Комплект оценочных материалов по дисциплине «Прямые методы в математической физике»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа

1. Выберите один правильный ответ

Определить *порядок* ДУ в частных производных для функции u(x, y):

$$(x+y)u_x^2 - 4y^3(u_{yxy} + e^x u_{xy}) + 2y^2(u_y - 3u_x + 2yu_{xyy}) + u - 1 = 0$$

- A) 3
- Б) 1
- B) 2

Правильный ответ: В

Компетенции: ПК-2

2. Выберите один правильный ответ

Определить знак $sgn\delta$ параметра $\delta=a_{12}^2$ – $a_{11}a_{22}$ (дискриминанта) ДУ в частных производных для функции u(x,y): $x^2 u_{xx} - y^2 u_{yy} = 0$

- A) $sgn\delta = 0$
- Б) $sgn\delta = +1$
- B) $sgn\delta=-1$

Правильный ответ: Б

Компетенции: ПК-2

3. Выберите один правильный ответ

Определить якобиан $I = \frac{\partial(\xi,\eta)}{\partial(x,y)}$ перехода $\xi = xy$, $\eta = \frac{y}{x}$:

- A) $-\frac{y}{x}$ B) $\frac{x}{y}$
- B) $\frac{y}{r}$

Правильный ответ: В

Компетенции: ПК-2

Задания закрытого типа на установление соответствия

1. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Вид дифференциального		Уравнение характеристик
	уравнения		
1)	$yu_{xx} - u_{yy} = 0, y > 0;$	A)	$y^2dy^2 - 2xydxdy + x^2dx^2 = 0$
2)	$xu_{xx} + 2xu_{xy} - (1-x)u_{yy} = 0$	Б)	$ydy^2 - dx^2 = 0$
3)	$y^2 u_{xx} + 2xy u_{xy} + x^2 u_{yy} = 0$	B)	$xdy^2 - xdxdy - (1-x)dx^2 = 0$

Правильный ответ:

1	2	3
Б	В	A

Компетенции: ПК-2

2. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Общий вид уравнения		Канонический вид
1)	$x^2 u_{xx} - y^2 u_{yy} = 0$	A)	$u_{\xi\xi} + u_{\eta\eta} + (\xi - \eta)^{-1} u_{\xi}$
			$+\left(\frac{1}{2\eta}\right)u_{\eta}=0$
2)	$tg^2x \cdot u_{xx} - 2y \cdot tgx \cdot u_{xy} \\ + y^2u_{yy} +$	Б)	$u_{\xi\eta} - \frac{1}{2\xi}u_{\eta} = 0$
	$+tg^3x\cdot u_x=0$		
3)	$y^2u_{xx} + 2xy \cdot u_{xy} + 2x^2u_{yy} +$	B)	$u_{\eta\eta} - \frac{2\xi \cdot u_{\xi}}{\eta^2} = 0$
	$+y \cdot u_y = 0$,

Правильный ответ:

110 4514 1515 11							
1	2	3					
Б	В	A					

Компетенции: ПК-2

3. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

•••	betetby et tembre egim smement inpubere etemegu.						
	ДУ в канонической форме		Название				
1)	$u_{tt} = a^2 u_{xx}, u = u(x, t)$	A)	уравнение теплопроводн	ости			
2)	$u_t = a^2 u_{xx}, u = u(x, t)$	Б)	стационарное ур теплопроводности	авнение			
3)	u = u(x,t), u = u(x,y)	B)	уравнение колебаний				

Правильный ответ:

1	2	3
В	A	Б

Компетенции: ПК-2

4. Установите правильное соответствие. Каждому элементу левого столбца

соответствует только один элемент правого столбца.

	Постановка задачи: найти решение ДУ		Ответ
1)	$x^2 u_{xx} - y^2 u_{yy} = 0$	A)	$u(x,y) = \phi(xy) \ln y + \psi(xy),$ где $\phi(x), \psi(x)$ — произвольные функции
2)	$x^{2}u_{xx} - 2xy \cdot u_{xy} + y^{2}u_{yy} +$ +x \cdot u_{x} + y \cdot u_{y} = 0	Б)	$u = (1 + 2x - e^{2x})e^{y} + \varphi(x) + \frac{1}{2} \int_{y}^{2x+y} \psi(z)dz$
3)	$u_{xx}-2u_{xy}+4e^{y}=0$ $u(0,y)=\varphi(y),$ $u_{x}(0,y)=\psi(y)$	B)	$u(x,y) = \sqrt{xy} \cdot \Phi\left(\frac{y}{x}\right) + \psi(xy),$ $\Phi(\eta) = \int \phi(\eta) d\eta, \text{где} \varphi(x),$ $\psi(x) - \text{произвольные функция}$

Правильный ответ:

11p w21112111 0 12 0 1 v						
1	2	3				
В	A	Б				

Компетенции: ПК-2

Задания закрытого типа на установление правильной последовательности

1. Расположите ДУ в направлении возрастания их порядка:

A)
$$x^3y(u_{xy}^2 - 2u_y) + 3e^xu_x - x^2(xyu_{xy}^2 - 2u) + 3 = 0$$

Б)
$$xy(u_{xxy} + 2u_{xy}) - 2xy(u_{xy}^2 - u_{xy}) + uu_{x=0}$$

B)
$$u_{xyxy} + 2u_{xx} - u + 2 = 0$$

$$\Gamma) \sin xy u_{xx} - xy(u_x + u) + y(u_{xy} + x\cos x) = 0$$

Правильный ответ: А, Г, Б, В

Компетенции: ПК-2

2. Расположите ДУ в порядке возрастания параметра $sgn\delta$, $\delta=a_{12}^2-a_{11}a_{22}$:

A)
$$x^2 u_{xx} + y^2 u_{yy} = 0$$

Б)
$$e^{2y}u_{xx} - u_{yy} = 0$$

B)
$$x^2 u_{xx} + 81y^2 u_{yy} - 18xy u_{xy} - 10x u_x = 0$$

Правильный ответ: А, В, Б

Компетенции: ПК-2

3. Расположите ДУ в порядке возрастания суммарного числа начальных и граничных условий:

A)
$$u_{tt} = a^2 u_{xx}, x \in [0, l], t > 0$$

Б)
$$u_{tt} = a^2 u_{xx}$$
, $-\infty < x < +\infty$, $t > 0$

B)
$$u_t = a^2 u_{xx}, x \in [0, l], t > 0$$

Правильный ответ: Б, В, А

Компетенции: ПК-2

- 4. Расположите ДУ в порядке возрастания возможных значений параметра $sgn\delta$, $\delta = a_{12}^2 a_{11}a_{22}$:
 - $A) x u_{xx} 2y u_{xy} + u_{yy} = 0$
 - Б) $y^2 u_{xx} x^2 u_{yy} = 0$, $x, y \neq 0$
 - B) $xu_{xx} + yu_{yy} = 0$, $x, y \neq 0$

Правильный ответ: Б, В, А

Компетенции: ПК-2

Задания открытого типа

Задания открытого типа на дополнение

1. Напишите пропущенное слово (словосочетание).

_____ называют такие методы (Эйлера, Ритца, Галеркина,

конечных разностей, конечных элементов) решения задач теории дифференциальных и интегральных уравнений, которые сводят эти задачи к конечным системам алгебраических уравнений.

Правильный ответ: прямыми.

Компетенции: ПК-2

2. Напишите пропущенное слово (словосочетание).

Простейшую задачу вариационного исчисления называют задачей с

$$J[y(x)] = \int_a^b F(x, y(x), y'(x)) dx \rightarrow extr; y(a) = y_a, y(b) = y_b.$$

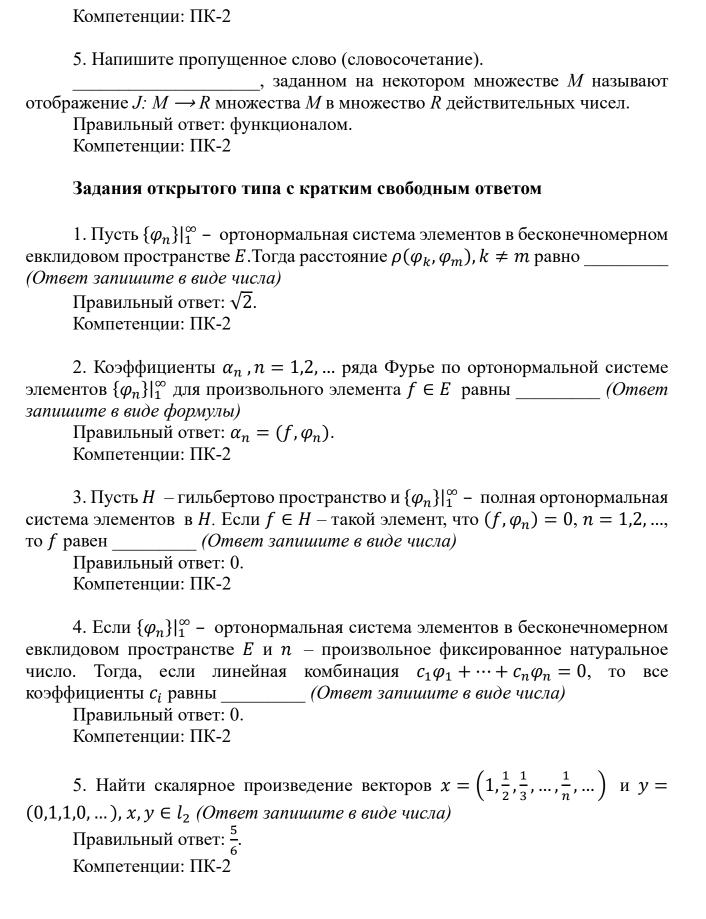
Правильный ответ: закрепленными концами.

Компетенции: ПК-2

3. Напишите пропущенное слово (словосочетание).

 $= y_a, y(b) = y_b$ – множество, на котором идет поиск локального экстремума.

Правильный ответ: допустимые.


Компетенции: ПК-2

4. Напишите пропущенное слово (словосочетание).

_____ принято называть допустимую функцию $\hat{y}(x)$, которая

удовлетворяет уравнению Эйлера $\frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'}$

Правильный ответ: экстремалью.

Задания открытого типа с развернутым ответом

1. Решить задачу, используя формализм прямых методов в математической физике:

Найти экстремаль функционала

$$J(y) = \int_{1}^{3} [12xy + (y')^{2}] dx,$$
$$y(1) = 0; y(3) = 26.$$

Привести расширенное решение.

Время выполнения – 30 мин.

Критерии оценивания:

- построение уравнения Эйлера;
- построение функции Вейерштрасса;
- определение решения основной задачи;

Ожидаемый результат:

1. Запишем уравнение Эйлера

$$12x - 2y'' = 0$$
 или $y'' = 6x$.

Найдем общее решение уравнения Эйлера, интегрируя последовательно обе части уравнения. В результате получим следующее решение

$$y(x) = x^3 + c_1 x + c_2.$$

Граничным условиям

$$y(1) = 1 + c_1 + c_2,$$

 $y(3) = 27 + 3c_1 + c_2 = 26$

удовлетворяет экстремаль $y(x) = x^3 - 1$.

2. На промежутке [1,3] данная экстремаль $y(x) = x^3 - 1$ может быть включена в центральное поле экстремалей $y(x,c_1) = x^3 - 1 + c_1(x-1)$.

Функция Вейерштрасса

$$E(x,y,p,y') = 12xy + (y')^2 - 12xy - p^2 - (y'-p')2p = (y'-p)^2 \ge 0$$
 знакоопределена при любых y' , т.е. сохраняет знак в сильной окрестности кривой $y(x) = x^3 - 1$.

3. Следовательно, выполнено достаточное условие Вейерштрасса, и экстремаль $y(x) = x^3 - 1$ доставляет сильный минимум.

Ответ: $y(x) = x^3 - 1$.

Компетенции: ПК-2

2. Решить задачу, используя формализм прямых методов в математической физике (решение провести в компьютерном классе):

Определить нестационарные температурные поля в неограниченной пластине (алюминиевом сплаве AM_{26}) с теплофизическими свойствами:

$$\rho = 2, 2 \cdot 10^3 \frac{\kappa 2}{M^3}, \ \lambda = 1,33 \frac{\kappa \kappa a \pi}{M} \text{ час град }, \ C = 0,2 \frac{\kappa \kappa a \pi}{\kappa 2} \text{ град },$$

если на той же поверхности, при x = L, задано изменение температуры

$$T(x,t) = \beta \cdot t$$
, $\beta = 20^{epao}/ce\kappa$

а другая поверхность термически изолирована. Толщина плиты: L=10 см. Начальное распределение по всей пластине равно $0^{0}C$.

Привести расширенное решение.

Время выполнения – 30 мин.

Критерии оценивания:

- построение разностной схемы;
- использование специальной программы;
- анализ численных результатов.

Ожидаемый результат:

1. Для начала мы сформулируем проблему в дифференциальной форме. Поскольку распространение тепла на самом деле происходит по одной оси координат, то уравнение переноса будет одномерным:

$$\frac{\partial T(x,\tau)}{\partial \tau} = a \frac{\partial^2 T(x,\tau)}{\partial x^2},$$

при этом a — коэффициент теплопроводности определяется теплофизическими свойствами тела $a = \frac{k}{c \, \rho}$.

Начальные условия:

$$T(x,0)=0.$$

Граничные условия:

$$T(L,t) = 20t$$
,
 $T(0,t) = 0$. (*)

Формула (*) описывает теплоизоляционную поверхность, где нулевой слой выходят за пределы пластины и температура на этом слое всегда равна 0^{0} C.

Решение этой задачи аналитическими методами нецелесообразно, поскольку мы ставим перед собой цель найти простое практическое решение, которое применимо в инженерных расчетах и предпочтительно запрограммировано на COMPUTER. Например, решая проблему методом разделения переменных, мы получаем довольно громоздкое решение:

$$T(x,\tau) = \frac{2}{L} \sum_{n=0}^{\infty} \exp(-\frac{a(2n+1)\pi^{2}t}{4L}) \cos\frac{(2n+1)\pi x}{2L} \times \left(\frac{(2n+1)\pi a(-1)^{n}}{2L} \cdot \int_{0}^{L} 20t \exp\frac{a(2n+1)\pi^{2}t}{4L} dx\right).$$

Решение в интегральной форме (преобразование Лапласа) имеет не менее громоздкий вид, но значительный недостаток, потому что довольно трудно создать программу нахождения оригинала по изображению.

В данном случае удобно использовать численные методы решения, в частности, метод конечных разностей.

2. Составляем задачу в виде конечной разницы (в соответствии с классической явной схемой). Тогда вновь получим дифференциально-разностное уравнение теплопроводности с граничными условиями:

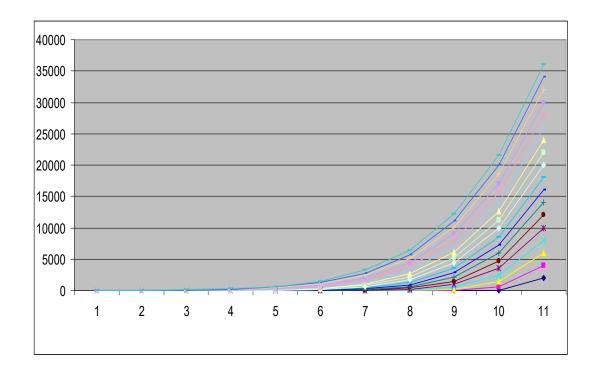
$$\frac{\mathcal{G}_{i,k+1} - \mathcal{G}_{i,k}}{l} = a \frac{\mathcal{G}_{i+1,k} - 2\mathcal{G}_{i,k} + \mathcal{G}_{i-1,k}}{h^2}.$$

$$\mathcal{G}_{i,0} = 0;$$

$$\mathcal{G}_{L,k} = 20k,$$

$$\mathcal{G}_{0,k} = 0.$$

при
$$\lambda \le 1/2$$
, где $\lambda = \frac{al}{h^2}$.


Этот метод обычно требует определенного объема однотипных вычислительных операций, поэтому была разработана программа на языке Паскаль.

Кратко можно описать приложение пользователя. После процедуры ввода данных, непосредственно рассчитывается температура поля пластины и выдаются табличные данные на экран. Составлена программа численного расчета температурного поля пластины. Таблица показывает значения температуры для любого сечения пластины. На графике отчетливо показано, как меняется температура вдоль пластины в зависимости от времени нагрева поверхности.

Ответ.

Таблица и диаграмма температурного поля пластины при соблюдении условия устойчивости

				yCJIUI	вил усто	MINDUC	I YI			
	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	000
									6	4
	0	0	0	0	0	0	0	0	00	000
	0	0	0	0	0	0	0	1	1	000
	0	U	U	0	U	U	5			000
	0	0	0	0	0	0	4			000
						1	1	9	3	
Note	0	0	0	0	0	6,2	72,8	46,8	523,2	0000
1	0	0	0	0				1 497.52		2000
Note	0	0	0	1		8,32		487,52		2000
0 0 4374 4152 7,871 40,7968 15,565 803,33 202,557 6000 0 1,3122 ,09952 7,0586 3,312 85,3494 279,46 556,77 522,021 8000 0 0 0 5 3 1 5 1 4 9 ,039366 .682344 ,996754 5,4469 58,0472 65,9723 694,42 363,15 875,838 0000 0 2 1 6 2 7 2 2 5 1 1 4 9 1 1 4 9 1 1 4 9 1 1 4 9 1 1 4 1 1 4 9 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 3 7 1 1 4 1 1	0	0	0	,458		32,192		110,41		4000
0 13122 0,9952 7,0586 3,312 85,3494 279,46 556,77 522,021 8000 0 0 0 5 3 1 5 1 4 9 ,039366 ,682344 ,996754 5,4469 58,0472 65,9723 694,42 363,15 875,838 0000 ,22045 ,083774 3,23747 3,39194 43,6446 82,1291 156,51 216,34 1259,28 2000 0 4 2 1 3 1 2 6 1 1259,28 2000 7,13312 ,870886 4,9377 02,4214 51,1142 032,897 662,14 111,27 2668,61 4000 7,46591 ,64366 2,16277 53,7841 81,0411 317,136 208,11 043,74 4100,83 6000 3 1 6 2 6 1 3 8 1 ,591734 7,03027 5,89344 18,4748<			0	6	4	2	9	2	7	
0 ,13122 ,09952 7,0586 3,312 85,3494 279,46 556,77 522,021 8000 0 0 0 5 3 1 5 1 4 9 ,039366 ,682344 ,996754 5,4469 58,0472 65,9723 694,42 363,15 875,838 0000 2 0 1 6 2 7 2 156,51 216,34 1259,28 2000 0 4 2 1 3 1 2 6 1 1259,28 2000 1 9 4 1 3 1 2 6 1 4000 1 9 4 1 4 1 3 7 1 4000 3 1 6 2,16277 53,7841 81,0411 317,136 208,11 043,74 4100,83 6000 3 1 6 2 9 2 8 <td>0</td> <td>0</td> <td>,4374</td> <td>,4152</td> <td>7,871</td> <td>40,7968</td> <td>15,565</td> <td>803,33</td> <td>202,557</td> <td>6000</td>	0	0	,4374	,4152	7,871	40,7968	15,565	803,33	202,557	6000
0		-		_			1	3		
,039366 ,682344 ,996754 5,4469 58,0472 65,9723 694,42 363,15 875,838 0000 ,039366 ,682344 ,996754 5,4469 58,0472 65,9723 694,42 363,15 875,838 0000 ,22045 ,083774 3,23747 3,39194 43,6446 82,1291 156,51 216,34 1259,28 2000 ,713312 ,870886 4,9377 02,4214 51,1142 032,897 662,14 111,27 2668,61 4000 ,746591 ,64366 2,16277 53,7841 81,0411 317,136 208,11 043,74 4100,83 6000 ,591734 7,03027 5,89344 18,4748 33,6924 633,599 791,5 010,17 5553,45 8000 ,545775 7,65766 7,0089 97,2657 09,099 980,999 409,73 007,56 7024,43 0000 1 4 1 3 1 2 5 1 1 2 <							279,46	556,77		8000
0 2 1 6 2 7 156,51 216,34 1259,28 2000 0 4 2 1 3,39194 43,6446 82,1291 156,51 216,34 1259,28 2000 0 4 2 1 3 1 2 6 1 2668,61 4000 1 9 4 1 4 1 3 7 1 2668,61 4000 3 1 64366 2,16277 53,7841 81,0411 317,136 208,11 043,74 4100,83 6000 3 1 6 2 6 1 3 8 1 ,591734 7,03027 5,89344 18,4748 33,6924 633,599 791,5 010,17 5553,45 8000 5,545775 7,65766 7,0089 97,2657 09,099 980,999 409,73 007,56 7024,43 0000 1 2,12947 36,2806							694.42	363.15		0000
0 4 2 1 3 1 2 6 1 4000 713312 ,870886 4,9377 02,4214 51,1142 032,897 662,14 111,27 2668,61 4000 7,46591 ,64366 2,16277 53,7841 81,0411 317,136 208,11 043,74 4100,83 6000 3 1 6 2 6 1 3 8 1 ,591734 7,03027 5,89344 18,4748 33,6924 633,599 791,5 010,17 5553,45 8000 6 2 9 2 8 1 4 9 1 ,545775 7,65766 7,0089 97,2657 09,099 980,999 409,73 007,56 7024,43 0000 1 4 1 3 1 2 5 1 1 1 0,91561 2,12947 36,2806 90,7386 007,119 358,049 060,46 <t< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td>2</td><td>5</td><td>1</td><td></td></t<>			1				2	5	1	
,713312 ,870886 4,9377 02,4214 51,1142 032,897 662,14 111,27 2668,61 4000 ,746591 ,64366 2,16277 53,7841 81,0411 317,136 208,11 043,74 4100,83 6000 ,591734 7,03027 5,89344 18,4748 33,6924 633,599 791,5 010,17 5553,45 8000 ,545775 7,65766 7,0089 97,2657 09,099 980,999 409,73 007,56 7024,43 0000 1 4 1 3 1 2 5 1 1 4 2000 2 000 90,999 980,999 409,73 007,56 7024,43 0000 000 000 000 000,91561 2,12947 36,2806 90,7386 007,119 358,049 060,46 0033,3 8512,04 2000 2000 741,58 1085,1 0014,8 4000 400 400 1 2 1 2 1 2	,22045	,083774	3,23747	3,39194	43,6446	82,1291	156,51	216,34	1259,28	2000
1 9 4 1 4 1 3 7 1 6 ,746591 ,64366 2,16277 53,7841 81,0411 317,136 208,11 043,74 4100,83 6000 3 1 6 2 6 1 3 8 1 ,591734 7,03027 5,89344 18,4748 33,6924 633,599 791,5 010,17 5553,45 8000 6 2 9 2 8 1 4 9 1 ,545775 7,65766 7,0089 97,2657 09,099 980,999 409,73 007,56 7024,43 0000 1 4 1 3 1 2 5 1 1 1 0,91561 2,12947 36,2806 90,7386 007,119 358,049 060,46 0033,3 8512,04 2000 7,00508 1,01064 84,3727 99,3153 227,484 763,493 741,58 1085,1 0014,8 4000				1		1	2			2
,746591 ,64366 2,16277 53,7841 81,0411 317,136 208,11 043,74 4100,83 6000 ,591734 7,03027 5,89344 18,4748 33,6924 633,599 791,5 010,17 5553,45 8000 6 2 9 2 8 1 4 9 1 ,545775 7,65766 7,0089 97,2657 09,099 980,999 409,73 007,56 7024,43 0000 1 4 1 3 1 2 5 1 1 1 0,91561 2,12947 36,2806 90,7386 007,119 358,049 060,46 0033,3 8512,04 2000 1 6 1 4 1 2 5 1 2 7,00508 1,01064 84,3727 99,3153 227,484 763,493 741,58 1085,1 0014,8 4000				·						4000
3 1 6 2 6 1 3 8 1 ,591734 7,03027 5,89344 18,4748 33,6924 633,599 791,5 010,17 5553,45 8000 6 2 9 2 8 1 4 9 1 ,545775 7,65766 7,0089 97,2657 09,099 980,999 409,73 007,56 7024,43 0000 1 4 1 3 1 2 5 1 1 1 0,91561 2,12947 36,2806 90,7386 007,119 358,049 060,46 0033,3 8512,04 2000 1 6 1 4 1 2 5 1 2 7,00508 1,01064 84,3727 99,3153 227,484 763,493 741,58 1085,1 0014,8 4000										6000
,591734 7,03027 5,89344 18,4748 33,6924 633,599 791,5 010,17 5553,45 8000 6 2 9 2 8 1 4 9 1 ,545775 7,65766 7,0089 97,2657 09,099 980,999 409,73 007,56 7024,43 0000 1 4 1 3 1 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 5 1 1 1 2 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 3 1 2 1 2 1 3 1 1 2 1 3 1 1 2 1 1 3 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td>-</td><td></td><td>0000</td></t<>							,	-		0000
,545775 7,65766 7,0089 97,2657 09,099 980,999 409,73 007,56 7024,43 0000 1 4 1 3 1 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 2 3 1 1 2 2 3 1 2 2 3 1 2 2 3 1 2 3 1 2 3 3 1 3 4 1 3 2 741,58 1085,1 0014,8 4000 4000 4000 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4										8000
1 0,91561 2,12947 36,2806 90,7386 007,119 358,049 060,46 0033,3 8512,04 2000 1 0 0 1 4 1 2 5 1 2 2 5 1 2 2 2 2 2 2 2 2 2 2 2 2	6	2	9	2	8	1	4	9	1	
0,91561 2,12947 36,2806 90,7386 007,119 358,049 060,46 0033,3 8512,04 2000 1 6 1 4 1 2 5 1 2 7,00508 1,01064 84,3727 99,3153 227,484 763,493 741,58 1085,1 0014,8 4000 2 8 2 6 1 3 6 1 2	,545775	7,65766	7,0089	·	09,099	-	,	007,56	7024,43	0000
7,00508 1,01064 84,3727 99,3153 227,484 763,493 741,58 1085,1 0014,8 4000 2 8 2 6 1 3 6 1 2	_				_			0033,3	1 8512,04	2000
2 8 2 6 1 3 6 1 2	_				1			1		
		-			227,484	-		1085,1	,	4000
					1 469,836	_		2160,9		6000

Компетенции: ПК-2

Экспертное заключение

Представленный комплект оценочных материалов по дисциплине «Прямые методы в математической физике» соответствует требованиям ФГОС ВО.

Предлагаемые оценочные материалы адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 01.04.02 Прикладная математика и информатика.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанные и представленные для экспертизы оценочные материалы рекомендуются к использованию в процессе подготовки обучающихся по указанному направлению.

Председатель учебно-методической комиссии института компьютерных систем и информационных технологий

Ветрова Н. Н.

Лист изменений и дополнений

Виды дополнений и изменений	заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	(с расшифровкой) заведующего кафедрой (заведующих кафедрами)
Дополнен комплектом оценочных материалов	протокол заседания кафедры прикладной математики № 8 от 24. Од. 2025	В.В. Малый
	Дополнен комплектом	рассмотрены и одобрены изменения и дополнения Дополнен комплектом оценочных материалов кафедры прикладной математики №