix} 1,60 & 0,67 & 0,20 \\ 0 & 1 & 0 \\ 0,23 & 0,10 & 1,34 \end{pmatrix} \cdot \begin{pmatrix} 100 \\ 30 \\ 20 \end{pmatrix} = \begin{pmatrix} 202 \\ 30 \\ 52,8 \end{pmatrix}$$

3. Матрица межотраслевых поставок продукции для планового года определяется по формуле: $x_{ij} = X_i \cdot a_{ij}$, i = 1, 2, 3.

Отрасли	Потребление x_{ij}				
производства	1	2	3		
Промышленность	72,7	12,3	5,3		
Строительство	0	0	0		
Сельское хоз-во	22,2	0	12,2		
Всего	95	12,3	17,5		

Ответ:

№	Отрасли	Потребление x_{ij}			Конечная	Валовая
No	производства	1	2	3	продукция	продукция
						X_{j}
1	Промышленность	72,7	12,3	5,3	100	202
2	Строительство	0	0	0	30	30
3	Сельское хоз-во	22,2	0	12,2	20	53
	Всего	95	12,3	17,5	150	285

Критерии оценивания:

- нахождение матриц прямых, полных и косвенных затрат;
- нахождение сбалансированных уровней производства валовой продукции;
- нахождение матрицы межотраслевых поставок продукции для планового года.

Компетенции: ОПК-3, ПК-1

Экспертное заключение

Представленный комплект оценочных материалов по дисциплине «Математическая экономика» соответствует требованиям ФГОС ВО.

Предлагаемые оценочные материалы адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 01.03.02 Прикладная математика и информатика.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанные и представленные для экспертизы оценочные материалы рекомендуются к использованию в процессе подготовки обучающихся по указанному направлению.

Председатель учебно-методической комиссии института компьютерных систем и информационных технологий

Ветрова Н. Н.

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)	
1.	Дополнен комплектом оценочных материалов	протокол заседания кафедры прикладной математики № $\frac{2}{2025}$ от $\frac{24}{2025}$	В.В. Малый	