МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Институт технологий и инженерной механики Кафедра физики

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по учебной дисциплине

Введение в физику твердого тела

(наименование учебной дисциплины, практики)

____03.03.02 Физика_

(код и наименование направления подготовки (специальности)) «Физика»

(наименование профиля подготовки (специальности, магистерской программы); при отсутствии ставится прочерк)

Разработчик: профессор Корсунов К.А.	
ФОС рассмотрен и одобрен на заседании кафедры физика от <u>15 — 04 —</u> 2025 г., протокол № <u>6</u>	A
Заведующий кафедрой	_Корсунов К.А.

Комплект оценочных материалов по дисциплине «Введение в физику твердого тела»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа

Выберите один правильный ответ.

- 1. Какая из перечисленных структур имеет плотную упаковку атомов?
- А) простая кубическая
- Б) гранецентрированная кубическая
- В) простая ромбическая
- Г) тетрагональная объемоцентрированная

Правильный ответ: Б

Компетенция (индикаторы): ОПК-1 (ОПК-1.1)

- 2. Индекс направления в кристалле обозначается
- A) (m n p)
- \mathbb{B}) [m n p]
- B) [m n p]
- Γ) $\{m \, n \, p\}$

Правильный ответ: В

Компетенция (индикаторы): ОПК-1 (ОПК-1.1)

3. Вектор трансляции записывается в виде

A)
$$\vec{T} = m_1 [\vec{b}, \vec{c}] + m_2 [\vec{c}, \vec{a}] + m_3 [\vec{a}, \vec{b}]$$

$$\vec{\mathbf{b}}) \ \vec{T} = m_1 \vec{a} + m_2 \vec{b} + m_3 \vec{c}$$

B)
$$\vec{T} = 2\pi m_1 [\vec{b}, \vec{c}] + 2\pi m_2 [\vec{c}, \vec{a}] + 2\pi m_3 [\vec{a}, \vec{b}]$$

$$\Gamma) \vec{T} = m_1(\vec{b}, \vec{c}) + m_2(\vec{c}, \vec{a}) + m_3(\vec{a}, \vec{b})$$

Правильный ответ: Б

Компетенция (индикаторы): ОПК-1 (ОПК-1.1)

4. Количество дефектов по Шоттки зависит от температуры по закону

A)
$$n_s = N \exp\left(-\frac{E_s^2}{2kT}\right)$$

$$\mathbf{b}) \ n_s = N \exp\left(-\frac{E_s}{kT}\right)$$

B)
$$n_s = N \frac{E_s}{2kT}$$

 Γ) не зависит от температуры

Правильный ответ: Б

Компетенция (индикаторы): ОПК-1 (ОПК-1.1)

- 5. Для определения структуры кристаллов по методу Лауэ используются
- А) рентгеновское излучение со сплошным спектром
- Б) монохроматическое рентгеновское излучение
- В) оптическое излучение со сплошным спектром
- Г) монохроматическое гамма-излучение

Правильный ответ: А

Компетенция (индикаторы): ПК-1 (ПК-1.2)

- 6. Закон Гука для касательных напряжений (упругая деформация сдвига) имеет вид
 - A) $\tau = G\varphi$
 - F = Gφ²
 - B) $\tau = \frac{G}{\varphi}$
 - Γ) $\tau = G^2 \varphi$

Правильный ответ: А

Компетенция (индикаторы): ОПК-1 (ОПК-1.1)

Задания закрытого типа на установление соответствия

Установите правильное соответствие.

Каждому элементу левого столбца соответствует только один элемент правого столбца.

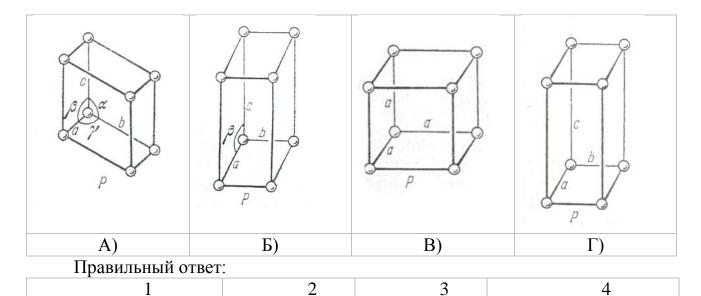
1. Установите соответствие между дефектами кристаллической решетки

1)	точечные дефекты	A)	краевая дислокация
2)	линейные дефекты	Б)	двойникование
3)	двумерные дефекты	B)	дефект по Френкелю
	Правильный ответ.		

	1	2	3
	В	A	Б

Компетенция (индикаторы): ПК-1 (ПК-1.1)

2. Установите соответствие между методом исследования структуры кристалла и используемым типом излучения:


1)	метод Лауэ	A)	моноэнергетический пучок электронов
2)	метод Дебая-Шеррера	Б)	рентгеновское излучение со
			сплошным спектром
3)	метод дифракции электронов	B)	монохроматическое рентгеновское
			излучение

Правильный ответ:

1	2	3	
Б	В	A	

Компетенция (индикаторы): ПК-1 (ПК-1.3)

- 3. Установите соответствие между названием кристаллической решетки по Браве и рисунком:
 - 1) кубическая
 - 2) ромбическая
 - 3) моноклинная
 - 4) триклинная

Компетенция (индикаторы): ПК-1 (ПК-1.1)

Задания закрытого типа на установление правильной последовательности

Б

A

Установите правильную последовательность.

Запишите правильную последовательность букв слева направо.

Γ

- 1. Установите правильную последовательность снижения симметрии в кристаллических решетках по Браве.
 - А) моноклинная

В

- Б) ромбическая
- В) кубическая
- Г) тетрагональная
- Д) триклинная

Правильный ответ: В, Г, Б, А, Д

Компетенция (индикаторы): ПК-1 (ПК-1.1)

Задания открытого типа

Задания открытого типа на дополнение

напишите пропущенное слово (сочетание).
1 кристаллы состоят из положительно и отрицательно
заряженных ионов.
Правильный ответ: ионные
Компетенция (индикаторы): ОПК-1 (ОПК-1.1)
2. Коэффициент представляет собой отношение суммарного объема атомов, приходящихся на одну элементарную ячейку, к объему этой элементарной ячейки Правильный ответ: компактности Компетенция (индикаторы): ОПК-1 (ОПК-1.1)
3. Кристаллической зоной называется семейство кристаллографических плоскостей, имеющих одну общую линию — зоны. Правильный ответ: ось
Компетенция (индикаторы): ОПК-1 (ОПК-1.1)
Задания открытого типа с кратким свободным ответом
Напишите пропущенное слово (сочетание).
1. Число дислокационных линий, пересекающих единичную площадку внутри тела, называется дислокаций. Правильный ответ: плотность / плотностью Компетенция (индикаторы): ПК-1 (ПК-1.1)
2. Некоторые твердые вещества обладают способностью образовывать не одну, а две и более кристаллические структуры, устойчивые при различных температурах и давлениях. Такое свойство твердых веществ называют
—————. Правильный ответ: полиморфизм / полиморфизмом Компетенция (индикаторы): ПК-1 (ПК-1.1)
Задания открытого типа с развернутым ответом
Получите числовой результат.
1. Определить индексы Миллера плоскости, если она отсекает отрезки
$m = 1, n = \frac{1}{2}, p = \frac{1}{3}$ на осях координат.
Привести решение.
Время выполнения – 15 мин.
Ожидаемый результат:

Индексы Миллера кристаллографической плоскости определяются их соотношения:

$$h: k: l = \frac{1}{m}: \frac{2}{n}: \frac{3}{p},$$

T.e.

$$h: k: l = \frac{1}{1}: \frac{2}{1}: \frac{3}{1},$$

Т.е. индексы Миллера (123)

Ответ: (123)

Компетенция (индикаторы): ОПК-1 (ОПК-1.2)

2. На грань некоторого кристалла под углом $\theta = 60^{\circ}$ к ее поверхности падает параллельный пучок электронов, движущихся с одинаковой скоростью. Определить скорость электронов, если они испытывают интерференционное отражение первого порядка. Расстояние d между атомными плоскостями кристаллов равно 0,2 нм. Ответ записать в м/с, до первой цифры после запятой.

Привести решение.

Время выполнения – 15 мин.

Ожидаемый результат:

Воспользуемся формулой Вульфа-Брэгга

 $2d\sin\theta = h\lambda$

Откуда
$$\lambda = \frac{2d \sin \theta}{h}$$

Воспользуемся формулой де Бройля:

$$\lambda = \frac{h}{p}$$
, T.e. $\lambda = \frac{h}{mv}$

Откуда
$$v = \frac{h}{m\lambda}$$

T.e.

$$v = \frac{h \cdot n}{m \cdot 2d \sin \theta}$$

Вычисляем

$$v = \frac{6,63 \cdot 10^{-34} \cdot 1 \cdot 2}{9,1 \cdot 10^{-31} \cdot 2 \cdot 0, 2 \cdot 10^{-9} \cdot \sqrt{3}} = 2,1 \cdot 10^6 \text{ m/c}$$

Ответ: $2,1 \cdot 10^6$ м/с

Компетенция (индикаторы): ОПК-1, ПК-1

3. Определить количество теплоты, необходимое для нагревания m=10 г поваренной соли (NaCl) на $\Delta t^0=30$ °C. Молярную массу поваренной соли принять равной $\mu=58,44$ г/моль. Молярную теплоемкость определить по закону Неймана-Коппа C=3nR. Ответ записать в Дж (округлить до целого значения).

Привести решение.

Время выполнения – 15 мин.

Ожидаемый результат:

Количество теплоты для нагревания вещества находим по формуле:

$$Q = c \cdot m \cdot \Delta t$$

Удельная теплоемкость связана молярной формулой:

$$c = \frac{C}{\mu}$$

Молярная теплоемкость находится по формуле Неймана-Коппа:

$$C = 3nR$$

Так как химическая формула NaCl, n=2, тогда

C=6R

Расчетная формула

$$Q = \frac{6R}{\mu} m\Delta t$$

Вычисляем:

$$Q = \frac{6 \cdot 8,31 \cdot 10^{-2} \cdot 30}{58,44 \cdot 10^{-3}} = 256 \, \text{Дж}$$

Ответ: 256 Дж

Компетенция (индикаторы): ОПК-1, ПК-1

Экспертное заключение

Представленный фонд оценочных средств (далее – Φ OC) по дисциплине «Введение в физику твердого тела» соответствует требованиям Φ ГОС ВО.

Предлагаемые формы и средства текущего и промежуточного контроля адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 03.03.02 Физика.

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины представлены в полном объеме.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанный и представленный для экспертизы фонд оценочных средств рекомендуется к использованию в процессе подготовки обучающихся по указанному направлению.

Председатель учебно-методической комиссии института технологий и инженерной механики

Ясуник С.Н.

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)