Комплект оценочных материалов по дисциплине «Математические модели социально-экономических систем»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа

1. Выберите один правильный ответ

Сколько коммерческих предприятий содержит следующее расширение локальной цепи финансово-производственных отношений (л.ц. ФПО):

$$\left\{B_2, A*B_1, C*B, A, C\right\}$$

- A) 3
- Б) 0
- B) 1
- Γ) 2

Правильный ответ: В

Компетенции: ОПК-3, ПК-1, ПК-2

2. Выберите один правильный ответ

Вычислить технологический параметр $n_{tec}(Y)$ максимального технологического расширения л.ц. ФПО:

$$\left\{B_{5}, A*B_{4}, ..., A*B_{1}, A*B, A, C\right\}$$

- A) 3
- Б) 0
- B) 5
- Γ) 2

Правильный ответ: В

Компетенции: ОПК-3, ПК-1, ПК-2

3. Выберите один правильный ответ

Указать посредническую фирму в коммерческом расширении л.ц. ФПО:

$${B_3, C * B_2, A * B_1, A * B, A, C}$$

- A) $A * B_1$
- Б) $C * B_2$
- B) B_3
- Γ) A*B

Правильный ответ: Б

Компетенции: ОПК-3, ПК-1, ПК-2

4. Выберите один правильный ответ

Вычислить фактор индикатора $f_{com} \left(ind \frac{X}{Y} \right)$ некоторого коммерческого расширения локальной цепи ФПО:

$$\{Y_3, Y_3, Y_2, Y_1, Y, Y, X\}$$

A) 2

Б) 5

B) 4

Γ). 6

Правильный ответ: Г

Компетенции: ОПК-3, ПК-1, ПК-2

Задания закрытого типа на установление соответствия

1. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Вид индикатора продукции X по		Значение фактора индикатора
	отношению к сырью Y		$f\left(\operatorname{ind} X/Y\right)$
1)	ind $X/Y = \{Y_3, Y_2, Y_1, Y, Y, X\}$	A)	8
2)	ind $X/Y = \{Y_2, Y_1, Y, Y, X\}$	Б)	5
3)	ind $X/Y = \{Y_4, Y_4, Y_3, Y_3, Y_2, Y_1, Y, Y, X\}$	B)	6
4)	ind $X/Y = \{Y_3, Y_3, Y_2, Y_1, Y, Y, X\}$	Γ)	4

Правильный ответ:

Tipublitibili Cibei.					
1	2	3	4		
Б	Γ	A	В		

Компетенции: ОПК-3, ПК-1, ПК-2

2. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Элементарные структуры		Диаграммы
	$\left\{ Y_{k}', Y_{k-1}' \right\}, k = 1, 2,, p$		
1)	$\{ Y'_{k}, Y'_{k-1} \}, Y'_{k} \neq Y'_{k-1} \forall k \neq p$	A)	$B_{p} \xrightarrow{Y'_{p}} A * B_{p-1} \xrightarrow{Y'_{p-1}}$
2)	$\{ Y'_{k}, Y'_{k-1} \}, Y'_{k} \neq Y'_{k-1} \forall k = p$	Б)	$\xrightarrow{Y'_k} A * B_{k-1} \xrightarrow{Y'_{k-1}} $
3)	$\{Y'_k, Y'_{k-1}\}, Y'_k = Y'_{k-1} $ и $k = p$	B)	$\xrightarrow{Y'_k} C * B_{k-1} \xrightarrow{Y'_{k-1}}$

4)	$\{Y'_k, Y'_{k-1}\}, Y'_k = Y'_{k-1} \text{ M } k \neq p$	Γ)	$B_{p} \xrightarrow{Y'_{p}} C * B$	$y_{p-1} \xrightarrow{Y'_{p-1}}$
----	---	----	------------------------------------	----------------------------------

Правильный ответ:

1	2	3	4
Б	A	Γ	В

Компетенции: ОПК-3, ПК-1, ПК-2

3. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	e e i bei e bi e i e i e i e i e i e i e					
	Вид глобальной цепи финансово-		Объём глобальной цепи			
	производственных отношений					
1)	$\left\{B_2, A*B_1, C*B, A, C\right\}$	A)	5			
2)	${B_3, A*B_2, A*B_1, C*B, A, C}$	Б)	3			
3)	$\left\{B_2, C*B, A, C\right\}$	B)	6			
4)	${B_4, A*B_3, A*B_2, A*B_1, B, A, C}$	Γ)	4			

Правильный ответ:

1	2	3	4
Γ	A	Б	В

Компетенции: ОПК-3, ПК-1, ПК-2

4. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Структура п.г.ц. ФПО		Уровень коммерциализации
			$N_C = N_{com} - N_{tec}$
1)	${B_4, C * B_3, C * B_2, A * B_1, B, A, C}$	A)	1
2)	${B_3, A*B_2, A*B_1, B, A, C}$	Б)	3
3)	${B_4, A*B_3, C*B_2, A*B_1, B, A, C}$	B)	0
4)	${B_4, C * B_3, C * B_2, C * B_1, B, A, C}$	Γ)	2

Правильный ответ:

1	2	3	4
Γ	В	A	Б

Компетенции: ОПК-3, ПК-1, ПК-2

Задания закрытого типа на установление правильной последовательности

1. Расположите п.г.ц. ФПО в порядке возрастания степени коммерциализации:

A)
$$\{B_4, C * B_3, C * B_2, A * B_1, B, A, C\}$$

Б)
$$\{B_3, A*B_2, A*B_1, B, A, C\}$$

B)
$$\{B_4, A*B_3, C*B_2, A*B_1, B, A, C\}$$

$$\Gamma$$
) $\{B_4, C * B_3, C * B_2, C * B_1, B, A, C\}$

Правильный ответ: Б, В, А, Г

Компетенции: ОПК-3, ПК-1, ПК-2

2. Расположите п.г.ц. ФПО в порядке возрастания коэффициента конкурентоспособности:

A)
$$\{B_3, A * B_2, A * B_1, B, A, C\}$$

Б)
$$\{B_4, C*B_3, C*B_2, A*B_1, B, A, C\}$$

B)
$$\{B_4, A*B_3, C*B_2, A*B_1, B, A, C\}$$

$$\Gamma$$
) $\{B_4, C * B_3, C * B_2, C * B_1, B, A, C\}$

Правильный ответ: Б, В, Г, А

Компетенции: ОПК-3, ПК-1, ПК-2

3. Расположите п.г.ц. ФПО в порядке убывания мощности ривайвинга:

A)
$$\{B_4, C * B_3, C * B_2, A * B_1, B, A, C\}$$

Б)
$$\{B_3, A*B_2, A*B_1, B, A, C\}$$

B)
$$\{B_4, C * B_3, C * B_2, C * B_1, B, A, C\}$$

$$\Gamma$$
) $\{B_4, A*B_3, C*B_2, A*B_1, B, A, C\}$

Правильный ответ: Б, Г, А, В

Компетенции: ОПК-3, ПК-1, ПК-2

4. Расположите п.г.ц. ФПО в порядке убывания абсолютной стоимости ривайвинга:

A)
$$\{B_4, C * B_3, C * B_2, A * B_1, B, A, C\}$$

Б)
$$\{B_3, A*B_2, A*B_1, B, A, C\}$$

B)
$$\{B_4, C * B_3, C * B_2, C * B_1, B, A, C\}$$

$$\Gamma) \left\{ B_{4}, A*B_{3}, C*B_{2}, A*B_{1}, B, A, C \right\}$$

Правильный ответ: В, А, Г, Б

Компетенции: ОПК-3, ПК-1, ПК-2

Задания открытого типа

Задания открытого типа на дополнение

•
1. Напишите пропущенное слово (словосочетание) финансово-производственных отношений (э.с.
ФПО) называются упорядоченные пары элементов $\{B, A\}, \{A, C\}.$
Правильный ответ: элементарными структурами.
Компетенции: ОПК-3, ПК-1, ПК-2
2. Напишите пропущенное слово (словосочетание) – логистической системой (ULS) называется
простая или разветвленная глобальная цепь финансово-производственных
отношений с ривайвингом.
Правильный ответ: универсальной.
Компетенции: ОПК-3, ПК-1, ПК-2
Townsorting State 2, The 1, The 2
3. Напишите пропущенное слово (словосочетание) – операция размещения и активации логистических
систем в простой или разветвленной глобальной цепи финансово-
производственных отношений.
Правильный ответ: ривайвинг.
Компетенции: ОПК-3, ПК-1, ПК-2
4. Напишите пропущенное слово (словосочетание). глобальной цепью финансово-производственных
отношений (п.г.ц. ФПО) называется максимальное технологическое расширение
или коммерческое расширение локальной цепи финансово-производственных
отношений л.ц. $\Phi\Pi\Theta$.
Правильный ответ: простой.
Компетенции: ОПК-3, ПК-1, ПК-2
компотопции. Отпу-3, тпу-1, тпу-2

5. Напишите пропущенное слово (словосочетание).

Если при технологическом расширении л.ц. ФПО некоторый ее элемент вида $A*B_k$, k=0,1,2,... инициирует создание двух или более ветвей — независимых

максимальных технологических расширений, то вновь образованное расширение локальной цепи называется______ технологическим расширением, а элемент $A*B_k$ — магистральным (M-элементом).

Правильный ответ: разветвленным.

Компетенции: ОПК-3, ПК-1, ПК-2

Задания открытого типа с кратким свободным ответом

1. Значение закона продаж P(t) со скоростью $V(t)=\frac{\pi M}{2T}\sin\frac{\pi}{T}t, 0< t\leq T$, в точке $t=\frac{T}{2}$ равна ... (Ответ запишите в виде числа)

Правильный ответ: $\frac{M}{2}$.

Компетенции: ОПК-3, ПК-1, ПК-2

2. Найти промежуток возрастания скорости продаж $V(t) = \frac{\pi M}{2T} \sin \frac{\pi}{T} t$, $0 < t \le T$ (Ответ запишите в виде интервала)

Правильный ответ: $\left(0; \frac{T}{2}\right)$.

Компетенции: ОПК-3, ПК-1, ПК-2

3. Найти скорость продаж V(t) для закона продаж $P(t) = \frac{M}{2} \Big(1 - \cos \frac{\pi}{T} t \Big)$, $0 < t \le T$ (Ответ запишите в виде функции)

Правильный ответ: $V(t) = \frac{\pi M}{2T} \sin \frac{\pi}{T} t$, $0 < t \le T$

Компетенции: ОПК-3, ПК-1, ПК-2

4. Для α -представления $\alpha - R\left(ind \frac{X}{Y}\right) = \{12, 9, 6, 4, 2\}$ найти коэффициент трансформации сырья $\alpha(3)$ (Ответ запишите в виде числа)

Правильный ответ: $\frac{3}{2}$.

Компетенции: ОПК-3, ПК-1, ПК-2

5. Для M-представления индикатора $M-R\left(ind \frac{X}{Y}\right)=\left\{20,M_4,12,8,7,3\right\}$ найти M_4 , если коэффициент трансформации $\alpha_4=1$,5 (Ответ запишите в виде числа) Правильный ответ: 16.

Компетенции: ОПК-3, ПК-1, ПК-2

Задания открытого типа с развернутым ответом

1. Решить задачу, используя математические методы моделирования социально-экономических систем:

Предположим, что генеральный посредник (Γ . Π .), учитывающий конъюнктуру рынка C и согласованный на уровне «рыночного» времени оборота запасов T^* , $T^* = \min(T^1, T^2, T^3)$, определил поставку продукции $X \equiv X^k$, k = 1, 2, 3 для универсальных логистических систем (ULS)

$$B_{p_{k}}^{k} \xrightarrow{Y_{p_{k}}^{\prime k}} \dots \xrightarrow{Y_{i+1}^{\prime k}} A^{*}B_{i} \xrightarrow{Y_{i}^{\prime k}} \dots \xrightarrow{Y_{j+1}^{\prime k}} C^{*}B^{k}_{j} \xrightarrow{Y_{j}^{\prime k}} \dots \tag{*}$$

$$\dots \xrightarrow{Y^{k}} A^{k} \xrightarrow{X^{k}} C, \ k=1,2,3.$$

в объеме $m^*(X)$, причем $m^*(X) < \sum_{k=1}^3 m^*(X^k)$. Как распределятся при этом доли

 $m^*(X)$ рынка C между этими ULS?

Привести расширенное решение.

Время выполнения – 45 мин.

Ожидаемый результат:

1. Пусть X^3 обозначает кузов автомобиля, производимого универсальной логистической системой (*) при k=3 с параметрами 3Π T^3 и M^3 , а X^1 и X^2 – обозначают запчасти к автомобилям, производимыми ULS (*) при k=1,2 с параметрами 3Π T^1 , M^1 и T^2 , M^2 соответственно. Мощности рассматриваемых универсальных логистических систем, приведенных при модификации локального закона поставок сырья Y^k

$$g_n^k(t) = M^k \int_{0}^{n+\frac{t}{T^k}} [1 - (n+1-x)] \omega_{n;n+1}^{st}(x) dx, 0 < t \le T^k, n = 0, 1, 2, \dots$$

к общему параметру T^* , равны $m^*(X^k)$, k=1,2,3. Далее, институциональные условия (прогнозируемый спрос) $\Gamma.\Pi$. сводятся к тому, что он при оптовых закупках продукции ULS (*) закупает автомобильные кузова M^3 вместе с запчастями M^1 и M^2 . Объем закупок пар $X^*=\{X^3;X^k\}$, k=1,2 за время T^* предположительно составляет $m^*(X^*)=10000$, а соответствующие мощности ULS (*) при k=1,2,3 равны $m^*(X^1)=9000$, $m^*(X^2)=7000$ и $m^*(X^3)=10000$. Таким образом, производственные мощности рассматриваемых универсальных логистических систем превосходят прогнозируемый спрос.

2. Интерес каждой из трех (*) универсальных логистических систем состоит в поставках максимально возможных объемов производимой продукции, т.е. возникает конкурентный экономико-производственный конфликт.

Предположим, что логистические менеджеры ULS (*) заключают деловое соглашение с побочными платежами для покрытия *погистических рисков*, связанных с количественной модификацией максимального технологического расширения л. ц. $\Phi\PiO$

$$A \xrightarrow{X} C$$

которая сопровождается комплексным реинжинирингом всей г. ц. ФПО (*) на основе закона $g_n^k(t)$. Тогда рассматриваемый экономико-производственный конфликт можно моделировать в терминах кооперативной игры (K,ε) трех лиц, где $K=\{1,2,3\}$, а ε обозначает характеристическую функцию, значения которой будем определять как выигрыш числом реализуемых единиц продукции, выпускаемых коалицией $Q \subset K$. Учитывая, что ни один из игроков и коалиция вида $Q=\{1,2\}$ не могут составлять закупочные пары, будет иметь: $\varepsilon(k)=0,\ k=1,2;\ \varepsilon(1,2)=0$. С другой стороны, коалиции вида $Q=\{1,3\}$ и $Q=\{2,3\}$ произведут соответственно 9000 и 7000 пар, т. е. выигрыш составит соответственно $\varepsilon(1,3)=18000$ единиц и $\varepsilon(2,3)=14000$ единиц, а коалиция вида $Q=K=\{1,2,3\}$ из всех трех предприятий (*) выиграет $\varepsilon(1,2,3)=20000$ единиц. Следовательно, характеристическая функция кооперативной игры (K,ε) дается равенствами:

$$\varepsilon(Q) = 0, Q \in \{\{1\}, \{2\}, \{3\}, \{1,2\}\};\$$
 $\varepsilon(Q) = 18000, Q = \{1,3\};\$
 $\varepsilon(Q) = 14000, Q = \{2,3\};\$
 $\varepsilon(Q) = 20000, Q = \{1,2,3\}.$

3. Найдем ядро Парето (P) в терминах переменных y_i , i = 1, 2, 3, определяющих допустимые решения данной задачи

$$18000 \le y_1 + y_3,$$

$$14000 \le y_2 + y_3,$$

$$20000 \le y_1 + y_2 + y_3$$

Разделение в смысле НМ-решения $y^* = (y_1^*, y_2^*, y_3^*)$), которое удовлетворяет данной системе, принадлежит ядру P. Очевидно, что множество точек разделений образует двумерный симплекс в трехмерном аффинном евклидовом пространстве $R^3 = (y_1, y_2, y_3), \ y_i \in (-\infty, +\infty), \ i = 1, 2, 3$.

Любая точка $y^* = (y_1^*, y_2^*, y_3^*)$, $y^* \in P$ рассматривается как решение данной игры. К ядру Парето принадлежит, например, разделение $y^* = (6000, 2000, 12000)$. Таким образом, согласно этому разделению, *теоретические* доли рынка C для ULS (5) соответственно равны 6000, 2000 и 12000. Учитывая, что недостатком HM-решения является его неоднозначность во многих играх (как в и данном случае), *реальные* доли рынка C для ULS (*) соответственно равны $m^*(X^1) = 6000$, $m^*(X^2) = 2000$ и $m^*(X^3) = 8000$.

Ответ:
$$m^*(X^1) = 6000$$
, $m^*(X^2) = 2000$ и $m^*(X^3) = 8000$.

Критерии оценивания:

- построение модели экономического взаимодействия ULS(*);
- моделирование экономико-производственного конфликта между $U\!LS$ в терминах кооперативной игры;

– поиск множества всех недоминируемых разделений рынка (ядро Парето) с помощью решения фон Неймана и Моргенштерна (НМ-решение).

Компетенции: ОПК-3, ПК-1, ПК-2

2. Решить задачу, используя математические методы моделирования социально-экономических систем:

Привести аналитическую схему количественного измерения логистического риска ЛР4, связанного с технологическим усовершенствованием производства сырья Y, то есть с модификацией индикатора

ind
$$X/_{Y} = \{Y_n, Y_{n-1}, ..., Y_1, Y, X\},\$$

который отвечает максимальному технологическому расширению локальной цепи финансово-производственных отношений

$$\{B_n, A * B_{n-1}, \dots, A * B_1, A * B, A, C\}.$$

Привести расширенное решение.

Время выполнения – 45 мин.

Ожидаемый результат:

- 1. Термин «риск» по отношению к ЛР4 используется в целях сохранения терминологической унификации для логистических процессов, которые имеют системные последствия в пределах п.г.ц. ФПО или р.г.ц. ФПО. В данном случае логистический риск ЛР4 имеет детерминированный характер с положительным влиянием на экономическую деятельность п.г.ц. ФПО.
- 2. Будем полагать, что в элементарной структуре $\{A, C\}$ действует закон продаж ($3\Pi P$) P(t)с параметрами T и M=P(T). Качественная модификация п.г.ц. ФПО проводится в терминах R-связей, когда m, $2 \le m \le N_{tec}$, последовательных предприятий в структуре п.г.ц. ФПО образуют единое укрупненное предприятие с ассоциативными функциями в рамках H-связей п.г.ц. ФПО(H) вида

$$\left\{B_{n}, A*B_{n-1}, ..., A*B_{k}, A*B_{k-1;k-m}, A*B_{k-m-1}, ..., A*B_{1}, A*B, A, C\right\}, (*)$$

где введено обозначения

$$A * B_{k-1:k-m} = [A * B_{k-1}, A * B_{k-2}, ..., A * B_{k-m}]_R.$$

Индикатор п.г.ц. ФПО дается равенством

ind
$$X_{Y} = \{Y_{n}, Y_{n-1}, ..., Y_{k}, Y_{k-1; k-m}, Y_{k-m-1}, ..., Y_{1}, Y, X\},\$$

где введено обозначение

$$Y_{k-1;k-m} = [Y_{k-1},...,Y_{k-m}]_R \equiv Y_{k-m}$$
.

Таким образом, переход от п.г.ц. $\Phi\Pi O$ к п.г.ц. $\Phi\Pi O(R)$ характеризуется уменьшением технологического параметра на величину

$$n_{tec}(Y) - n_{tec}^{R}(Y) = m - 1,$$

что способствует упрощению структуры материального потока в (*), то есть M -представление индикатора в этом случае имеет вид

$$M - R\left(ind \frac{X}{Y}\right)_{tec} = \{M_n, M_{n-1}, ..., M_{k;k-m}, ..., M_1, M, m(X)\}.$$

3. Основой для количественной оценки логистического риска ЛР4 является уменьшение себестоимости единицы сырья Y в состоянии Y_{k-m} , которая формируется в элементарной структуре

$$Y_{k} \to A * B_{k-1;k-m} \xrightarrow{Y_{k-m}}$$

на величину

$$\Delta_4 C_X = C_{k-m} - C_{k-m}^R = \sum_{i=k-m+1}^{k-1} \Delta C_i, \ \Delta C_i = C_i - \frac{M_{i+1}}{M_i} C_{i+1}.$$

Otbet: $\Delta_4 C_X = \sum_{i=k-m+1}^{k-1} \Delta C_i$.

Критерии оценивания:

- дать расширенную трактовку логистического риска ЛР4;
- сформулировать математическую модель логистического риска ЛР4;
- дать количественную оценку влияния логистического риска ЛР4 на себестоимость единицы сырья *Y*.

Компетенции: ОПК-3, ПК-1, ПК-2

Экспертное заключение

Представленный комплект оценочных материалов по дисциплине «Математические модели социально-экономических систем» соответствует требованиям $\Phi\Gamma$ OC BO.

Предлагаемые оценочные материалы адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 01.04.02 Прикладная математика и информатика.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанные и представленные для экспертизы оценочные материалы рекомендуются к использованию в процессе подготовки обучающихся по указанному направлению.

Председатель учебно-методической комиссии института компьютерных систем и информационных технологий

Ветрова Н. Н.

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)
1.	Дополнен комплектом оценочных материалов	протокол заседания кафедры прикладной математики № $\frac{2}{202}$ от $\frac{24}{202}$.	В.В. Малый