МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Институт технологий и инженерной механики Кафедра физики

УТВЕРЖДАЮ
Директор института технологий и инженерной механики

———————————— Могильная Е.П.

« 25 » 02 2025 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по учебной дисциплине

Современные проблемы физики

COD SEMICITIBLE II SOUTEMED CHISTIKII
(наименование учебной дисциплины, практики)
03.04.02 Физика
(код и наименование направления подготовки (специальности))
«Теоретическая и математическая физика»
(наименование профиля подготовки (специальности, магистерской программы); при отсутствии ставится прочерк)
Разработчик:
доцент Харченко Е.И.
Tap Ionic 2.11.
ФОС рассмотрен и одобрен на заседании кафедры физики
от <u>15 2025</u> г., протокол № <u>6</u>
AT)
Заведующий кафедрой Корсунов К.А

Комплект оценочных материалов по дисциплине «Современные проблемы физики»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа

1. Выберите один правильный ответ

Какая энергия выделяется при термоядерной реакции ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}H + {}_{0}^{1}$ n? Дефект масс реакции $\Delta m = 0{,}01851$ а.е.м.

 $(1 \text{ a.e.м.} = 1,66 \cdot 10^{-27} \text{ кг})$. Ответ выразить в Дж.

- А) 0,14·10-11 Дж
- Б) 0,28·10⁻¹¹ Дж
- В) 0,56·10-11 Дж
- Г) 0,07·10-11 Дж
- Д) 5,021·10-11 Дж

Правильный ответ: Б

Компетенции (индикаторы): ОПК-1 (ОПК-1.1, ОПК-1.2)

2. Выберите один правильный ответ

Укажите основное уравнение термодинамики сверхпроводников

A)
$$S_s(0,T) - S_n(0,T) = \frac{H_c}{4\pi} \frac{dH_c}{dT}$$
,

Б)
$$C_s - C_n = -\frac{T_c}{4\pi} \left(\frac{dH_c}{dT}\right)_{H_c=0}^2$$
.

B)
$$G_n(H_c,T) - G_s(0,T) = \frac{H_c^2}{8\pi}$$

$$\Gamma) C_s - C_n = \frac{T}{4\pi} \left[H_c \frac{d^2 H_c}{dT^2} + \left(\frac{dH_c}{dT} \right)^2 \right].$$

Д)
$$\Delta \left(\frac{\partial M}{\partial H}\right)_T = -\frac{1}{4\pi}$$

Правильный ответ: В

Компетенции (индикаторы): ОПК-1 (ОПК-1.1, ОПК-1.2)

3. Выберите один правильный ответ

Укажите механизм обмена для электромагнитного взаимодействия

- А) Промежуточными бозонами
- Б) Фотонами
- В) Глюонами
- Г) Гравитонами

Правильный ответ: Б

Компетенции (индикаторы): ПК-1 (ПК-1.1, ПК-1.2, ПК-1-3, ПК-1-4)

4. Выберите один правильный ответ

Укажите механизм обмена для сильного взаимодействия

- А) Промежуточными бозонами
- Б) Фотонами
- В) Глюонами
- Г) Гравитонами

Правильный ответ: В

Компетенции (индикаторы): ПК-1 (ПК-1.1, ПК-1.2, ПК-1-3, ПК-1-4)

5. Выберите один правильный ответ

Укажите механизм обмена для слабого взаимодействия

- А) Промежуточными бозонами
- Б) Фотонами
- В) Глюонами
- Г) Гравитонами

Правильный ответ: А

Компетенции (индикаторы): ПК-1 (ПК-1.1, ПК-1.2, ПК-1-3, ПК-1-4)

6. Выберите один правильный ответ

Закон сохранения, нарушающийся в сильных взаимодействиях:

- А) странность
- Б) очарование
- В. изоспин
- Г) не существует

Правильный ответ: Г

Компетенции (индикаторы): ПК-1 (ПК-1.1, ПК-1.2, ПК-1-3, ПК-1-4)

7. Выберите один правильный ответ

Закон сохранения, не нарушающийся в электрослабом взаимодействии:

- А) изоспин
- Б) барионный заряд
- B) Bottom
- Г) не существует

Правильный ответ: Б

Компетенции (индикаторы): ОПК-1 (ОПК-1.1, ОПК-1.2)

8. Выберите один правильный ответ

Распад фотона на e^+ и e^- в вакууме невозможен вследствие:

- А) нарушения закона сохранения чётности
- Б) нарушения законов сохранения энергии и импульса

- В) нарушения закона сохранения лептонного заряда
- Г) процесс возможен

Правильный ответ: Б

Компетенции (индикаторы): ОПК-1 (ОПК-1.1, ОПК-1.2)

9. Выберите один правильный ответ

Однофотонная аннигиляция электрон-позитронной пары $e^+ + e^- \to \gamma$ невозможна вследствие:

- А) нарушения закона сохранения чётности
- Б) нарушения закона сохранения лептонного заряда
- В) нарушения законов сохранения энергии и импульса
- Г) процесс возможен

Правильный ответ: В

Компетенции (индикаторы): ПК-1 (ПК-1.1, ПК-1.2, ПК-1-3, ПК-1-4)

10. Выберите один правильный ответ

В реакции термоядерного синтеза два ядра изотопов водорода ${}^{2}_{1}$ H и ${}^{3}_{1}$ H соединяются в одно ядро ${}^{4}_{2}$ He . Какая частица при этом испускается?

- А) протон
- Б) электрон
- В) нейтрон
- Γ) γ -квант
- Д) α -частица

Правильный ответ: В

Компетенции (индикаторы): ПК-1 (ПК-1.1, ПК-1.2, ПК-1-3, ПК-1-4)

11. Выберите все правильные варианты ответов

Укажите реакции термоядерного синтеза

A)
$${}_{7}^{14}\text{N} + {}_{2}^{4}\text{He} \rightarrow {}_{8}^{17}\text{O} + {}_{1}^{1}p$$

2
₁H + 3 ₁H → 4 ₂He + 1 ₀n

B)
$${}^{62}_{28}\text{Ni} + {}^{1}_{1}\text{H} \rightarrow {}^{63}_{29}\text{Cu} + \gamma$$

$$\Gamma$$
) ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{3}He + {}_{0}^{1}n$

Д)
$${}_{8}^{16}\text{O} + {}_{1}^{2}\text{H} \rightarrow {}_{9}^{17}\text{F} + {}_{0}^{1}n$$

Правильный ответ: Б, Г

Компетенции (индикаторы): ПК-1 (ПК-1.1, ПК-1.2, ПК-1-3, ПК-1-4)

12. Выберите все правильные варианты ответов

Какие из приведенных фазовых переходов относятся к переходам второго рода?

А) плавление

- Б) превращение гелия I в сверхтекучий гелий II
- В) конденсация
- Г) парообразование
- Д) фазовый переход ферромагнетик-парамагнетик

Правильный ответ: Б, Д

Компетенции (индикаторы): ПК-1 (ПК-1.1, ПК-1.2, ПК-1-3, ПК-1-4)

13. Выберите все правильные варианты ответов

Укажите свойства фазовых переходов второго рода:

- А) Поглощение или выделение скрытой теплоты перехода
- Б) Отсутствует скрытая теплота перехода
- В) Скачкообразный характер появления новой фазы
- Г) появление новой фазы не носит скачкообразный характер
- Д) Различие плотностей фаз

Правильный ответ: Б, Г

Компетенции (индикаторы): ОПК-1 (ОПК-1.1, ОПК-1.2)

Задания закрытого типа на установление соответствия

Установите правильное соответствие.

1. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Физическая величина		Математическое выражение		
1)	Критерий Лоусона для дейтерий-	A)	$Q_{\text{CUHT}} = (\varepsilon_A - \varepsilon_{12})A.$		
	тритиевого термоядерного синтеза				
2)	Критерий Лоусона для дейтерий-	Б)	$Q = (M_{in} - M_{out})c^2 = T_{out} - T_{in}$.		
	дейтериевого термоядерного				
	синтеза				
3)	Энергетический выход ядерной	B)	$T_0 \approx 2 \cdot 10^8 \mathrm{K} , \ n\tau > 10^{20}$		
	реакции				
4)	Энергия реакции синтеза	Γ)	$T_0 \cong 10^9 \mathrm{K} , n\tau > 10^{22} .$		
			, 0		

Правильный ответ:

1	2	3	4
В	Γ	Б	A

Компетенции (индикаторы): ПК-1 (ПК-1.1, ПК-1.2, ПК-1-3, ПК-1-4)

2. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

Физическая величина	Математическое выражение

1)	Энтропия	A)	$\alpha = \frac{1}{\upsilon_0} \left(\frac{\partial \upsilon}{\partial T} \right)_P$
2)	Удельный объем	Б)	$\gamma = -\frac{1}{\upsilon} \left(\frac{\partial \upsilon}{\partial p} \right)_{T}$
3)	Коэффициент теплового расширения	B)	$\upsilon = \left(\frac{\partial \mu}{\partial p}\right)_{T}$
4)	Изотермический коэффициент сжатия вещества	Γ)	$s = -\left(\frac{\partial \mu}{\partial T}\right)_{P}$

Правильный ответ:

1	2	3	4
Γ	В	A	Б

Компетенции (индикаторы): ПК-1 (ПК-1.1, ПК-1.2, ПК-1-3, ПК-1-4)

3. Установите для вида взаимодействия соответствующие константы взаимодействия. Каждому элементу левого столбца соответствует только один элемент правого столбца

	Вид взаимодействия		Константа взаимодействия
1)	Сильное взаимодействие	A)	10^{-38}
2)	Электромагнитное взаимодействие	Б)	110
3)	Слабое взаимодействие	B)	$1/137 \approx 10^{-2}$
4)	Гравитационное взаимодействие	Γ)	$10^{-10}10^{-14}$

Правильный ответ:

Компетенции (индикаторы): ПК-1 (ПК-1.1, ПК-1.2, ПК-1-3, ПК-1-4)

Задания закрытого типа на установление правильной последовательности

- 1. Расположите фундаментальные взаимодействия по убыванию их интенсивности:
 - А) электромагнитное
 - Б) гравитационное
 - В) сильное
 - Г) слабое

Правильный ответ: В, А, Г, Б

Компетенции (индикаторы): ОПК-1 (ОПК-1.1, ОПК-1.2)

Задания открытого типа

Задания открытого типа на дополнение

1.	. Напишите пропущенное слово (словосочетание)
	– частицы, участвующие в электромагнитных и слабых
взаимод	действиях
Π	равильный ответ: Лептоны
К	омпетенции (индикаторы): ОПК-1 (ОПК-1.1, ОПК-1.2)
2.	. Напишите пропущенное слово (словосочетание).
	– частицы, участвующие в сильных, электромагнитных и
слабых	взаимодействиях
Π	равильный ответ: Адроны
К	омпетенции (индикаторы): ПК-1 (ПК-1.1, ПК-1.2, ПК-1-3, ПК-1-4)

Задания открытого типа с кратким свободным ответом

Напишите пропущенное слово (словосочетание).

1. Напишите пропущенное слово (словосочетание).

Фазовые превращения, при которых первые производные химического потенциала не имеют скачка, называются _____

Правильный ответ: фазовым переходом второго рода / фазовыми превращениями второго рода

Компетенции (индикаторы): ПК-1 (ПК-1.1, ПК-1.2, ПК-1-3, ПК-1-4)

Задания открытого типа с развернутым ответом

1. Решите задачу. Приведите полное решение задачи.

Определить энергию Q ядерной реакции ${}^9{\rm Be}(n,\gamma){}^{10}{\rm Be}$, если известно, что энергия связи E_{cs} ядра ${}^9{\rm Be}$ равна 58,16 МэВ, а ядра ${}^{10}{\rm Be}$ —64,98 МэВ.

Время выполнения – 15 мин.

Ожидаемый результат:

Решение. Запишем реакцию в развернутом виде:

$${}^{9}_{4}\text{Be} + n \rightarrow {}^{10}_{4}\text{Be} + \gamma$$

Энергия реакции

$$Q = [(m_{_{^{10}Be}} + m_{_{n}}) - (m_{_{^{10}Be}})]c^{2}$$
 (1)

Согласно формуле для энергии связи

$$E_{ce} = [Zm_p + (A-Z)m_n - m]c^2$$

для масс 9 Ве и 10 Ве получаем

$$m_{_{^{9}\text{Be}}} = 4m_{_{p}} + 5m_{_{n}} - \frac{E_{_{CB}}(^{9}\text{Be})}{c^{^{2}}},$$

$$m_{^{10}\text{Be}} = 4m_p + 6m_n - \frac{E_{ce}(^{10}\text{Be})}{c^2}.$$

После подстановки этих выражений в формулу (1) и элементарных преобразований получим

$$Q = E_{cs}(^{10}\text{Be}) - E_{cs}(^{9}\text{Be}).$$

Вычисляем

$$Q = 64,98 \text{ M} \cdot \text{B} - 58,16 \text{ M} \cdot \text{B} = 6,82 \text{M} \cdot \text{B}$$

Ответ: $Q = E_{cs}(^{10}\text{Be}) - E_{cs}(^{9}\text{Be}) = 6,82\text{M}3\text{B}$

Компетенции (индикаторы): ПК-1 (ПК-1.1, ПК-1.2, ПК-1-3, ПК-1-4)

2. Решите задачу. Приведите полное решение задачи.

Вычислить с помощью табличных значений масс атомов энергию на один нуклон, которая выделяется при протекании термоядерной реакции 6 Li + 2 H \rightarrow 2^4 He .. $M_{_{^6\text{I}\,\text{i}}}$ = 6,01513 a.e.м, $M_{_{^2\text{H}}}$ = 2,01410 a.e.м,

$$M_{_{^4}\text{He}} = 4,0026 \text{ a.e.m}$$

Время выполнения – 15 мин.

Ожидаемый результат:

Решение. Запишем реакцию в развернутом виде:

$$^{6}\text{Li} + ^{2}\text{H} \rightarrow 2^{4}\text{He}$$

Энергия реакции

$$Q = [(\mathbf{M}_{_{_{_{_{_{_{1}}}}}}} + \mathbf{M}_{_{_{_{_{_{_{_{1}}}}}}}}) - 2 \cdot \mathbf{M}_{_{_{_{_{_{_{_{_{1}}}}}}}}] \cdot c^{2}.$$

Вычисляем

$$(M_{6_{Li}} + M_{2_{H}}) - 2 \cdot M_{4_{He}} = [(6,01513 + 2,01410) - 2 \cdot 4,0026] = 0,02403 \text{ a.e.m.}$$

 $Q = 0,02403 \cdot 931 = 22,37 \text{ MpB}.$

Энергия на один нуклон

$$\frac{Q}{N} = \frac{22,37}{8} = 2,796 \frac{\text{МэВ}}{\text{нуклон}}.$$

Ответ: $2,796 \frac{\text{МэВ}}{\text{нуклон}}$

Компетенции (индикаторы): ПК-1 (ПК-1.1, ПК-1.2, ПК-1-3, ПК-1-4)

3. Решите задачу. Приведите полное решение задачи.

Покоящийся π^0 мезон распадается на два γ -кванта. Учитывая, что масса пиона равна 264,1 m_e (m_e = 0,511 МэВ — масса электрона), определите энергию каждого из возникших γ -квантов.

Время выполнения – 15 мин.

Ожидаемый результат:

Решение. Процесс распада π^0 -мезона происходит по схеме

$$\pi^0 \rightarrow 2\gamma$$
.

Учитывая, что кинетическая энергия π^0 -мезона равна нулю, полная энергия

$$E = m_{\pi}c^2.$$

Согласно закону сохранения энергии,

$$m_{\pi}c^2=2\varepsilon$$
,

откуда энергия γ -кванта

$$\varepsilon = \frac{m_{\pi}c^2}{2}.$$

Подставляем значения

$$\varepsilon = \frac{m_{\pi}c^2}{2} = \frac{264,1 \cdot m_e c^2}{2} = \frac{264,1 \cdot 0,511}{2} = 67,48 \text{ M} \cdot \text{B}.$$

Otbet: $\varepsilon = \frac{m_{\pi}c^2}{2} = 67,48 \text{ M} \cdot \text{B}.$

Компетенции (индикаторы): ПК-1 (ПК-1.1, ПК-1.2, ПК-1-3, ПК-1-4)

4. Решите задачу. Приведите полное решение задачи.

Фотон с энергией $\varepsilon = 3$ МэВ в поле тяжелого ядра превратился в пару электрон — позитрон. Принимая, что кинетическая энергия частиц одинакова, определить кинетическую энергию T каждой частицы. $m_e = 0,511$ МэВ

Время выполнения – 15 мин.

Ожидаемый результат:

Решение. Процесс превращения фотона в пару электрон – позитрон происходит по схеме

$$\gamma \rightarrow {}^{0}_{-1}e + {}^{0}_{+1}e$$

и подчиняется законам сохранения энергии и импульса.

Запишем закон сохранения энергии для данного превращения

$$\varepsilon = m_e c^2 + m_e c^2 + 2T.$$

Отсюда кинетическая энергия каждой частицы

$$T = \frac{\varepsilon - 2m_e c^2}{2} = \frac{3 - 2 \cdot 0.511}{2} = 0.989 \text{ M} \cdot \text{B}.$$

Ответ: $T = \frac{\varepsilon - 2m_e c^2}{2} = 0,989$ МэВ.

Компетенции (индикаторы): ПК-1 (ПК-1.1, ПК-1.2, ПК-1-3, ПК-1-4)

Экспертное заключение

Представленный фонд оценочных средств (далее – ФОС) по дисциплине «Современные проблемы физики» соответствует требованиям ФГОС ВО.

Предлагаемые формы и средства текущего и промежуточного контроля адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 03.04.02 Физика.

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины представлены в полном объеме.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанный и представленный для экспертизы фонд оценочных средств рекомендуется к использованию в процессе подготовки обучающихся по указанному направлению.

Председатель учебно-методической комиссии института технологий и инженерной механики

Ясуник С.Н.

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)