МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БІОДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Институт транспорта и логистики

Кафедра гидрогазодинамики

УТВЕРЖДАЮ:

Директор института

транспорта и логистики

» 02

Быкадоров В.В.

2025 года

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по учебной дисциплине

«Промышленная аэродинамика»

01.04.03 Механика и математическое моделирование «Компьютерная аэрогидродинамика»

Разработчик:

канд. техн. наук, доцент

ФОС рассмотрен и одобрен на заседании кафедры гидрогазодинамика

от «14» января 2025г., протокол №3

Заведующий кафедрой Мальцев Я.И.

Комплект оценочных материалов по дисциплине «Промышленная аэродинамика»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа:

Выбрать один правильный ответ

1. Уравнение сохранения энергии для струйного аппарата имеет вид:

A)
$$h_p + uh_H = (1 + u)h_c$$
.

Б)
$$h_{n} - uh_{n} = (1 - u)h_{c}$$
.

B)
$$uh_p + h_H = (1+u)h_c$$
.

$$\Gamma$$
) $h_p + uh_H = (1+u)h_p$.

Правильный ответ: А.

Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)

2. Формула, связывающая изменение температуры потока и развиваемую им скорость, имеет вид:

$$A) \frac{w^2}{2} = c_p \left(T - T_0 \right)$$

Б)
$$\frac{w^2}{2} = c_p (T_0 - T)$$

B)
$$w^2 = c_p (T_0 - T)$$

$$\Gamma) w^2 = \frac{c_p(T_0 - T)}{2}.$$

Правильный ответ: Б

Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)

3. Формула для определения критической скорости потока имеет вид:

A)
$$a_* = \sqrt{\frac{k+1}{2k}RT_0}$$
.

$$\mathbf{E}) \ a_* = \sqrt{\frac{k}{k+1}RT_0} \ .$$

B)
$$a_* = \sqrt{\frac{2k}{k+1}RT_0}$$
.

$$\Gamma) \ a_* = \sqrt{\frac{2}{k+1}RT_0}$$

Правильный ответ: В

Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)

4. Формула для определения температуры потока при его критической скорости имеет вид:

A)
$$T_* = \frac{2}{k-1}T_0$$
.

$$F) T_* = \frac{2}{k+1} T_0.$$

B)
$$T_* = \frac{2k}{k+1}T_0$$
.

$$\Gamma) T_* = \frac{k}{k+1} T_0.$$

Правильный ответ: Б

Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)

5. Формула для определения газодинамической функции $\Pi(\lambda) = \frac{p}{p_0}$ имеет вид:

A)
$$\Pi = \left[1 - \frac{k-1}{k+1} \lambda^2\right]^{k/(k-1)}$$
.

Б)
$$\Pi = \left[1 + \frac{k-1}{k+1}\lambda^2\right]^{k/(k-1)}$$
.

B)
$$\Pi = \left[1 - \frac{1}{k+1}\lambda^2\right]^{k/(k-1)}$$
.

$$\Gamma) \ \Pi = \left[1 - \frac{k}{k+1} \lambda^2\right]^{k/(k-1)}.$$

Правильный ответ: А.

Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)

6. Формула для определения газодинамической функции $\tau(\lambda) = \frac{T}{T_0}$ имеет вид:

A)
$$\tau = 1 + \frac{k-1}{k+1} \lambda^2$$
.

$$5) \ \tau = 1 - \frac{k+1}{k-1} \lambda^2.$$

B)
$$\tau = 1 - \frac{k-1}{k+1} \lambda$$
.

$$\Gamma) \tau = 1 - \frac{k-1}{k+1} \lambda^2.$$

Правильный ответ: Г.

Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)

7. Формула для определения газодинамической функции $\varepsilon(\lambda) = \frac{\rho}{\rho_0}$ имеет вид:

A)
$$\varepsilon = \left[1 - \frac{k-1}{k+1}\lambda^2\right]^{1/(k-1)}$$
.

$$\mathsf{E} = \left[1 - \frac{k-1}{k+1}\lambda^2\right]^{1/(k+1)}.$$

B)
$$\varepsilon = \left[1 + \frac{k-1}{k+1}\lambda^2\right]^{1/(k-1)}$$
.

$$\Gamma) \varepsilon = \left[1 - \frac{k-1}{k+1}\lambda\right]^{1/(k-1)}.$$

Правильный ответ: А.

Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)

Выбрать все правильные варианты ответов

- 8. К струйным аппаратам относятся:
- А) Струйные компрессоры.
- Б) Осевые компрессоры.
- В) Центробежные компрессоры.
- Г) Струйные насосы.
- Д) Водовоздушные эжекторы.
- Е) Пароводяные инжекторы.

Правильный ответ: А, Г, Д, Е.

Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)

8. Уравнение состояния идеального газа имеет вид:

A)
$$\rho = pRT$$
;

$$\mathbf{b}) \; \frac{p}{\rho} = \rho RT \; ;$$

B)
$$p = \rho RT$$

$$\Gamma) \frac{p}{\rho} = RT$$

Правильный ответ: В, Г.

Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)

- 9. По принципу действия пылеулавливающее оборудование подразделяется на следующие группы:
- А) Гравитационное.
- Б) Инерционное.
- В) Фильтрационное.
- Г) Электрическое.
- Д) Комбинированное

Правильный ответ: А, Б, В, Г.

Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)

Задания закрытого типа на установление соответствия:

Установите правильное соответствие.

Каждому элементу левого столбца соответствует только один элемент правого столбца.

1. Установите соответствие между уравнением и названием термодинамического процесса.

1)
$$\frac{p}{\rho^k} = const$$

А) Политропный

2)
$$\frac{p}{Q^n} = const$$

Б) Изотермический

3)
$$\frac{p}{\rho} = const$$

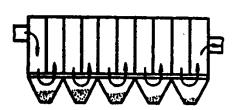
В) Адиабатный

4)
$$\frac{p}{T} = const$$

Г) Изобарный

5)
$$\frac{V}{T} = const$$

Д) Изохорный


Правильный ответ

1 B 2 A 3 Б 4 Д 5 Г

Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)

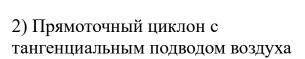
2. Установите соответствие между исполни его наименованием.	ением пылеулавливающего оборудования	
1) Сухие пылеуловители. Механические	А) Форсуночные скрубберы. Скрубберы Вентури. Динамические газопромыватели	
 Мокрые пылеуловители. Промыватели 	Б) Осадительные камеры. Инерционные аппараты. Центробежные аппараты.	
3) Сухие пылеуловители. Фильтрующие	В) Центробежные аппараты. Ударно-инерционные аппараты. Тарельчатые аппараты.	
4) Мокрые пылеуловители. Жидкоплёночные	Г) Волокнистые фильтры. Тканевые фильтры. Зернистые фильтры	
Правильный ответ	3 4 Г В X-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-	
3. Установите соответствие между видом	осадочной камеры и её схемой	
Вид осадочной камеры	Схема осадочной камеры	
1) Лабиринтная	A)	
2) Полая	Б)	
3) Полочная	B)	

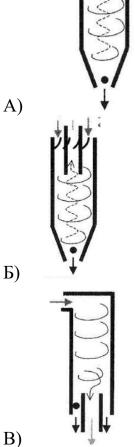
4) С подвешенными стержнями

Правильный ответ

1 2 3 Γ A B

.


Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)


4. Установите соответствие между названием конструктивной формы циклона и его схемой.

Конструктивная форма циклона

Схема циклона

1) Прямоточный циклон с осевым подводом воздуха

3) Противоточный циклон с осевым подводом воздуха

4) Противоточный циклон с тангенциальным подводом воздуха

Правильный ответ

1 2 3 4 Γ B F A

 Γ)

Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)

Задания закрытого типа на установление правильной последовательности

Установите правильную последовательность.

Запишите правильную последовательность букв слева направо.

- 1. Установите правильную последовательность этапов изменения скорости рабочего потока в сопловом аппарате струйного компрессора.
- А) В критическом сечении скорость достигает величины критической скорости.
- Б) В суживающей части сопла скорость рабочего потока увеличивается.
- В) В расширяющейся части сопла скорость рабочего потока увеличивается.
- Γ) Скорость рабочего потока возрастает до величины, которая определяется отношением давлений $\Pi_{P,H} = p_H/p_P$.

Правильный ответ: Б, А, В, Г.

Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)

- 2. Установите правильную последовательность этапов изменения давления рабочего потока в сопловом аппарате струйного компрессора.
- А) В критическом сечении давление достигает величины, соответствующей значению критической скорости.
- Б) Давление рабочего потока уменьшается в соответствии с увеличением скорости.
- В) Давление рабочего потока снижается и становится меньше давления соответствующего критической скорости.
- Γ) Давление рабочего потока становится равным давлению инжектируемого потока p_H .

Правильный ответ: Б, А, В, Г.

Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)

- 3. Установите правильную последовательность этапов изменения давления инжектируемого потока в проточной части струйного компрессора.
- А) Давление инжектируемого потока имеет минимальную величину p_{H2}
- Б) Давление инжектируемого потока равно p_H .
- В) Давление инжектируемого потока становится равным p_3 .
- Г) Давление инжектируемого потока приближается по величине к давлению рабочего потока.

Правильный ответ: Б, А, Г, В.

Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)

Задания открытого типа

Задания открытого типа на дополнение

Вставьте пропущенное слово (словосочетание)

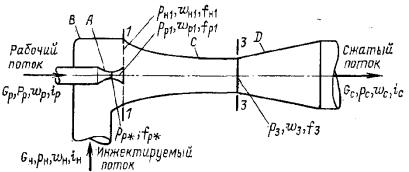
1. Функция $\tau(\lambda)$ определяет отношение абсолютной температуры T в данном			
сечении изоэнтропно движущегося газа к абсолютной температуре T_0 .			
Правильный ответ: торможения. Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)			
2. Функция $\Pi(\lambda)$ определяет отношение давления p в данном			
изоэнтропно движущегося газа к давлению торможения p_0			
Правильный ответ: сечении.			
Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)			

- 3. Функция $\varepsilon(\lambda)$ определяет отношение плотности ρ в данном сечении движущегося газа к его плотности в заторможенном состоянии ρ_0 . Правильный ответ: изоэнтропно. Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)
- 4. Функция $q(\lambda)$ представляет собой приведенную массовую скорость, т. е. отношение массовой скорости в данном сечении $w_a \rho$ изоэнтропно движущегося

потока к массовой скорости этого потока определённого по параметрам $a_* \rho_*$ в
сечении.
Правильный ответ: критическом. Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)
5. Оборудование, применяемое для очистки от взвешенных частиц пыли воздуха, подаваемого в помещения системами приточной вентиляции, кондиционирования и воздушного отопления называется воздушными Правильный ответ: фильтрами. Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)
6. В оборудовании для улавливания пыли сухим способом, частицы пыли осаждаются на Правильный ответ: сухую поверхность. Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)
7. В оборудовании для улавливания пыли мокрым способом, отделение частиц пыли от воздушного потока осуществляется с использованием Правильный ответ: жидкостей. Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)
Задания открытого типа с кратким свободным ответом
Напишите пропущенное слово (словосочетание)
1. Оборудование, применяемое для очистки от пыли воздуха, выбрасываемого в атмосферу системами вытяжной вентиляции или возвращаемого в промышленное помещение называется Правильный ответ: пылеулавливающим оборудованием/ пылеуловителями. Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)
2. Оборудование, применяемое для очистки от взвешенных частиц пыли воздуха, подаваемого в помещения системами приточной вентиляции, кондиционирования и воздушного отопления, называется Правильный ответ: воздушными фильтрами/ фильтрами. Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)

3. Пылеулавливающее оборудование, в котором отделение пыли от воздушного потока осуществляется последовательно в нескольких ступенях, отличающихся по принципу действия, конструктивным особенностям и способу очистки, относят к оборудованию.

Правильный ответ: комбинированному пылеулавливающему/ комбинированному. Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)


4. В результате действия центробежных сил частицы пыли, взвешенные в потоке газа, отбрасываются на стенки корпуса циклона и выпадают из потока. Отброшенные частицы пыли, достигнувшие стенки циклона, направляются вниз к

Правильный ответ: пылеосадительной камере/ бункеру.

Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)

Задания открытого типа с развёрнутым ответом

1. Опишите рабочий процесс струйного компрессора, используя прилагаемый рисунок.

Приведите расширенное описание

Время выполнения 35 минут.

Ожидаемый результат:

Рабочий газ с давлением p_p и скоростью w_p подводится к рабочему соплу A. Сопло имеет форму сопла Лаваля с расширяющейся выходной частью, если степень расширения газа в сопле меньше критического значения. Давление газа в сопле снижается от p_p до давления инжектируемого потока $p_{p1} = p_n$, а скорость увеличивается от w_p до w_{p1} . Рабочий газ, выходящий из сопла в приемную камеру B со скоростью w_{p1} , подсасывает из приемной камеры газ, который поступает в приемную камеру с давлением p_n . По мере удаления от сопла массовый расход потока рабочего газа непрерывно увеличивается за счет присоединения массы инжектируемой среды, а поперечное сечение движущегося потока непрерывно растет. На некотором расстоянии от выходного сечения сопла поток, движущийся по направлению к камере смешения C, заполняет все сечение приемной камеры. Массовый расход движущегося потока в этом сечении равен сумме расходов рабочего и инжектируемого потоков $G_p + G_n$. Профиль скоростей в этом сечении

имеет большую неравномерность по поперечному сечению потока. В камере смешения C происходит процесс выравнивания скоростей потоков, который сопровождается также выравниванием их давления до величины p_3 . Далее поток поступает в диффузор D, где давление его возрастает от p_3 до p_c , а скорость снижается от w_3 до w_c . При давлении p_c со скоростью w_c смешанный поток выходит из струйного аппарата.

Критерии оценивания: полное содержательное соответствие.

Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)

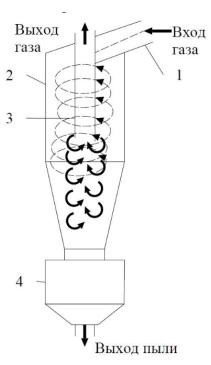
2. Запишите порядок расчёта достижимого коэффициента инжекции струйного компрессора.

Приведите подробное описание

Время выполнения 45 минут.

Ожидаемый результат:

- А) Определяем критические скорости рабочего и инжектируемого потоков.
- Б) Определяем отношение критических скоростей рабочего и инжектируемого потоков.
- В) По отношению давлений $\Pi_{P.H.} = p_H / p_P$ определяем приведенную скорость и приведенную массовую скорость рабочего потока на выходе из сопла и проведём расчет коэффициента инжекции для ряда значений приведенной массовой скорости смешанного потока $q_{C3} \le 1,0$.
- Г) Принимаем q_{C3} = 1. Определяем величину функции Π_{C3} для значения q_{C3} = 1 по таблицам газодинамических функций.
- Д) Определяем величину коэффициента инжекции при втором предельном режиме $(u_{\rm np})_2$.
- E) Для полученного значения коэффициента инжекции определяем параметры инжектируемого потока: приведенную массовую скорость q_{H2} , приведенную скорость λ_{H2} , величину функций $\Pi(\lambda)_{H2}$ и $\Pi(\lambda)_{C2}$. Снова, по полученным значениям определяем коэффициент инжекции.


Если его величина окажется больше коэффициента для второго предельного режима, то принимаем в качестве окончательного значения, для данной величины приведенной массовой скорости q_{C3} , величину $(u_{\rm np})_2 = u$.

Если его величина окажется меньше коэффициента для второго предельного режима, то принимаем её в качестве начального значения и повторяем расчёт значений q_{H2} , λ_{H2} , $\Pi(\lambda)_{H2}$ и $\Pi(\lambda)_{C2}$, величины коэффициента инжекции u. Расчёт повторяем до тех пор, пока не будет выполняться соотношение между предыдущим u и последующим значением u' $0.97 \le \frac{u}{u'} \le 1.03$.

Ж) Такие же расчёты по пунктам Д и Е проводим для других значений приведенной массовой скорости $q_{C3} < 1$ с шагом $\Delta q_{C3} = 0,1$.

3) Расчёт для новых значений q_{C3} < 1 проводим до тех пор, пока не будет выявлено максимальное значение коэффициента инжекции u . Критерии оценивания: полное содержательное соответствие. Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)

3. Опишите рабочий процесс циклона для сухой очистки воздуха.

Приведите подробное описание Время выполнения 25 минут.

Пылегазовый поток входит в корпус тангенциально по касательной и, совершая вращательно-поступательное движение, перемещается вдоль корпуса 2 вниз к бункеру 4 по нисходящей спирали. Частицы пыли под действием центробежных сил осаждаются на стенке корпуса циклона. Вторичный поток имеет направление по длине конической стенки и захватывает отброшенный к стенке слой пыли, направляя его вниз к бункеру.

Пыль из бункера 4 периодически удаляется. Очищенный газовый поток покидает циклон через патрубок 3.

Критерии оценивания: полное содержательное соответствие приведенному ниже описанию.

4. Запишите порядок определения конструктивно-технологических характеристик циклона.

Приведите подробное описание

Время выполнения 25 минут.

Ожидаемый результат:

А) Определяется необходимая площадь сечения циклона, м²:

$$F = \frac{L}{\omega_{onm}},$$

где L — расход очищаемого воздуха при рабочих условиях, м³/с; ω_{onm} - оптимальная скорость в сечении корпуса циклона, м/с.

Б) Определяется диаметр циклона:

$$D_0 = \sqrt{\frac{4F}{\pi \cdot n}} \;,$$

где n — количество циклонов в группе.

- В) Рассчитанный диаметр циклона округляется до целого числа и из типоразмерного ряда выбирается циклон с ближайшим наименьшим значением диаметра (Du).
- Г) Исходя из выбранного диаметра циклона вычисляется действительная скорость воздуха в аппарате:

$$\omega_{u} = \frac{4L}{\pi n D_{u}^{2}}, \text{ m/c}.$$

Значение действительной скорости не должно отличаться от значения оптимальной скорости более чем на 25~%.

Д) Затем определяется гидравлическое сопротивление циклона:

$$P_{u} = \zeta \frac{\rho_{e} \omega_{u}^{2}}{2}$$
, Πa ,

где ζ - коэффициент гидравлического сопротивления циклона.

Критерии оценивания: полное содержательное соответствие.

Компетенции (индикаторы): ОПК-2 (ОПК-2.1, ОПК-2.2, ОПК-2.3), ОПК-3 (ОПК-3.1, ОПК-3.2, ОПК-3.3)

Экспертное заключение

Представленный фонд оценочных средств (далее - ФОС) по дисциплине «Промышленная аэродинамика» соответствует требованиям ГОС ВО.

Предлагаемые формы и средства текущего и промежуточного контроля адекватны целям и задачам реализации основной образовательной программы по направлению подготовки 01.04.03 Механика и математическое моделирование.

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы обучающегося представлены в полном объеме.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанный и представленный для экспертизы фонд оценочных средств рекомендуется к использованию в процессе подготовки магистров, по указанному направлению.

Председатель учебно-методической комиссии института транспорта и логистики

Е.И. Иванова

Лист изменений и дополнений

No	Виды дополнений и	Дата и номер протокола	Подпись (с
Π/Π	изменений	заседания кафедры	расшифровкой)
		(кафедр), на котором были	заведующего кафедрой
		рассмотрены и одобрены	(заведующих кафедрами)
		изменения и дополнения	