Комплект оценочных материалов по дисциплине «Алгебра и геометрия»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа

1. Выберите один правильный ответ

Вычислить определитель:

$$\begin{vmatrix} 4 & 1 \\ 5 & 2 \end{vmatrix}$$

- A) 9
- Б) 13
- B) 4
- Γ) 3

Правильный ответ: Г

Компетенции (индикаторы): ОПК-1, ОПК-5.

2. Выберите один правильный ответ

Найти скалярное произведение $\vec{a} \cdot \vec{b}$ векторов:

$$\vec{a}(1;2;3); \vec{b}(0;2;0)$$

- A) 4
- Б) 0
- B) -4
- Γ) 1

Правильный ответ: А

Компетенции (индикаторы): ОПК-1, ОПК-5.

3. Выберите один правильный ответ

Дано уравнение плоскости 2x + 3y + z - 1 = 0. Определить для нее координаты вектора нормали \vec{n} .

- A) $\vec{n}(2, 3, -1)$
- Б) $\vec{n}(3, -2, -1)$
- B) $\vec{n}(2, 3, 1)$
- Γ) $\vec{n}(-2, 3, 1)$

Правильный ответ: В

Компетенции (индикаторы): ОПК-1, ОПК-5.

4. Выберите один правильный ответ

Дано каноническое уравнение эллипса:

$$\frac{x^2}{4} + \frac{y^2}{9} = 1.$$

Определить полуоси a, b эллипса.

A)
$$a = 1$$
, $b = 1$

Б)
$$a = 2$$
, $b = 3$

B)
$$a = 4$$
, $b = 9$

$$\Gamma$$
) $a = 3$, $b = 2$

Правильный ответ: Б

Компетенции (индикаторы): ОПК-1, ОПК-5.

Задания закрытого типа на установление соответствия

1. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Уравнение		Поверхность 2-го порядка
1)	$x^2 + y^2 + z^2 = R^2$	A)	эллипсоид
2)	$x^2 + y^2 = R^2$	Б)	цилиндр
3)	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	B)	конус
4)	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$	Γ)	сфера

Правильный ответ:

	1	2	3	4	
	Γ	Б	A	В	

Компетенции (индикаторы): ОПК-1, ОПК-5.

2. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Матрица		Ранг матрицы
1)	$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$	A)	2
2)	$\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$	Б)	1
3)	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	B)	3
4)	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	Γ)	0

Правильный ответ:

11 SWDINIDIII SIDVI					
1	2	3	4		
Б	A	В	Γ		

3. Установите правильное соответствие. Каждому элементу левого столбца

соответствует только один элемент правого столбца.

	Способы задания прямой на		Уравнения прямой на
	плоскости		плоскости
1)	по двум точкам	A)	$A(x - x_0) + B(y - y_0) = 0$
2)	по точке и направляющему вектору	Б)	$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$
3)	по точке и вектору нормали	B)	$y - y_0 = k(x - x_0)$
4)	по точке и угловому коэффициенту	Γ)	$\frac{x-x_0}{a_1} = \frac{y-y_0}{a_2}$

Правильный ответ:

1					
1	2	3	4		
Б	Γ	A	В		

Компетенции (индикаторы): ОПК-1, ОПК-5.

4. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Произведение матриц		Размерность результата
1)	$\begin{pmatrix} 5 & 0 & 2 & 2 \\ 4 & 1 & 5 & 3 \\ 3 & 1 & 1 & 7 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ -2 \\ 7 \\ 4 \end{pmatrix}$	A)	3 × 3
2)	$ \begin{pmatrix} 1 & -2 & 3 \\ 6 & 5 & 7 \end{pmatrix} \cdot \begin{pmatrix} -2 & 3 & -1 \\ 0 & 8 & 4 \end{pmatrix} $	Б)	1 × 1
3)	$(4 \ 0 \ -2 \ 3 \ 1) \cdot \begin{pmatrix} 3 \\ 1 \\ -1 \\ 5 \\ 2 \end{pmatrix}$	B)	не существует
4)	$\begin{pmatrix} 3 \\ 1 \\ -1 \\ 5 \\ 2 \end{pmatrix} \cdot (4 0 -2 3 1)$	Γ)	3 × 1
5)	$\begin{pmatrix} -3 & 2 & 1 \\ 3 & -4 & -7 \\ 0 & 3 & 5 \end{pmatrix} \cdot \begin{pmatrix} 2 & 5 & 61 \\ 1 & 4 & 3 \\ 0 & 1 & 5 \end{pmatrix}$	Д)	5 × 5

Правильный ответ:

TIP WEIGHT OF DET.						
1	2	3	4	5		
Γ	В	Б	Д	A		

Задания закрытого типа на установление правильной последовательности

1. Расположите определители в порядке убывания их величины:

A)
$$\begin{vmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 3 & 2 & 2 \end{vmatrix}$$
B)
$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$
B)
$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{vmatrix}$$

Правильный ответ: Г, Б, А, В

Компетенции (индикаторы): ОПК-1, ОПК-5.

- 2. Расположите векторы в порядке возрастания их длины:
- A) (1;0;0)
- Б) (1; 1; 1)
- B) (3;4)
- Γ) (10; 0)

Правильный ответ: А, Б, В, Г

Компетенции (индикаторы): ОПК-1, ОПК-5.

- 3. Расположите пары векторов \vec{a}, \vec{b} в порядке убывания величины $|\vec{a} \times \vec{b}|$ модуля их векторного произведения:
 - A) $\vec{a}(1;2;3)$; $\vec{b}(-1;0;0)$
 - Б) $\vec{a}(1;2;3); \vec{b}(1;2;3)$
 - B) $\vec{a}(1;0;0)$; $\vec{b}(0;1;0)$
 - Γ) $\vec{a}(1;0;1)$; $\vec{b}(0;1;0)$

Правильный ответ: A, Γ , B, Б

- 4. Расположите величины объемов параллелепипедов, построенных на векторах \vec{a} , \vec{b} , \vec{c} , в порядке возрастания:
 - A) $\vec{a}(1, 0, 0)$, $\vec{b}(0, 1, 0)$, $\vec{c}(0, 0, 1)$
 - Б) $\vec{a}(1, 0, 0)$, $\vec{b}(0, 6, 8)$, $\vec{c}(3, 0, 4)$
 - B) $\vec{a}(1, 0, 0)$, $\vec{b}(6, 8, 0)$, $\vec{c}(0, 3, 4)$
 - Γ) $\vec{a}(1, 0, 1)$, $\vec{b}(10, 0, 1)$, $\vec{c}(-10, 0, 1)$

Правильный ответ: Г, А, Б, В

Компетенции (индикаторы): ОПК-1, ОПК-5.

Задания открытого типа

Задания открытого типа на дополнение

	1. Напишите пропущенное слово (словосочетание).
	двух ненулевых векторов \vec{a} и \vec{b} – это число, равное
произ	введению длин этих векторов на косинус угла между ними.
npone	Правильный ответ: скалярное произведение.
	Компетенции (индикаторы): ОПК-1, ОПК-5.
	2. Напишите пропущенное слово (словосочетание).
	Система линейных алгебраических уравнений тогда
и тол	ько тогда, когда ранг основной матрицы равен рангу расширенной матрицы
систе	
	Правильный ответ: совместна.
	Компетенции (индикаторы): ОПК-1, ОПК-5.
	3. Напишите пропущенное слово (словосочетание). — это геометрическое место точек, сумма расстояний от
KOTON	ых до двух фиксированных точек F_1 и F_2 , называемых фокусами, есть
_	ина постоянная.
ВСЛИТ	Правильный ответ: эллипс.
	Компетенции (индикаторы): ОПК-1, ОПК-5.
	томпетенции (индикаторы). Отих 1, отих 3.
	4. Напишите пропущенное слово (словосочетание).
	Векторы $\vec{a}, \vec{b}, \vec{c}$ являются компланарными тогда и только тогда, когда их
	равно нулю.
	Правильный ответ: смешанное произведение.
	Компетенции (индикаторы): ОПК-1, ОПК-5.
	5. Напишите пропущенное слово (словосочетание).
	– это геометрическое место точек, равноудаленных от
данно	ой прямой (директрисы) и данной точки (фокуса).
	Правильный ответ: парабола.
	Компетенции (индикаторы): ОПК-1, ОПК-5.

Задания открытого типа с кратким свободным ответом

1. Найти расстояние от точки M(3,-3,4) до плоскости, заданной уравнением x-2y+2z+1=0. (Ответ запишите в виде числа)

Правильный ответ: 6.

Компетенции (индикаторы): ОПК-1, ОПК-5.

2. Определить тип кривой второго порядка, заданной уравнением $x^2 - 10x + y^2 + 2y - 74 = 0$. (Ответ запишите одним словом)

Правильный ответ: окружность.

Компетенции (индикаторы): ОПК-1, ОПК-5.

3. Найти площадь треугольника, заданного координатами своих вершин A(0;0;0), B(1;0;0), C(0;2;0) (Ответ запишите в виде числа)

Правильный ответ: 1.

Компетенции (индикаторы): ОПК-1, ОПК-5.

4. Найти значение δ , при котором данные плоскости перпендикулярны:

$$-x + \delta y + 3z - 1 = 0,$$

 $\delta x - 2y - z + 5 = 0.$

(Ответ запишите в виде числа)

Правильный ответ: -1.

Компетенции (индикаторы): ОПК-1, ОПК-5.

5. Решить систему линейных алгебраических уравнений:

$$\begin{cases} x_1 + x_2 + 3x_3 = 1, \\ 2x_1 + 3x_2 - x_3 = -6, \\ 3x_1 - x_2 - 2x_3 = -4. \end{cases}$$

(Ответ запишите в виде упорядоченной тройки чисел)

Правильный ответ: (-1, -1, 1).

Компетенции (индикаторы): ОПК-1, ОПК-5.

Задания открытого типа с развернутым ответом

1. Решить задачу, используя методы аналитической геометрии, линейной и векторной алгебры.

Найти расстояние между параллельными прямыми:

$$l_1$$
: $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z}{2}$, l_2 : $\frac{x-7}{3} = \frac{y-1}{4} = \frac{z-3}{2}$

Привести расширенное решение.

Время выполнения – 25 мин.

Ожидаемый результат:

Анализ условия.

Из условия следует, что прямые l_1 и l_2 параллельны, так как они имеют один и тот же направляющий вектор $\overrightarrow{a_1} = \overrightarrow{a_2} = (\overrightarrow{3,4,2})$. Кроме того, имеются точки: $M_1(2,-1,\ 0) \in l_1$ и $M_2(7,\ 1,\ 3) \in l_2$.

Анализ условия показывает, что для получения требуемого результата необходимо построить алгоритм решения, включающий в себя дополнительные построения:

А) Проведем вспомогательную плоскость α , проходящую через точку $M_1(2,-1,0)$ перпендикулярно параллельным прямым l_1 и l_2 . Тогда вектор нормали плоскости α имеет координаты $\vec{n}(3,4,2)$.

Тогда имеем уравнение плоскости α :

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0;$$

 $3(x-2) + 4(y+1) + 2(z-0) = 0;$
 $\alpha: 3x + 4y + 2z - 2 = 0.$

Б) Находим точку M_3 пересечения построенной плоскости α и второй прямой l_2 . Для этого построим и решим систему, состоящую из уравнений:

$$\begin{cases} 3x + 4y + 2z - 2 = 0\\ \frac{x - 7}{3} = \frac{y - 1}{4} = \frac{z - 3}{2} \end{cases}$$

Переходя от канонического уравнения прямой к параметрическим уравнениям, получаем:

$$\begin{cases} 3x + 4y + 2z - 2 = 0 \\ x = 3t + 7 \\ y = 4t + 1 \\ z = 2t + 3 \end{cases}$$

Подставляя параметрические уравнения прямой l_2 в общее уравнение плоскости α , находим значение параметра t:

$$3(3t+7) + 4(4t+1) + 2(2t+3) - 2 = 0,$$

 $9t + 21 + 16t + 4 + 4t + 6 - 2 = 0,$
 $29t = -29,$
 $t = -1.$

В) Полученное значение параметра t соответствует точке $M_3 = \alpha \cap l_2$. Находим координаты точки M_3 , возвращая значение параметра t=-1 в параметрические уравнения:

$$\begin{cases} x = 3 \cdot (-1) + 7 = 4 \\ y = 4 \cdot (-1) + 1 = -3 \\ z = 2 \cdot (-1) + 3 = 1 \end{cases}$$

Таким образом, имеем точку $M_3(4, -3, 1)$.

 Γ) Исходя из построений, точки M_1 и M_3 являются основаниями общего перпендикуляра, проведенного к прямым l_1 и l_2 . Поэтому, расстояние между этими прямыми равно длине отрезка M_1M_3 : $d(l_1,l_2)=|M_1M_3|=\sqrt{(2-4)^2+(-1+3)^2+(0-1)^2}=\sqrt{9}=3.$

$$d(l_1, l_2) = |M_1 M_3| = \sqrt{(2-4)^2 + (-1+3)^2 + (0-1)^2} = \sqrt{9} = 3$$

Ответ: расстояние между параллельными прямыми d = 3.

Критерии оценивания:

- введение в рассмотрение дополнительных геометрических объектов, а именно перпендикулярной вспомогательной плоскости;
 - построение уравнения вспомогательной плоскости;

- нахождение точки пересечения вспомогательной плоскости с одной из прямых;
 - решение системы соответствующих уравнений;
 - обоснование результата.

Компетенции (индикаторы): ОПК-1, ОПК-5.

2. Решить задачу, используя методы линейной алгебры.

В таблице приведены данные об исполнении баланса за отчетный период в условных денежных единицах.

Отрасль		Потре	ебление	Конечный	Валовой
		Энерге-	Машино-	продукт	продукт
		тика	строение		
Произронотро	Энергетика	5	15	65	100
Производство	Машиностроение	11	9	104	150

Вычислить необходимый объем валового выпуска каждой отрасли, если конечное потребление энергетической отрасли увеличится на 56,19 условных единиц, а машиностроения – на 79,14 условных единиц.

Привести расширенное решение.

Время выполнения – 30 мин.

Ожидаемый результат:

1. Анализ условия.

Имеем вектор валовой продукции:

$$X = {100 \choose 150}$$
, то есть $x_1 = 100$, $x_2 = 150$.

Матрица объемов товаров и услуг:
$$\binom{5}{11} \, \frac{15}{9} , \text{ то есть } b_{11} = 5, b_{12} = 15, \ b_{21} = 11, b_{22} = 9.$$

Вектор конечной продукции имеет вид:

$$y = {65 \choose 104}$$
, то есть $y_1 = 65$, $y_2 = 104$.

2. Находим коэффициенты матрицы прямых затрат по формуле:

$$a_{ij} = \frac{b_{ij}}{x_j}, \quad (i, j = 1, 2)$$

Тогда имеем:

$$a_{11} = \frac{b_{11}}{x_1} = \frac{5}{100} = 0,05;$$
 $a_{12} = \frac{b_{12}}{x_2} = \frac{15}{150} = 0,1$ $a_{21} = \frac{b_{21}}{x_1} = \frac{11}{100} = 0,11;$ $a_{22} = \frac{b_{22}}{x_2} = \frac{9}{150} = 0,06.$

Таким образом, матрица прямых затрат имеет вид:

$$A = \begin{pmatrix} 0.05 & 0.1 \\ 0.11 & 0.06 \end{pmatrix}$$

3. Анализ продуктивности матрицы прямых затрат.

Матрица прямых затрат А имеет неотрицательные элементы. Для того, чтобы определить, является ли матрица А продуктивной, используем первый критерий продуктивности. Для этого находим матрицу полных затрат:

$$S = (E - A)^{-1}$$

Получаем:

$$B = E - A = \begin{pmatrix} 0.95 & -0.1 \\ -0.11 & 0.94 \end{pmatrix}; \Delta_{B} = 0.882.$$

Тогда имеем:

$$S = \frac{1}{0,882} \begin{pmatrix} 0,94 & 0,11 \\ 0,1 & 0,95 \end{pmatrix}$$

Матрица S — неотрицательная матрица, следовательно, матрица A прямых затрат является продуктивной.

4. Нахождение вектора валового выпуска с учетом изменений.

Вектор У конечного продукта должен измениться. По условию y_1 должен увеличиться на 56,19 условных единиц, а y_2 — на 79,14 условных единиц.

Тогда измененный вектор конечной продукции примет вид:

$$y_1 = {121,19 \choose 183,14}$$

Тогда новый вектор валового выпуска находится по формуле:

$$X_{1} = (E - A)^{-1} \cdot Y_{1}$$

$$X_{1} = \frac{1}{0,882} \begin{pmatrix} 0.94 & 0.11 \\ 0.1 & 0.95 \end{pmatrix} \begin{pmatrix} 121.19 \\ 183.14 \end{pmatrix} = \frac{1}{0,882} \begin{pmatrix} 113.9186 + 20.1454 \\ 12.119 + 173.983 \end{pmatrix}$$

$$X_{1} = \frac{1}{0.882} \begin{pmatrix} 134.064 \\ 186.102 \end{pmatrix} = \begin{pmatrix} 152 \\ 211 \end{pmatrix}$$

Таким образом, искомый вектор валового выпуска $\binom{152}{211}$.

Ответ: валовый выпуск в энергетической отрасли нужно увеличить до 152 условных единиц, а в машиностроительной – до 211 условных единиц.

Критерии оценивания:

- использование средств матричного исчисления для моделирования и решения прикладных экономических задач;
 - корректно выполненные операции над матрицами;
 - корректные выводы.

Экспертное заключение

Представленный комплект оценочных материалов по дисциплине «Алгебра и геометрия» соответствует требованиям ФГОС ВО.

Предлагаемые оценочные материалы адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 01.03.03 Механика и математическое моделирование.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанные и представленные для экспертизы оценочные материалы рекомендуются к использованию в процессе подготовки обучающихся по указанному направлению.

Председатель учебно-методической комиссии института компьютерных систем и информационных технологий

Ветрова Н. Н.

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)
1.	Дополнен комплектом оценочных материалов	протокол заседания кафедры прикладной математики № 8 от 24.02.5	В.В. Малый