МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля»

Институт строительства, архитектуры и жилищно-коммунального хозяйства
Кафедра вентиляции, теплогазо- и водоснабжения

УТВЕРЖДАЮ

Директор института строительства, архитектуры и жилищно-коммунального хозяйства

д.т.н., проф. Анаримчук Н.Д.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«ПРОЕКТИРОВАНИЕ И РАСЧЕТ СИСТЕМ ВОДОСНАБЖЕНИЯ И ВОДООТВЕДЕНИЯ»

По направлению подготовки 08.04.01 Строительство

Магистерская программа «Водоснабжение и водоотведение городов и промышленных предприятий»

Лист согласования рабочей программы учебной дисциплины

Рабочая программа учебной дисциплины «Проектирование и расчет систем водоснабжения и водоотведения» по направлению подготовки 08.04.01 Строительство. – 47 с.

Рабочая программа учебной дисциплины «Проектирование и расчет систем водоснабжения и водоотведения» составлена с учетом Федерального государственного образовательного стандарта высшего образования по направлению подготовки 08.04.01 «Строительство», утвержденного приказом Министерства образования и науки Российской Федерации от «31» мая 2017 года № 482.

составители:

к.т.н., доцент кафедры вентиляции, теплогазо- и водоснабжения Богатырёва Л.Ю. ст. препод. кафедры вентиляции, теплогазо- и водоснабжения Шевцова Т.Е.

Рабочая программа учебной дисциплины утверждена вентиляции, теплогазо- и водоснабжения « 2 20 23 го	на заседании кафедры да, протокол №
Заведующий кафедрой ВТГВ Леку	_/Андрийчук Н.Д./
Переутверждена: «»20 года, протокол № _	
Рекомендована на заседании учебно-методической строительства, архитектуры и жилищно-коммунального хозяйства «13 » _ 04 _ 20 <u>23</u> года, протокол № <u>8</u>	комиссии института
Председатель учебно-методической комиссии института ИСА и ЖКХ	/Ремень В.И./

[©] Богатырёва Л.Ю., 2023 год

[©] ФГБОУ ВО «ЛГУ им. В. ДАЛЯ», 2023 год

Структура и содержание дисциплины

1. Цели и задачи дисциплины, ее место в учебном процессе

Цель изучения дисциплины - формирование представления о правильном понимании задач, возникающих при разработке, монтаже и эксплуатации современных систем водоснабжения и водоотведения наружных сетей, оборудования зданий и сооружений, экологической и экономической ситуации, пути рационального использования водных ресурсов.

Задачи:

- -формирование общего представления о современных системах ВВ;
- -научить студента умению использовать теоретические положения и методы расчета в процессе расчета, проектирования и эксплуатации современных систем ВВ городов и промышленных предприятий.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина «Проектирование и расчет систем водоснабжения и водоотведения» относится к части, формируемой участниками образовательных отношений (дисциплины по выбору) блок Б1.

Содержание дисциплины «Проектирование и расчет систем водоснабжения и водоотведения» основывается на базе дисциплин: городские, поселковые и внутридомовые системы водоснабжения и водоотведения. Является основой для изучения следующих дисциплин: энергосберегающие технологии в системах ВВ, современная методология расчетов систем ВВ, основы современных систем ВВ, научно-исследовательская работа.

3. Требования к результатам освоения содержания дисциплины

Код и наименование	Индикаторы достижений	Перечень планируемых
	компетенции (по реализуемой	''
компетенции	`	результатов
	дисциплине)	
ОПК-3. Способен ставить	ОПК-3.1. Формулирование	Знать: методы решения,
и решать научно-	научно-технической задачи в	установление ограничений к
технические задачи в	сфере профессиональной	решениям научно-
области строительства,	деятельности на основе знания	технической задачи в сфере
строительной индустрии	проблем отрасли и опыта их	профессиональной
и жилищно-	решения	деятельности на основе
коммунального хозяйства	ОПК-3.2. Сбор и	нормативно-технической
на основе знания проблем	систематизация информации	документации и знания
отрасли и опыта их	об опыте решения научно-	проблем отрасли и опыта их
решения	технической задачи в сфере	решения.
	профессиональной	<i>Уметь:</i> - формулировать
	деятельности	научно-технической задачи
	ОПК-3.3. Выбор методов	в сфере профессиональной
	решения, установление	деятельности на основе
	ограничений к решениям	знания проблем отрасли и

научно- технической задачи в сфере профессиональной деятельности на основе нормативно-технической документации и знания проблем отрасли и опыта их решения ОПК-3.4. Составление перечней работ и ресурсов, необходимых для решения научно- технической задачи в сфере профессиональной деятельности ОПК-3.5. Разработка и обоснование выбора варианта решения научно-технической задачи в сфере профессиональной деятельности

опыта их решения,
- собирать и
систематизировать
информации об опыте
решения научнотехнической задачи в сфере
профессиональной
деятельности.

Владеть: - навыком составления перечней работ и ресурсов, необходимых для решения научнотехнической задачи в сфере профессиональной деятельности, -навыком разработки и обоснование выбора варианта решения научнотехнической задачи в сфере профессиональной деятельности.

ПК-3. Способность осуществлять и контролировать обоснование технологических, технических, конструктивных решений систем и сооружений водоснабжения и водоотведения

ПК-3.1 Формирование исходных данных для выполнения расчётного обоснования системы водоснабжения (водоотведения) ПК-3.2 Выбор и обоснование технологических решений в области очистки природных вод (или очистки сточных вод, или обработки осадков) ПК-3.3 Выбор метода и методики расчётного обоснования технических решений элементов системы водоснабжения (водоотведения) ПК-3.4 Выполнение и контроль выполнения гидравлических расчетов сооружений водоснабжения (водоотведения) ПК-3.5 Выполнение и контроль выполнения прочностных расчётов трубопроводов при проектировании системы водоснабжения ПК-3.6 Оценка основных технико-экономических показателей системы

Знать порядок формирования исходных данных для выполнения расчётного обоснования системы водоснабжения (водоотведения)

Уметь: – делать выбор и обоснование технологических решений в области очистки природных вод (или очистки сточных вод, или обработки осадков); -выбирать метод и методики расчётного обоснования технических решений элементов системы водоснабжения (водоотведения); - выполнять и контролировать выполнение гидравлических расчетов сооружений водоснабжения (водоотведения); - выполнять и контролировать выполнение прочностных расчётов трубопроводов при проектировании системы водоснабжения

Владеть навыком оценки

	водоснабжения	основных технико-
	(водоотведения)	экономических показателей
		системы водоснабжения
		(водоотведения)
ПК-4.	ПК-4.1 Выбор нормативно-	Знать нормативно-
Способность	технических документов,	технические документы,
организовывать	регламентирующих вопросы	регламентирующие вопросы
деятельность по	эксплуатации систем	эксплуатации систем
эксплуатации,	водоснабжения	водоснабжения
техническому	(водоотведения)	(водоотведения)
обслуживанию и ремонту	ПК-4.2 Разработка	Уметь:
объектов систем	нормативно-технической	-разрабатывать нормативно-
водоснабжение и	документации по	техническую документацию
водостаожение и водоотведения	эксплуатации систем	по эксплуатации систем
водоотведения	водоснабжения	водоснабжения
	(водостведения)	(водоотведения);
	ПК-4.3 Разработка	- разрабатывать
	производственной программы	
		производственную
	организации или	программу организации или
	подразделения	подразделения
	осуществляющих	осуществляющих
	эксплуатацию систем	эксплуатацию систем
	водоснабжения	водоснабжения
	(водоотведения)	(водоотведения);
	ПК-4.4 Контроль условий и	- контролировать условия и
	показателей эксплуатации	показатели эксплуатации
	оборудования системы	оборудования системы
	водоснабжения	водоснабжения
	(водоотведения)	(водоотведения);
	ПК-4.5 Выявление	-выявлять технические
	технических неисправностей	неисправности элементов
	элементов системы	системы водоснабжения
	водоснабжения	(водоотведения);
	(водоотведения)	-выбирать метод, порядка и
	ПК-4.6 Выбор метода, порядка	состава аварийно-
	и состава аварийно-	восстановительных работ;
	восстановительных работ	-выполнять технический и
	ПК-4.7 Технический и	технологический контроль
	технологический контроль	выполнения работ по
	выполнения работ по	эксплуатации и ремонту
	эксплуатации и ремонту	объекта водоснабжения
	объекта водоснабжения	(водоотведения)
	(водоотведения)	Владеть навыком оценки
	ПК-4.8 Оценка коррупционных	коррупционных рисков в
	рисков в производственной	производственной
	деятельности в сфере	деятельности в сфере
	водоснабжения и	водоснабжения и
	водоотведения, разработка мер	водоотведения, разработка
	противодействия коррупции	мер противодействия
		коррупции

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

Dura vinofino i noficera	Объем час	ов (зач. ед.)
Вид учебной работы	Очная форма	Заочная форма
Объем учебной дисциплины (всего)	108	108
	(3 зач. ед)	(3 зач. ед)
Обязательная аудиторная учебная нагрузка дисциплины (всего)	48	12
в том числе:		
Лекции	24	6
Семинарские занятия	-	
Практические занятия	24	6
Лабораторные работы	-	-
Курсовая работа (курсовой проект)	-	-
Другие формы и методы организации образовательного процесса (расчетно-графические работы, индивидуальные задания и т.п.)	+	+
Самостоятельная работа студента (всего)	60	96
Форма аттестации	экзамен	экзамен

4.2. Содержание разделов дисциплины

Тема 1. ВВЕДЕНИЕ

Цели и задачи курса «Проектирования и расчет систем ВиВ». Стандарты, системы проектной документации. Структура и производственная деятельность проектных организаций. Состав, порядок разработки проектной документации. Разработка проектов для промышленных объектов

Тема 2. ПРОЕКТИРОВАНИЕ СИСТЕМ ВОДОСНАБЖЕНИЯ

Проектирование систем водоснабжения. Нормы водопотребления и источник водоснабжения. Схемы и системы водоснабжения. Водоподготовка. Осветление и обесцвечивание воды. Обеззараживание и дополнительная обработка воды. Обработка промывных вод и осадка станций водоподготовки. Помещения станций водоподготовки. Высотное расположение сооружений на станциях водоподготовки. Водоводы, водопроводные сети и сооружения на них. Ёмкости для хранения воды. Зоны санитарной охраны. Охлаждающие системы оборотного водоснабжения. Оборудование, арматура и трубопроводы. Строительные решения и конструкции зданий и сооружений.

Тема 3. ПРОЕКТИРОВАНИЕ СИСТЕМ ВОДООТВЕДЕНИЯ

Схемы и системы канализации промышленных предприятий. Канализационные сети и сооружения на них. Очистные сооружения. Сооружения для механической очистки сточных вод. Сооружения для биологической очистки сточных вод. Обеззараживание сточных вод. Сооружения для глубокой очистки сточных вод. Сооружения для физико-химической очистки сточных вод. Сооружения для обработки осадков сточных вод.

Тема 4. РАЗРАБОТКА, СОГЛАСОВАНИЕ И УТВЕРЖДЕНИЕ ПРОЕКТОВ ВОДОСНАБЖЕНИЯ И ВОДООТВЕДЕНИЯ

Порядок разработки, согласования и утверждения проектнойдокументации. Состав и содержание проектной документации. Управление производством, предприятием и организация условий и охраны труда рабочих и служащих. Организация строительства. Состав проекта на строительство жилищно-гражданских объектов

4.3. Лекции

№ п/п	Название темы	Объем часов	
		Очная форма	Заочная форма
1	Введение	2	1
2	Проектирование систем водоснабжения	8	2
3	Проектирование систем водоотведения	8	2
4	Разработка, согласование и утверждение проектов водоснабжения и водоотведения	6	1
Итого:		24	6

4.4. Практические занятия

№ п/п	Название темы	Объе	м часов
		Очная Заочная форма	
1	Введение	2	1
2	Проектирование систем водоснабжения	8	2
3	Проектирование систем водоотведения	8	2
4	Разработка, согласование и утверждение проектов водоснабжения и водоотведения	6	1
Итого:	1 1 1	24	6

4.5 Лабораторные работы не предполагаются учебным планом.

4.6. Самостоятельная работа студентов

№	Название темы	Вид СРС	Объем часов	
п/п			Очная форма	Заочная форма
1	Введение	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний и умений.	6	6
2	Проектирование систем водоснабжения	Подготовка к практическим занятиям, к текущему и промежуточному	18	30

		контролю знаний и умений.		
3	Проектирование систем водоотведения	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний и умений.	18	30
4	Разработка, согласование и утверждение проектов водоснабжения и водоотведения	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний и умений.	18	30
Итог	TO:		60	96

4.7 Расчетно-графическая работа

Темы расчетно-графических работ:

- 1. Определить расходы на водопотребление населенного пункта.
- 2. Составить график водопотребеления наибольшего расхода воды и определить режим работы насосной станции.
- 3. Определить ёмкость бака водонапорной башни и ёмкость резервуара насосной станции.
- 4. Запроектировать бытовую канализационную сеть, объединенную с производственной, для полной раздельной системы водоотведения.

5. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

- традиционные объяснительно-иллюстративные технологии, которые обеспечивают доступность учебного материала для большинства студентов, системность, отработанность организационных форм и привычных методов, относительно малые затраты времени;
- технологии проблемного обучения, направленные на развитие познавательной активности, творческой самостоятельности студентов и предполагающие последовательное и целенаправленное выдвижение перед студентом познавательных задач, разрешение которых позволяет студентам активно усваивать знания (используются поисковые методы; постановка познавательных задач);
- технологии развивающего обучения, позволяющие ориентировать учебный процесс на потенциальные возможности студентов, их реализацию и развитие;
- технологии концентрированного обучения, суть которых состоит в создании максимально близкой к естественным психологическим особенностям человеческого восприятия структуры учебного процесса и

которые дают возможность глубокого и системного изучения содержания учебных дисциплин за счет объединения занятий в тематические блоки;

- технологии модульного обучения, дающие возможность обеспечения гибкости процесса обучения, адаптации его к индивидуальным потребностям и особенностям обучающихся (применяются, как правило, при самостоятельном обучении студентов по индивидуальному учебному плану);
- технологии дифференцированного обучения, обеспечивающие возможность создания оптимальных условий для развития интересов и способностей студентов, в том числе и студентов с особыми образовательными потребностями, что позволяет реализовать в культурно-образовательном пространстве университета идею создания равных возможностей для получения образования
- технологии активного (контекстного) обучения, с помощью которых осуществляется моделирование предметного, проблемного и социального содержания будущей профессиональной деятельности студентов (используются активные и интерактивные методы обучения) и т.д.

Максимальная эффективность педагогического процесса достигается путем конструирования оптимального комплекса педагогических технологий и (или) их элементов на личностно-ориентированной, деятельностной, диалогической основе и использования необходимых современных средств обучения.

6. Учебно-методическое и программно-информационное обеспечение дисциплины:

а) основная литература:

- 1. Назаров И.А. Справочник проектировщика. Водоснабжение населённых мест и промышленных предприятий. М.: Стройиздат, 1998. 588 с. https://www.studmed.ru/nazarov-ia-vodosnabzhenie-naselennyh-mesti-promyshlennyh-predpriyatiy-spravochnik-proektirovschika_b5e021f98f7.html
- 2. Лихачев Н.И., Ларин И.И., Хаскин С.А. и др. Канализация населенных мест и промышленных предприятий Справочник проектировщика. Канализация населённых мест и промышленных предприятий. М.: Стройиздат, 1997. 639 с. https://www.studmed.ru/lihachev-ni-larin-ii-haskin-sa-i-dr-kanalizaciya-naselennyh-mest-i-promyshlennyh-predpriyatiy_04a66828a12.html
- 3. Арканова И.А., Авдин В.В. Основы проектирования систем ВиВ: Учебное пособие. Челябинск: Изд-во ЮУрГУ. 2003. 47 с. http://window.edu.ru/catalog/pdf2txt/633/47633/23591?p_page=1
- 4. Антоненко И.В., Васильев В.И., Сперанский В.С. Основы проектирования систем водоснабжения и водоотведения Учебное пособие для выполнения курсового проекта. Челябинск, ЮУрГУ, 2006. 47c. https://www.studmed.ru/antonenko-iv-vasilev-vi-speranskiy-vs-osnovy-proektirovaniya-sistem-vodosnabzheniya-i-vodootvedeniya_ae354ff3f5e.html

б) дополнительная литература:

- 1. СНиП 2.04.03-85. Канализация. Наружные сети и сооружения. М.: Стройиздат, 1986.
- 2. СНиП 2.04.02-84. Водоснабжение. Наружные сети и сооружения. М.: Стройиздат, 1986.
- 2. СНиП 2.04.03-85*. Канализация. Наружные сети и сооружения. М.: ЦИТП Гос \neg строя СССР, 1997. 72 с.
- 3. СНиП 11-01-95. Инструкция о порядке разработки, согласования, утверждения и составе проектной документации на строительство предприятий, зданий и сооружений. М.: Изд-во стандартов, 1995. 18 с.

в) методические указания:

- 1. Андрийчук Н.Д. Методические указания для практических и самостоятельных работ по дисциплине «Проектирование и расчет систем водоснабжения и водоотведения» для студентов профессионального уровня подготовки магистр по направлению подготовки 08.04.01 «Строительство» / Н.Д. Андрийчук, Л.Ю. Богатырёва. Луганск.: ГОУ ВПО ЛНУ им. В. Даля, 2017. 15 с.
- 2. Пилавов М.В. Методические указания для курсовых работ по дисциплине «Проектирование и расчет систем водоснабжения и водоотведения» для студентов профессионального уровня подготовки магистр по направлению подготовки 08.04.01 «Строительство» / М.В. Пилавов, Л.Ю. Богатырёва. Луганск.: ГОУ ВПО ЛНУ им. В. Даля, 2017. 15 с.

г) интернет-ресурсы:

- 1. Министерство образования и науки Российской Федерации http://минобрнауки.pф/
- 2. Федеральная служба по надзору в сфере образования и науки http://obrnadzor.gov.ru/
- 3. Министерство образования и науки Луганской Народной Республики https://minobr.su
 - 4. Народный совет Луганской Народной Республики https://nslnr.su
- 5.Портал Федеральных государственных образовательных стандартов высшего образования http://fgosvo.ru
 - 6. Федеральный портал «Российское образование» http://www.edu.ru/
- 7. Информационная система «Единое окно доступа к образовательным ресурсам» http://window.edu.ru/
- 8. Федеральный центр информационно-образовательных ресурсов http://fcior.edu.ru/

Электронные библиотечные системы и ресурсы

- 9. Электронно-библиотечная система «Консультант студента» http://www.studentlibrary.ru/cgi-bin/mb4x
- 10. Электронно-библиотечная система «StudMed.ru» https://www.studmed.ru

Информационный ресурс библиотеки образовательной организации

- 11. Научная библиотека имени А. Н. Коняева http://biblio.dahluniver.ru/
- 12. Научно-техническая библиотека ИСА и ЖКХ

7. Материально-техническое обеспечение дисциплины

Освоение дисциплины «Проектирование и расчет систем водоснабжения и водоотведения» предполагает использование академических аудиторий, соответствующих действующим санитарным и противопожарным правилам и нормам.

Прочее: рабочее место преподавателя, оснащенное компьютером с доступом в Интернет (при необходимости добавить специальное оборудование, которым оснащена академическая аудитория).

Программное обеспечение:

Функциональное назначение	Бесплатное программное обеспечение	Ссылки	
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice	
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu	
Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx	
Браузер Орега		http://www.opera.com	
Почтовый клиент	Mozilla Thunderbird	http://www.mozilla.org/ru/thunderbird	
Файл-менеджер	Far Manager	http://www.farmanager.com/download.php	
Архиватор	7Zip	http://www.7-zip.org/	
Графический редактор	GIMP (GNU Image Manipulation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP	
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator	
Аудиоплейер	VLC	http://www.videolan.org/vlc/	

8. Оценочные средства по дисциплине

Паспорт оценочных средств по учебной дисциплине «Проектирование и расчет систем водоснабжения и водоотведения»

Перечень компетенций (элементов компетенций), формируемых в результате освоения учебной дисциплины (модуля) или практики

№	Код	Формулировка	Индикаторы	Контролируемые	Этапы
Π/	контролируемо	контролируемой	достижений	темы	формировани
П	й	компетенции	компетенци	учебной	Я
	компетенции	·	и (по	дисциплины,	(семестр
			реализуемой	практики	изучения)
			дисциплине)		
1	ОПК-3	Способен	ОПК-3.1	Тема 1.	2
		ставить и решать	ОПК-3.2	Введение	
		научно-	ОПК-3.3	Тема 2.	2
		технические задачи в области	ОПК-3.4	Проектирование	
		строительства,	ОПК-3.5	систем	
		строительной		водоснабжения	
		индустрии и		Тема 3.	2
		жилищно-		Проектирование	
		коммунального		систем	
		хозяйства на		водоотведения	
		основе знания проблем отрасли		Тема 4.	2
		и опыта их		Разработка,	
		решения		согласование и	
				утверждение	
				проектов	
				водоснабжения и	
				водоотведения	
2.	ПК-3	Способность	ПК-3.1	Тема 2.	2
		осуществлять и	ПК-3.2	Проектирование	
		контролировать	ПК-3.3	систем	
		обоснование	ПК-3.4	водоснабжения	
		технологических	ПК-3.5	Тема 3.	2
		, технических,	ПК-3.6	Проектирование	
		конструктивных решений систем		систем	
		и сооружений		водоотведения	
		водоснабжения		Тема 4.	2
		и водоотведения		Разработка,	2
				_	
				согласование и	
				утверждение	
				проектов	

3.	ПК-4	Способность	ПК-4.1	водоснабжения и водоотведения Тема 2.	2
		организовывать деятельность по эксплуатации, техническому	ПК-4.2 ПК-4.3 ПК-4.4 ПК-4.5	Проектирование систем водоснабжения	
		обслуживанию и ремонту объектов систем водоснабжение	ПК-4.5 ПК-4.6 ПК-4.7 ПК-4.8	Тема 3. Проектирование систем водоотведения	2
		и водоотведения		Тема 4. Разработка, согласование и утверждение проектов водоснабжения и водоотведения	2

Показатели и критерии оценивания компетенций, описание шкал оценивания

$N_{\underline{0}}$	Код	Индикаторы	Показатель оценивания	Контролируем	Наименован
Π/	контролируе	достижений	(знания, умения,	ые темы	ие
П	мой	компетенции	навыки)	учебной	оценочного
	компетенции	(по		дисциплины	средства
		реализуемой			
		дисциплине)			
1	ОПК-3	ОПК-3.1	Знать: методы	Тема 1,	Вопросы для
		ОПК-3.2	решения, установление	Тема 2,	обсуждения
		ОПК-3.3	ограничений к	Тема 3,	(в виде
		ОПК-3.4	решениям научно-	Тема 4.	сообщений),
			технической задачи в		контрольная
		ОПК-3.5	сфере		работа,
			профессиональной		тестировани
			деятельности на основе		е, расчетно-
			нормативно-		графическая
			технической		работа,
			документации и знания		вопросы на
			проблем отрасли и		экзамен
			опыта их решения.		
			Уметь: -		
			формулировать научно-		
			технической задачи в		
			сфере		
			профессиональной		
			деятельности на основе		
			знания проблем		
			отрасли и опыта их		

	<u> </u>		1	T	
			решения, - собирать и систематизировать		
			информации об опыте		
			решения научно-		
			технической задачи в		
			сфере		
			профессиональной		
			деятельности.		
			Владеть: - навыком		
			составления перечней		
			работ и ресурсов,		
			необходимых для		
			решения научно-		
			технической задачи в		
			сфере		
			профессиональной		
			деятельности,		
			-навыком разработки и обоснование выбора		
			1		
			варианта решения научно-технической		
			задачи в сфере		
			профессиональной		
			деятельности.		
2	ПК-3	ПК-3.1	Знать порядок	Тема 2,	Вопросы для
		ПК-3.2	формирования	Тема 3,	обсуждения
		ПК-3.3	исходных данных для	Тема 4.	(в виде
		ПК-3.4	выполнения расчётного		сообщений),
		ПК-3.5	обоснования системы		контрольная
		ПК-3.6	водоснабжения		работа,
			(водоотведения)		тестировани
			<i>Уметь:</i> – делать выбор		е, расчетно-
			и обоснование		графическая
			технологических		работа,
			решений в области		вопросы на
			очистки природных вод		экзамен
			(или очистки сточных		
			вод, или обработки осадков);		
			-выбирать метод и		
			методики расчётного		
			обоснования		
			технических решений		
			элементов системы		
			водоснабжения		
			(водоотведения);		
			- выполнять и		
			контролировать		
			выполнение		
			гидравлических		
			расчетов сооружений		

		1	T		1
			водоснабжения		
			(водоотведения);		
			- выполнять и		
			контролировать		
			выполнение		
			прочностных расчётов		
			трубопроводов при		
			проектировании		
			системы		
			водоснабжения		
			Владеть навыком		
			оценки основных		
			технико-		
			экономических		
			показателей системы		
			водоснабжения		
			(водоотведения)		
3	ПК-4	ПК-4.1	Знать нормативно-	Тема 2,	Вопросы для
	1111/-4	ПК-4.1 ПК-4.2	технические	Тема 2, Тема 3,	обсуждения
		ПК-4.3	документы,	Тема 4.	
		ПК-4.3 ПК-4.4	1	1 CMa 4.	(в виде сообщений),
		ПК-4.5	регламентирующие		
			вопросы эксплуатации		контрольная
		ПК-4.6	систем водоснабжения		работа,
		ПК-4.7	(водоотведения)		тестировани
		ПК-4.8	Уметь:		е, расчетно-
			-разрабатывать		графическая
			нормативно-		работа,
			техническую		вопросы на
			документацию по		экзамен
			эксплуатации систем		
			водоснабжения		
			(водоотведения);		
			- разрабатывать		
			производственную		
			программу		
			организации или		
			подразделения		
			осуществляющих		
			эксплуатацию систем		
			водоснабжения		
			(водоотведения);		
			- контролировать		
			условия и показатели		
			эксплуатации		
			оборудования системы		
			водоснабжения		
			(водоотведения);		
			-выявлять технические		
			неисправности		
			элементов системы		
			водоснабжения		
			(водоотведения);		
L	<u> </u>	I .	(де-табрий),		1

	-выбирать метод,	
	порядка и состава	
	аварийно-	
	восстановительных	
	работ;	
	-выполнять	
	технический и	
	технологический	
	контроль выполнения	
	работ по эксплуатации	
	и ремонту объекта	
	водоснабжения	
	(водоотведения)	
	Владеть навыком	
	оценки коррупционных	
	рисков в	
	производственной	
	деятельности в сфере	
	водоснабжения и	
	водоотведения,	
	разработка мер	
	противодействия	
	коррупции	

Оценочные средства по дисциплине «Проектирование и расчет систем водоснабжения и водоотведения»

Вопросы для обсуждения (в виде сообщений):

- 1. Как предохранить водонапорные трубы внутренней разводки от конденсата?
 - 2. Критическое значение числа Рейнольдса для воды:
- 3. Что такое диктующий прибор в расчетной схеме водоснабжения здания?
- 4. Глубина заложения водопроводной сети (H_3) в зависимости от глубины промерзания грунта (H_n) :
- 5. Максимальное давление на которое испытываются системы внутреннего водопровода
 - 6. Отчего зависит коэффициент местных сопротивлений?
 - 7. Основной расчетный параметр инженерных сетей:
- 8. Как определяется величина давления развиваемого центробежным насосом
- 9. Способ устранения распространения шума от насоса по трубопроводам:
- 10. Какие насосы находят наибольшее применение в инженерных сетях?

- 11. Какая принципиальная схема насоса позволяет получить максимальный КПД по расходу
 - 12. Санитарно-защитная зона для сливных станций, м:
 - 13. Число вторичных отстойников на очистном сооружении:
 - 14. Диаметр горловины канализационных колодцев:
 - 15. Какая зависимость называется формулой Шези?
 - 16. Максимальная скорость сточных вод в металлических трубах, м/с
 - 17. Что называется теплообменом?
- 18. Назовите способы переноса теплоты в пространство и теплообмена между телами.
 - 19. Что представляет собой процесс теплопроводности?
 - 20. Какой процесс теплообмена называется теплопередачей?
 - 21. Как называется сочетание различных видов теплообмена?
 - 22. Что такое термическое сопротивление
 - 23. Как изменяется температура по толщине стенки
 - 24. Чему равно термическое сопротивление многослойной стенки
 - 25. Как определяется тепловой поток через многослойную стенку
 - 26. Какие требования предъявляют к системе отопления
 - 27. По каким признакам классифицируют системы отопления
 - 28. Какие требования предъявляют к системам водяного отопления
 - 29. Укажите достоинства и недостатки водяного и парового отопления
 - 30. Схемы двухтрубной и однотрубной систем отопления
 - 31. Каким образом можно усилить естественную вентиляцию
- 32. Расскажите кратко о конструктивных элементах канальной системы естественной вентиляции
 - 33. Какую роль играют «теплые» чердаки зданий
- 34. Назовите конструктивные основные элементы приточных и вытяжных систем вентиляции
 - 35. Какие типы вентиляторов применяются в системах вентиляции
 - 36. Что понимают под местной приточной вентиляцией
 - 37. Какова роль газа в топливном балансе страны?
 - 38. Из каких основных звеньев со стоят магистральные газопроводы?
- 39. Как подразделяются газопроводы в зависимости от давления транспортируемого газа?
 - 40. Какие виды работ относятся к газоопасным?
- 41. С соблюдением каких условий проводится работа в газоопасных местах?

Критерии и шкала оценивания по оценочному средству сообщение

Шкала оценивания	Критерий оценивания
(интервал баллов)	
5	сообщение представлен(о) на высоком уровне (студент в полном
	объеме осветил рассматриваемую проблематику, привел
	аргументы в пользу своих суждений, владеет профильным

	понятийным (категориальным) аппаратом и т.п.)	
4	сообщение представлен(о) на среднем уровне (студент в целом	
	осветил рассматриваемую проблематику, привел аргументы в	
	пользу своих суждений, допустив некоторые неточности и т.п.)	
3	сообщение представлен(о) на низком уровне (студент допустил	
	существенные неточности, изложил материал с ошибками, не	
	владеет в достаточной степени профильным категориальным	
	аппаратом и т.п.)	
2	сообщение представлен(о) на неудовлетворительном уровне или	
	не представлен (студент не готов, не выполнил задание и т.п.)	

Вопросы к контрольным работам:

- 1. Расчет системы водоснабжения [1] тема 2
- 2. Расчет системы водоотведения [3] тема 3
- 3. Расчет и проектирование системы водяного отопления
- 4. Расчет теплопотерь через ограждающие конструкции
- 5. Расчет воздуховодов систем вентиляции

Критерии и шкала оценивания по оценочному средству контрольная работа

TIT	·	TC
Шкала	оценивания	Критерий оценивания
(интервал	баллов)	
	5	Контрольная работа выполнена на высоком уровне (правильные
		ответы даны на 90-100% вопросов/задач)
	4	Контрольная работа выполнена на среднем уровне (правильные
		ответы даны на 75-89% вопросов/задач)
	3	Контрольная работа выполнена на низком уровне (правильные
		ответы даны на 50-74% вопросов/задач)
	2	Контрольная работа выполнена на неудовлетворительном
		уровне (правильные ответы даны менее чем на 50%)

Задания для тестирования:

- 1 Отчего зависит коэффициент местных сопротивлений?
- А) режима движения жидкости
- В) свойств жидкости
- С) скорости движения жидкости
- D) конструктивных параметров элементов
- Е) гидростатического давления
- 2 Критическое значение числа Рейнольдса для воды:
- A) 2000;
- B) 3500;
- C) 4000;
- D) 3750;
- E) 2320.

- 3 Таблицы Щевелева предназначены для:
- А) определения вязкости жидкости;
- В)расчета потерь на трение;
- С)расчета потерь на местных сопротивлениях;
- D)определения коэффициента трения;
- Е)определения шероховатости трубопровода.
- 4 Единицы измерения кинетической вязкости:
- А)Пуаза;
- \mathbf{B}) \mathbf{M}^2 в час;
- $C)_{M/c^{2}}$
- $D)m^2/c$;
- E)c/M.
- 5 Каким коэффициентом характеризуется движение жидкости в открытых руслах?
 - А) Дарси
 - В) Вейсбаха
 - С) Рейнольдса
 - D) Шези
 - Е) Ньютона
 - 6 Гидравлический уклон это:
 - А) Разность между геодезическими отметками
 - В) Отношение перепада высот к длине
 - С) Отношение потерь на трение к длине
 - D) Соотношение между общими потерями и длиной
 - Е) Отношение средней скорости к длине
 - 7 Гидравлически гладкая труба-
 - А) Труба с ламинарным потоком жидкости
 - В) Труба с шероховатостью менее 0,01 мм
 - С) Труба с эквивалентной шероховатостью менее 0,02 мм
 - D) Труба, в которой отсутствуют потери на трение
 - Е) В практике не существует
 - 8 Какой вид насадка позволяет получить максимальный расход?
 - А) Цилиндрический внешний
 - В) Цилиндрический внутренний
 - С) Конический сходящийся
 - D) Конический расходящийся
 - Е) Коноидальный
 - 9 Что называется фильтрацией?

- А) Движение воды в пористой среде
- В) Движение воды под действием атмосферного давления
- С) Движение грунтовых вод
- D) Движение воды за счет сил гравитации
- Е) Естественное движение воды в грунте
- 10 Гидравлический радиус это:
- А) Отношение смоченного периметра к площади живого сечения
- В) Отношение площади живого сечения к смоченному периметру
- С) Отношение площади сечения к средней скорости
- D) Эквивалентный диаметр
- Е) Условие понятия
- 11 Что описывает уравнение Бернулли
- А) характер режима движения
- В) давление внутри жидкости
- С) энергию потока жидкости
- D) внутреннюю энергию жидкости
- Е) тепловой режим
- 12 Что такое кавитация
- А) схлопывание пузырьков растворенного воздуха
- В) резкое повышение давления
- С) изменение направления потока
- D) падение температуры
- Е) повышение скорости
- 13 Безнапорным называется поток жидкости если
- А) параметры потока не меняются по длине
- В) параметры потока не меняются во времени
- C) Re > 2320
- D) Re < 2320
- Е) поток имеет свободную поверхность
- 14 Равномерное движение если
- А) параметры потока не меняются по длине
- В) параметры потока не меняются во времени
- C) Re > 2320
- D) Re < 2320
- Е) поток имеет свободную поверхность
- 15 Установившееся движение если
- А) параметры потока не меняются по длине
- В) параметры потока не меняются во времени

- C) Re > 2320
- D) Re < 2320
- Е) поток имеет свободную поверхность
- 16 Единицы измерения кинетической вязкости жидкости
- А) Пуаза
- В) градус/мин
- $C) \text{ m}^2/c$
- D) M^3/c
- E) $\kappa \Gamma/c^2$
- 18 Прибор для измерения скорости движения воды в открытом русле
- А) расходомер Вентури
- В) трубка Пито
- С) анеометр
- D) пьезометр
- Е) барометр
- 19 Что является основным внешним признаком задвижки
- А) фланцевое соединение
- В) винтовой шток
- С) ручка поворота
- D) форма корпуса
- Е) габаритные размеры
- 20 Наиболее эффективный способ борьбы с гидроударом в трубопроводах
- А) установка предохранительного клапана
- В) применение редукционных клапанов
- С) применение гидравлических аккумуляторов
- D) увеличение продолжительности срабатывания запорной арматуры
- Е) уменьшение давления
- 21 Простой длинный трубопровод это
- А) сифон
- В)дюкер
- С)трубопровод только одного диаметра
- D) система только с последовательным соединением участков разных размеров
 - Е) система с параллельным соединением трубопроводов
 - 22 Чем объясняется сопротивление жидкости растягивающим усилиям?
 - А) Вязкостью
 - В) Внутренней энергией
 - С) Силами молекулярного взаимодействия

Е) Плотностью
23 Какой трубопровод работает под давлением, ниже атмосферного? А) Простой
В) Сложный
С) Дюкер
D) Сифон
Е) Короткий
24 Наивыгоднейшее сечение канала
А) Прямоугольное
В) Трапецеидальное
С) Треугольное
D) Полукруг
Е) Квадрат
25 Какой вид теплообмена в твердых телах:
А) конвекция;
В) теплопроводность;
С) тепловое излучение;
D) теплопередача;
Е) теплоусвоение;
26 В жилых помещениях □t принимается для стен:
A) 2;
B) 4;
C) 6;
D) 8;
E) 10.
27 Расчет теплопотерь через наружные ограждающие конструкции
проводится по следующей зависимости
A) $Q=FK(t_B-t_1);$
B) $Q=FK(t_B-t_1)a e$;
C) $Q=R_0F(t_B-t_1)n$;
D) $Q=FK(t_B-t_1)n$;
E) $Q=FK(t_H-t_1)n$;
28 Расчет теплопотерь по укрупненным показателям:
A) $Q=FK(t_{B\cdot cp}-t_1)^{\alpha}$;
B) $Q=(F(t_{B-cp}-t_1)a)/Ro;$
C) $Q=q_0(t_{B.cp}-t_*)n;$
D) $Q=q_0V_c(t_{B.cp}-t_1)n;$

D) Поверхностным натяжением

- E) $Q=q_0V_c(t_{B.cp}-t_1)$.
- 29 Назначение элеватора:
- А) снизить температуру теплоносителя;
- В) повысить давление;
- С) уменьшить количество подаваемого в здание тепла;
- D) снизить количество подаваемого в здание тепла;
- Е) снизить давление в трубопроводе здания;
- 30 Площадь поверхности нагревательного прибора определяется по формуле, ЭКМ:
 - A) $F=Q/K(t_1-t_a)$;
 - B) $F=(Q \Box_1 \Box_2)/K(t_1-t_a);$
 - C) $F=(Q \square_1 \square_2)/q_1$;
 - D) $F=(Q \square_1 \square_2 \square_3 \square_4)/K(t_{fl6}-ta);$
 - E) $F=(Q \square_3 \square_4)/K(t_{fi6}-t_a);$
 - 31 Расширительный сосуд предназначен для:
 - А) удаления избыточного количества воды;
- В) удаления воздуха и компенсации изменяющегося объема воды при нагревании
 - С) создания перепада давления в системе;
 - D) заполнения системы водой;
 - Е) удаление пара;
 - 32 Системы водяного отопления называются вертикальными, когда:
 - А) имеют вертикальные трубы;
 - В) имеют расширительный сосуд;
 - С) установлен воздухосборник;
 - D) нагревательные приборы присоединены по горизонтали;
 - Е) нагревательные приборы присоединены по вертикали;
- 33 По схеме питания нагревательных приборов системы отопления бывают двухтрубные, когда:
 - А)имеется два горячих стояка;
 - В)один горячий стояк;
 - С)приборы присоединены к стояку с двух сторон;
- D)теплоноситель поступает в прибор из одной трубы и возвращается из него в эту же трубу;
- Е) теплоноситель поступает в прибор из одной трубы а возвращается в другую трубу;
 - 34 Системы парового отопления называются открытыми, когда:
 - А) теплоноситель используется на другие нужды;

- В) конденсатопровод имеет связь с атмосферой;
- С) конденсат используется для технологических нужд;
- D) конденсатопровод не имеет связи с атмосферой;
- E) паропровод имеет связь с атмосферой через предохранительный клапан;
 - 35 Аэрация это:
 - А) естественная неорганизованная вентиляция
 - В) искусственная вентиляция
 - С) комбинированная
 - D) естественная организованная
 - Е) вентиляция с применением каналов и воздуховодов
 - 36 Вентиляция локализирующая когда:
 - А) воздух подается в месте выделения вредностей;
 - В) воздух удаляется из места выделения вредностей;
- С) воздух подается и удаляется независимо от места выделения вредностей;
 - D) воздух подается или удаляется из места выделения вредностей;
- Е) при работе вентиляции предотвращается распространение вредностей по всему объему помещения;
 - 37 Тепловые сети называются закрытые, когда:
 - А) имеют связь с атмосферой;
 - В) теплоноситель идет на горячее водоснабжение;
 - С) весь теплоноситель возвращается к месту выработки;
- D) теплоноситель используется на внутренние нужды по месту выработки;
 - Е) теплоноситель используется на технологические нужды.
- 38 К конвективным системам отопления относятся системы оборудованные следующими нагревательными приборами:
 - А) ребристыми трубами
 - В) регистры
 - С) гладкотрубные
 - D) змеевиками
 - Е) подвесные панели
- 39 По схеме питания нагревательных приборов системы отопления бывают однотрубные, когда:
 - А) имеется два горячих стояка;
 - В) один горячий стояк;
 - С) приборы присоединены к стояку с двух сторон;

- D) теплоноситель поступает в прибор из одной трубы и возвращается из него в эту же трубу;
- Е) теплоноситель поступает в прибор из одной трубы и возвращается в другую трубу.
- 40 Системы водяного отопления называются с попутным движением, когда:
 - А) теплоноситель движется за счет работы насоса;
 - В) направление движения теплоносителя в стояках совпадают;
 - С) движение теплоносителя в стояках направлено в разные стороны;
- D) движение теплоносителя в магистральных трубопроводах внутри здания направлены в разные стороны;
- Е) движение теплоносителя в магистральных трубопроводах внутри здания имеют одинаковое направление.
 - 41 Система парового отопления называется разомкнутой, когда:
 - А) пар поступает в нагревательные приборы через редукционный клапан;
 - В) конденсат в котел поступает из конденсатного бака;
 - С) конденсат в котел поступает из конденсатопровода;
 - D) система имеет напорный конденсатопровод;
 - Е) пар поступает в приборы без редукционного клапана.
 - 42 Канальная вентиляция:
 - А) естественная неорганизованная вентиляция;
 - В) искусственная вентиляция;
 - С) комбинированная;
 - D) естественная организованная;
 - Е) вентиляция с применением каналов и воздуховодов.
 - 43 Местная вентиляция, когда:
 - А) воздух подается в месте выделения вредностей;
 - В) воздух удаляется из места выделения вредностей;
- С) воздух подается и удаляется независимо от места выделения вредностей;
 - D) воздух подается или удаляется из места выделения вредностей;
- Е) при работе вентиляции предотвращается распространение вредностей по всему объему помещения.
- 44 К лучистым системам отопления относятся системы отопления оборудованные:
 - А) ребристыми трубами;
 - В) регистрами;
 - С)гладкотрубные;
 - D) змеевики;

- Е) подвесные панели.
- 45 Регистры изготавливают из:
- А) труб;
- В) конвекторов;
- С) подвесных панелей;
- D) ребристых труб;
- А) чугунных радиаторов.
- 46 Система парового отопления называется замкнутой, когда:
- А) пар поступает в нагревательные приборы через редукционный клапан;
- В) конденсат в котел поступает из конденсатного бака;
- С) конденсат в котел поступает из конденсатопровода;
- D) система имеет напорный конденсатопровод;
- Е) пар поступает в приборы без редукционного клапана.
- 47 Запах газа в системах газоснабжения обусловлен содержанием:
- А) метана;
- В) пропана;
- С) бутана;
- D) этана;
- Е) одоранта.
- 48 Газовая груба прокладывается через стену в:
- А) стальном футляре
- В) бетонном футляре
- С) деревянном корпусе
- D) специальной обмотке
- Е) отверстие заделанном в толщине цементным раствором
- 49 Инфильтрация это:
- А) естественная неорганизованная ывентиляция;
- В) искусственная вентиляция;
- С) комбинированная;
- D) естественная организованная;
- Е) вентиляция с применением каналов и воздуховодов.
- 50 Вентиляция общеобменная когда:
- А) воздух подается в месте выделения вредностей;
- В) воздух удаляется из места выделения вредностей;
- С) воздух подается и удаляется независимо от места выделения вредностей;
 - D) воздух подается или удаляется из места выделения вредностей;

- Е) при работе вентиляции предотвращается распространение вредностей по всему объему помещения.
 - 51 Нагрев вентиляционного воздуха производится в:
 - А) регистрах;
 - В) калориферах;
 - С) конвекторах;
 - D) ребристых трубах;
 - Е) стальных италерованных радиаторах.
 - 52 Основной тип насосов применяемый в системе водоснабжения:
 - А) шестеренные;
 - В) пластинчатые;
 - С) центробежные;
 - D) плунжерные;
 - Е) поршневые.
- 53 Что достигается при параллельном соединении центробежных насосов?
 - А) увеличивается производительность;
 - В) повышается рабочее давление;
 - С) повышается КПД;
 - D) улучшаются условия эксплуатации;
 - Е) повышение экономичности работы.
- 54 Что достигается последовательным соединением центробежных насосов?
 - А) увеличивается производительность;
 - В) повышается напор;
 - С) понижается напор;
 - D) повышается КПД;
 - Е) снижаются энергозатраты.
- 55 Необходимое особое условие для успешного запуска центробежного насоса:
 - А) предварительное заполнение жидкостью;
 - В) установка обратного клапана;
 - С) использование фильтра во всасывающей магистрали;
 - D) установка предохранительного клапана в напорной магистрали;
 - Е) установка дросселя.
 - 56 Где должен быть установлен канализационный стояк в жилом здании?
 - А) у каждого санитарного прибора в квартире;
 - В) один на две смежные квартиры;

С) не менее одного на квартиру у прибора с наибольшим расходом сточных вод;
57 Что такое диктующий прибор в расчетной схеме водоснабжения здания? А) прибор с наибольшим расходом; В) с эквивалентом расхода равным 1; С) наиболее удаленный от ввода; D) расположенный на максимальной высоте;
Е) обладающий наибольшим свободным напором.
58 Способ устранения распространения шума от насоса по трубопроводам: А) снижение скорости вращения вала насоса;
В) установление гибких вставок в напорный трубопровод; С) замена амортизаторов под двигателем; D) применение эластичных муфт при передаче крутящего момента с
двигателя на насос;
Е) изменение конструкций фундамента.
59 Нормативный срок службы водозаборной арматуры, годы:
A) 5; B) 10;
C) 15;
D) 20;
E) 25.
60 Нормативный срок службы чугунных радиаторов, годы:
A) 5;
B) 10;
C) 20;
D) 30;
E) 40.
61 Какой параметр ограничивается во всех инженерных системах?
А) давление;
В) скорость;
С) температура;
D) вязкость;
Е) расход.

параме А В С D	2 Какая инженерная система рассчитывается для трех различных тров среды? 3) Водоснабжение; 3) Канализация; 5) Отопление; 6) Вентиляция; 6) Электроснабжение.
B C D	
ф А В С D Е	ляются по ормуле, Па: A)Z=Уo(V ² /2)1; B) Z=Уo(7tPV ² /2)1; C) Z=Уo(V ² /2)p; D) Z=Уo(pd ² V/2)p; E) Z=Уo(V ² /2)pc;
ПОСТОЯН В С D E	5 Потери давления на преодоления трения на участке трубопровода с нным расходом воды определяется: (A) $R_T = (\Box pv^2l)/d3$ (B) $R_T = (\Box pv^2l)/d2$ (C) $R_T = (\Box pv^2l)/d2$ (D) $R_T = (\Box dv)/pl$ (E) $R_T = (\Box dv)/pl$ (E) Отчего зависит коэффициент местных сопротивлений? (E) режима движения жидкости (E) свойств жидкости (E) скорости движения жидкости (E) конструктивных параметров элементов (E) гидростатического давления
6′ A B	7 Какие параметры потока жидкости изменяются при гидроударе? 3) температура; 3) давление; 2) расход;

	D) режим движения;
	Е) скорость.
	68 Критическое значение числа Рейнольдса для воды:
	A) 2000;
	B) 3500;
	C) 4000;
	D) 3750;
	E) 2320.
	69 Таблицы Щевелева предназначены для:
	А)определения вязкости жидкости;
	В)расчета потерь на трение;
	С)расчета потерь на местных сопротивлениях;
	D)определения коэффициента трения;
	Е)определения шероховатости трубопровода.
	70 Величина коэффициента местных сопротивлений зависит от:
	А) конструкции элемента системы;
	В) вязкости жидкости;
	С) скорости жидкости;
	D) давления;
	Е) расхода.
	присходи.
	71 Единицы измерения кинетической вязкости:
	А) Пуаза;
	B) m ² B час;
	C) M/c^{2} ;
	D) M^2/c ;
	E) c/m.
	72 Расчетное наполнение каналов прямоугольного поперечного сечения
прин	имать в зависимости от высоты h:
1	A) 0,5h;
	B) 0,6h;
	C) 0,7h;
	D) 0,75h;
	E) 0,8h.
	73 На каком явлении основан гидротаран?
	А) Кавитация
	В) Изменение скорости в насадке
	С) Турбулентность
	D) Трение в трубопроводе
	Е) Гидравлический удар
	/ · · · · · · · · · · · · · · · · · · ·

74 Каким коэффициентом характеризуется движение жидкости в открытых руслах?

- А) Дарси
- В) Вейсбаха
- С) Рейнольдса
- D) Шези
- Е) Ньютона

75 По какой зависимости строится напорная линия потока?

A)
$$\frac{v^2}{2g}$$

$$\frac{P}{}$$

B)
$$Z+\frac{\gamma}{\gamma}+\frac{1}{2g}$$

C)
$$Z+\frac{\gamma}{\gamma}$$

$$\frac{P}{2}$$

$$\begin{array}{c}
\stackrel{\cdot}{P} \\
\stackrel{\cdot}{D}
\end{array}$$

$$\frac{P}{Z+\frac{v^2}{\gamma}+\frac{v^2}{2g}}+\Delta h$$

76 По какой зависимости строится линия пьезометрического напора?

$$\mathbf{A)} \; \frac{v^2}{2g}$$

$$\frac{P}{}$$
 $\frac{v^2}{}$

B)
$$Z + \frac{\gamma}{\gamma} + \frac{1}{28}$$

C)
$$Z+\overline{\gamma}$$

D)
$$\frac{P}{\gamma}$$

E)
$$Z + \frac{P}{\gamma} + \frac{v^2}{2g} + \Delta h$$

77 Гидравлический уклон это:

- А) Разность между геодезическими отметками
- В) Отношение перепада высот к длине
- С) Отношение потерь на трение к длине
- D) Соотношение между общими потерями и длиной
- Е) Отношение средней скорости к длине

78 Гидравлически гладкая труба-

- А) Труба с ламинарным потоком жидкости
- В) Труба с шероховатостью менее 0,01 мм
- С) Труба с эквивалентной шероховатостью менее 0,02 мм
- D) Труба, в которой отсутствуют потери на трение
- Е) В практике не существует
- 79 Какой вид насадка позволяет получить максимальный расход?
- А) Цилиндрический внешний
- В) Цилиндрический внутренний
- С) Конический сходящийся
- D) Конический расходящийся
- Е) Коноидальный
- 80 Какой насадок имеет максимальный коэффициент местных сопротивлений?
 - А) Цилиндрический внешний
 - В) Цилиндрический внутренний
 - С) Конический сходящийся
 - D) Конический расходящийся
 - Е) Коноидальный
 - 81 Какая зависимость называется формулой Шези?

A)
$$C = \sqrt{\frac{2g}{\lambda}}$$

B)
$$C = \frac{1}{n} \times R^{y}$$

C)
$$\omega C = \sqrt{Ri}$$

D)
$$v = C\sqrt{Ri}$$

E)
$$C = \frac{1}{n} + 17.72 \lg R$$

82 Какая зависимость называется формулой Н Н Павловского?

A)
$$C = \sqrt{\frac{2g}{\lambda}}$$

B)
$$C = \frac{1}{n} \times R^{y}$$
C) $\omega C = \sqrt{Ri}$

C)
$$\omega C = \sqrt{R}$$

D)
$$v = C\sqrt{Ri}$$

E)
$$C = \frac{1}{n} + 17.72 \lg R$$

83 Что называется фильтрацией?

- F) Движение воды в пористой среде
- G) Движение воды под действием атмосферного давления
- Н) Движение грунтовых вод
- I) Движение воды за счет сил гравитации
- J) Естественное движение воды в грунте
- 84 Что характеризует коэффициент фильтрации?
- А) Пористость грунта
- В) Фильтрационную способность грунта
- С) Пьезометрический уклон
- D) Скорость фильтрации
- Е) Расход фильтрационного потока
- 85 Гидравлический радиус это:
- F) Отношение смоченного периметра к площади живого сечения
- G) Отношение площади живого сечения к смоченному периметру
- Н) Отношение площади сечения к средней скорости
- Эквивалентный диаметр
- J) Условие понятия
- 86 Что представляют собой градусы Энглера
- А) единица измерения вязкости
- В) температурный показатель
- С) безразмерный критерий
- D) показатель режима движения
- Е) параметр внутренней энергии
- 87 В каких единицах измеряется напор жидкости
- А) Паскаль (Па)
- В) Ньютон (Н)
- C)кгс/см²
- D) метр столба жидкости
- E) M^2/c
- 88 Что описывает уравнение Бернулли
- А) характер режима движения
- В) давление внутри жидкости
- С) энергию потока жидкости
- D) внутреннюю энергию жидкости
- Е) тепловой режим
- 89 По какой зависимости определяется критерий Рейнольдса

A) $\frac{V \cdot a}{V}$

- B) $\omega_1 \cdot V_1 = \omega_2 \cdot V_2$
- D) $\lambda \frac{l}{a} \cdot \frac{V^2}{2g}$
- E) $P_o + h\gamma$
- 90 По какой зависимости определяются потери по длине
- A) \overline{V}
- $\mathbf{B)} \ \omega_1 \cdot V_1 = \omega_2 \cdot V_2$
- C) $\frac{V^2}{2g}$
- D) $\lambda \frac{l}{a} \cdot \frac{V^2}{2g}$
- E) $P_o + h\gamma$
- 91 Какая зависимость называется скоростным напором
 - $V \cdot d$
- A) V
- $\mathbf{B)} \ \omega_1 \cdot V_1 = \omega_2 \cdot V_2$
 - V^2
- C) $\overline{^{2g}}$
- $\mathbf{D)} \ \lambda \frac{l}{a} \cdot \frac{V^2}{2g}$
- E) $P_o + h\gamma$
- 92 Какая зависимость называется уравнением сплошности потока
- $V \cdot d$ A) \overline{V}
- $\mathbf{B)} \ \omega_1 \cdot V_1 = \omega_2 \cdot V_2$
- V^2
- C) $\overline{2g}$
- D) $\lambda \frac{l}{a} \cdot \frac{V^2}{2g}$
- E) $P_o + h\gamma$
- 93 По какой зависимости определяются потери на трение

- $V \cdot d$ A) V^{-}
- $\mathbf{B)} \ \omega_1 \cdot V_1 = \omega_2 \cdot V_2$
- C) $\frac{V^2}{2g}$
- D) $\lambda \frac{l}{a} \cdot \frac{V^2}{2g}$
- E) $P_o + h\gamma$
- 94 Что такое кавитация
- А) схлопывание пузырьков растворенного воздуха
- В) резкое повышение давления
- С) изменение направления потока
- D) падение температуры
- Е) повышение скорости
- 95 Чем обусловлен гидравлический удар
- А) резким возрастанием температуры
- В) изменение направления движения
- С) падением давления
- D) возрастанием вязкости
- Е) резким падением скорости
- 96 В каких единицах измеряется пьезометрический напор
- А) метр столба жидкости
- В) Паскаль (Па)
- С) Ньютон (Н)
- D) $\kappa \Gamma c/c M^2$
- E) ${\rm M}^2/{\rm c}$
- 97 По какой зависимости рассчитывается гидроудар
- A) $P_o + h\gamma$
- B) $\frac{V^2}{2}\rho$
- C) $\lambda \frac{l}{a} \cdot \frac{V^2}{2}$
- D) $\cdot V \cdot \rho \cdot c$
- E) γ·*V*
- 98 По какой зависимости определяется гидростатическое давление
- A) $P_o + h\gamma$

- $\frac{V^2}{2}\rho$
- C) $\lambda \frac{l}{a} \cdot \frac{V^2}{2}$
- D) $\cdot V \cdot \rho \cdot c$
- E) $\gamma \cdot V$
- 99 Безнапорным называется поток жидкости если
- А) параметры потока не меняются по длине
- В) параметры потока не меняются во времени
- C) Re > 2320
- D) Re < 2320
- Е) поток имеет свободную поверхность
- 100 Равномерное движение если
- А) параметры потока не меняются по длине
- В) параметры потока не меняются во времени
- C) Re > 2320
- D) Re < 2320
- Е) поток имеет свободную поверхность
- 101 Установившееся движение если
- А) параметры потока не меняются по длине
- В) параметры потока не меняются во времени
- C) Re > 2320
- D) Re < 2320
- Е) поток имеет свободную поверхность
- 102 Единицы измерения кинетической вязкости жидкости
- А) Пуаза
- В) градус/мин
- C) M^2/c
- D) M^3/c
- E) $\kappa \Gamma/c^2$
- 103 Коэффициент местных сопротивлений зависит от
- А) скорости
- В) давления
- С) критерия Рейнольдса
- D) конструкции элемента системы
- Е) расхода жидкости
- 104 Единица измерения критерия Рейнольдса
- А) безразмерная величина

- B) M^2/c
- C) M^3/c
- D) град/с
- Е)кг/м □ сек

105Соотношение между коэффициентом объемного состояния $^{\beta}$ и модулем упругости Е

- A) $E = 1/\beta$
- B) $E = 1 \cdot \delta$
- C) $E = \beta \cdot \gamma$
- D) $E = \beta \cdot q$
- E) $E = \beta$

106 Прибор для измерения скорости движения воды в открытом русле

- А) расходомер Вентури
- В) трубка Пито
- С) анеометр
- D) пьезометр
- Е) барометр

107 Что является основным внешним признаком задвижки

- А) фланцевое соединение
- В) винтовой шток
- С) ручка поворота
- D) форма корпуса
- Е) габаритные размеры

108 Турбулентность в потоке возникает при

- А) повышении давления
- В) снижении давления
- С) повышении скорости
- D) снижении скорости
- Е) изменении направления вектора скорости

109 Наиболее эффективный способ борьбы с гидроударом в трубопроводах

- А) установка предохранительного клапана
- В) применение редукционных клапанов
- С) применение гидравлических аккумуляторов
- D) увеличение продолжительности срабатывания запорной арматуры
- Е) уменьшение давления
- 110 Смоченный периметр это:
- А) периметр сечения потока

- В) периметр сечения потока по твердым стенкам
- С) условный периметр характеризующий расход
- D) отношение живого сечения к средней скорости
- Е) зависимость между уклоном и расходом
- 111 Наивыгоднейшие пропорции сечения прямоугольного канала
- A) b=h
- B) b=2h
- C) 2=h
- D) b=3h
- E) b=1,5h
- 112 Соотношение между диаметром и гидравлическим радиусом для напорных труб
 - A) D=2R
 - B) D=R
 - C) D=3R
 - D) D=4R
 - E) D=0.5R
 - 113 Прибор для измерения вязкости жидкости
 - А) анеометр
 - В) вакуумметр
 - С) вискозиметр
 - D) дифференциальный манометр
 - Е) трубка Пито
 - 114 Свободная поверхность
 - А) поверхность на границе жидкости и газа
 - В) поверхность под атмосферным давлением
 - С) поверхность с постоянным давлением
 - D) поверхность с нулевым давлением
 - Е) горизонтальный уровень жидкости
 - 115 Соотношение между единицами давления Ат и Паскаль (Па)
 - A) $1 \text{ aT} = 1 \text{ }\Pi\text{a}$
 - B) 1 ат = $9.8 \Pi a$
 - C) $1 \text{ at} = 1 \square 10^4 \text{ }\Pi\text{a}$
 - D) 1 at = $0.1 \text{ M}\Pi a$
 - E) 1 ат = 0,1 кПа
 - 116 Абсолютное давление
 - А) показания барометра
 - В) показания манометра

- С) сумма барометрического и манометрического давления
- D) разность барометрического и пьезометрического давления
- Е) понятие не имеющее физического смысла

117 Скоростной напор это

- A) $m \square V$
- B) m \square a²
- C) m \square V²/2
- D) $P+R\square$
- E) $m \square V^2/2g$

118 Истечение жидкости из отверстия определяется по

$$h_e = \lambda \frac{e}{d} \cdot \frac{V^2}{2g}$$

B)
$$V = \mu \omega \sqrt{2gh}$$

C)
$$\Delta p = \rho V_o g$$

$$D)^{V} = c\sqrt{R \cdot i}$$

E)
$$Q = k\sqrt{i}$$

119 Вихрем в жидкости является

- А) турбулентное движение
- В) вектор угловой скорости вращения частицы жидкоси
- С) нормальная составляющая скорости движения
- D) ускорение частиц жидкости перпендикулярное средней скорости потока
 - Е) вращательное движение частиц в потоке

120 Причина сжатия струи за тонким отверстием

- А) силы инерции в боковых струйках
- В) поверхностное натяжение в жидкости
- С) вязкость жидкости
- D) влияние внешнего давления
- Е) влияние гравитации

121 Простой длинный трубопровод это

- А) сифон
- В) дюкер
- С) трубопровод только одного диаметра
- D) система только с последовательным соединением участков разных размеров
 - Е) система с параллельным соединением трубопроводов

122 Коэффициент сжатия струи

- А) отношение площади отверстия к площади сжатого сечения
- В) отношение площади сжатого сечения к площади отверстия
- С) соотношение скоростей до сжатия струи и после
- D) соотношение скоростей в сжатой струе и после сжатия
- Е) отношение площади сжатого сечения к скорости струи
- 123 В каком случае трубу присоединенную к отверстию можно считать насадком
 - A) l < d
 - B) l=d
 - C) $l = (3 \Box 5)d$
 - D) 1>5d
 - E) $l = (6 \Box 10)d$
 - 124 Прибор для определения наносов отрытом русле
 - А) вискозиметр
 - В) трубка Пито
 - С) барометр
 - D) расходомер Вентури
 - Е) профилограф
 - 125 Фарватер это
 - А) сечение наименьше глубины потока
 - В) линия наименьших глубин
 - С) линия наибольших глубин
 - D) сечение потока в максимальной глубине
 - Е) средняя глубина русла
 - 126 Чем измеряется средняя скорость реки по вертикали
 - А) точечный поплавок
 - В) гидрометрический шест
 - С) профилограф
 - D) гидрометрическая вертушка
 - Е) трубка Пито
 - 127 Чем объясняется сопротивление жидкости растягивающим усилиям?
 - F) Вязкостью
 - G) Внутренней энергией
 - Н) Силами молекулярного взаимодействия
 - І) Поверхностным натяжением
 - J) Плотностью
 - 128 Чем обусловлена капиллярность жидкости?
 - А) Вязкостью

- В) Внутренней энергией
- С) Силами молекулярного взаимодействия
- D) Поверхностным натяжением
- Е) Плотностью
- 129 Какой трубопровод работает под давлением, ниже атмосферного?
- F) Простой
- G) Сложный
- Н) Дюкер
- I) Сифон
- J) Короткий
- 130 Нижний бьеф это:
- А) Уровень твердой поверхности после водосливной стенки
- В) Часть потока за водосливной стенкой
- С) Сечение потока за водосливом
- D) Ширина потока после водослива
- Е) Глубина подпора
- 131 Наивыгоднейшее сечение канала
- F) Прямоугольное
- G) Трапецеидальное
- Н) Треугольное
- І) Полукруг
- J) Квадрат
- 132 Наиболее целесообразное сечение канала из соображений устойчивости стенок:
 - А) Прямоугольное
 - В) Трапецеидальное
 - С) Треугольное
 - D) Полукруг
 - Е) Квадрат

Критерии и шкала оценивания по оценочному средству тесты

		$\frac{1}{2}$
Шкала	оценивания	Критерий оценивания
(интерв	ал баллов)	
	5	Тесты выполнены на высоком уровне (правильные ответы даны
		на 90-100% тестов)
	4	Тесты выполнены на среднем уровне (правильные ответы даны
		на 75-89% тестов)
	3	Тесты выполнены на низком уровне (правильные ответы даны
		на 50-74% тестов)
	2	Тесты выполнены на неудовлетворительном уровне
		(правильные ответы даны менее чем на 50% тестов)

Темы расчетно-графических работ:

- 1. Определить расходы на водопотребление населенного пункта.
- 2. Составить график водопотребеления наибольшего расхода воды и определить режим работы насосной станции.
- 3. Определить ёмкость бака водонапорной башни и ёмкость резервуара насосной станции.
- 4. Запроектировать бытовую канализационную сеть, объединенную с производственной, для полной раздельной системы водоотведения.

Критерии и шкала оценивания по оценочному средству курсовая работа

Шкала оценивания	Критерий оценивания
(интервал баллов)	
5	Работа выполнена самостоятельно, имеет научно-практический
	характер, содержит элементы новизны. Студент показал знание
	теоретического и практического материала,
	умение анализировать, делать обобщение и выводы.
	Материал излагается грамотным техническим языком, логично,
	последовательно. Оформление курсовой работы отвечает
	требованиям. Во время защиты студент показал умение
	представить результаты, адекватно ответить на поставленные
	вопросы.
4	Работа выполнена самостоятельно, имеет научно-практический
	характер, содержит элементы новизны. Студент показал знание
	теоретического материала по теме курсовой работы, однако
	умение анализировать, аргументировать свою точку зрения,
	делать обобщения и выводы вызывают у него затруднения.
	Материал не всегда излагается логично, последовательно.
	Имеются недочеты в оформлении курсовой
	работы. Во время защиты студент показал умение
	представить разработку, однако затруднялся отвечать на
	поставленные вопросы.
3	работа не содержит элементы новизны. Студент не в полной
	мере владеет теоретическим материалом по рассматриваемой
	теме, умение анализировать, аргументировать свою
	точку зрения, делать обобщение и выводы вызывают у него
	затруднения. Материал не всегда излагается логично,
	последовательно. Имеются недочеты в оформлении
	курсовой работы. Во время защиты студент затрудняется в
	представлении работы и ответах на поставленные вопросы.
2	Выполнено менее 50% требований к курсовой работе и студент
_	не допущен к защите.
	пе допущен к опщите.

Оценочные средства для промежуточной аттестации (экзамен)

- 1 Потери давления на преодоление местных сопротивлений определяются по формуле, Па:
- 2 Потери давления на преодоления трения на участке трубопровода с постоянным расходом воды определяются:
 - 3 Основной тип насосов применяемый в системе водоснабжения: поршневые.
 - 4 Что достигается при параллельном соединении центробежных насосов?
- 5 Что достигается последовательным соединением центробежных насосов?
 - 6 Отчего зависит коэффициент местных сопротивлений?
- 7 Необходимое особое условие для успешного запуска центробежного насоса:
 - 8 Назначение предохранительного клапана:
 - 9 Какие параметры потока жидкости изменяются при гидроударе?
 - 10 Назначение "ревизии" на канализационном стояке:
- 11 Глубина заложения водопроводной сети (H_3) в зависимости от глубины промерзания грунта (H_n) :
- 12 Наиболее рациональный способ соединения водопроводных труб при внутренней разводке:
 - 13 Основной рабочий элемент пружинного манометра:
- 14 Чем обусловлено ограничение минимальной скорости движения сточных вод в трубопроводах?
 - 15 Для чего применяются сифоны при установке санитарных приборов?
- 16 Как предохранить водонапорные трубы внутренней разводки от конденсата?
 - 17 Глубина заложения выпуска канализации из здания (Нк):
 - 18 Критическое значение числа Рейнольдса для воды:
- 19 Чем должен заканчиваться канализационный стояк в многоэтажном доме?
 - 20 Что обеспечивает вентиляцию канализационных труб и коллекторов?
 - 21 Назначение обратного клапана:
- 22 Минимальное время выдержки при гидравлическом испытании водопроводных трубопроводов:
- 23 Максимальное давление на которое испытываются системы внутреннего водопровода:
 - 24 Где должен быть установлен канализационный стояк в жилом здании?
- 25 Какие из перечисленных насосов позволяют получить максимальное рабочее давление?
 - 26 Что означает выражение водопроводная труба диаметром 1 дюйм?
- 27 Минимальный уклон при горизонтальной прокладке канализационных труб:

- 28 Наиболее экономичная скорость движения воды в водопроводных трубах:
- 29 Что такое диктующий прибор в расчетной схеме водоснабжения здания?
- 30 Максимальная величина уклона трубопроводов канализационной сети диаметром 150мм:
- 31 Минимальное значение самоочищающей скорости для бытовых сточных вод, м/с:
- 32 Величина максимальной разности давления на проводках горячей и холодной воды в смесителях, МПа:
- 33 Максимальное давление водовоздушной смеси при промывке трубопроводов, МПа:
- 34 Необходимая температура воды в системе горячего водоснабжения, °C:
- 35 Причины возникновения шума в трубопроводах систем водоснабжения:
- 36 Способ устранения распространения шума от насоса по трубопроводам:
- 37 Способ борьбы с конденсацией паров на поверхности водопроводных труб:
 - 38 Нормативный срок службы водозаборной арматуры, годы:
- 39 Нормативный срок службы холодного водопровода не оцинкованного, годы:
- 40 Нормативный срок службы холодного водопровода оцинкованного, годы
 - 41 Нормативный срок службы чугунных канализационных труб, годы:
 - 42 Основной расчетный параметр инженерных сетей:
 - 43 Какой параметр ограничивается во всех инженерных системах?
 - 44 Какая инженерная система является самотечной?
 - 45 Минимальный свободный напор у бытовых приборов, м:
 - 46 Место установки канализационного стояка:
 - 47 Прочистки устанавливаются:
 - 48 Таблицы Щевелева предназначены для:
 - 49 Величина коэффициента местных сопротивлений зависит от:
- 50 Величина давления развиваемого центробежным насосом определяется:
 - 51 Единицы измерения норм хозяйственно-питьевого водоснабжения:
 - 52 Единицы измерения кинетической вязкости:
 - 53 Отчего зависит коэффициент местных сопротивлений?
- 54 Способ устранения распространения шума от насосов по трубопроводам:
- 55 Минимальный уклон при горизонтальной прокладке канализационных труб:
 - 56 Какая зависимость является характеристикой сети?

- 57 Расстояние между гидрантами на городской сети водоснабжения, м:
- 58 Расход воды на противопожарную защиту здания, на 1 м^2 площади пола:
- 59 Минимальное значение температуры горячей воды в точках водоразбора, $\Box C$:
 - 60 Минимальный уклон для трубопроводов горячего водоснабжения:
- 61 Удельное водоотведение в механизированных районах л/сут на 1 человека:
 - 62 Санитарно-защитная зона для сливных станций, м:
 - 63 Наименьший диаметр труб самотечных уличных сетей, мм:
- 64 Расчетное наполнение каналов прямоугольного поперечного сечения принимать в зависимости от высоты h:
- 65 Расстояние между смотровыми канализационными колодцами при диаметре трубы 200 мм:
- 66 Диаметр круглых канализационных колодцев при трубопроводах диаметром до 600 мм:
 - 67 Число вторичных отстойников на очистном сооружении:
 - 68 Назначение редукционных клапанов:
 - 69 Высота установки ревизии (от пола), м
 - 70 Диаметр горловины канализационных колодцев:
 - 71 Какие насосы находят наибольшее применение в инженерных сетях?
 - 72 Водосливом называется:
 - 73 На каком явлении основан гидротаран?
- 74 Каким коэффициентом характеризуется движение жидкости в открытых руслах?
 - 75 Основной недостаток шестеренных машин:
 - 76 "Слабый узел" силового цилиндра:
 - 77 По какой зависимости строится напорная линия потока?
 - 78 По какой зависимости строится линия пьезометрического напора?
 - 79 Что такое гидравлический уклон
 - 80 Гидравлически гладкая труба-
 - 81 Какой вид насадка позволяет получить максимальный расход?
- 82 Какой насадок имеет максимальный коэффициент местных сопротивлений?
 - 83 Какая зависимость называется формулой Шези?
 - 84 Какая зависимость называется формулой Н Н Павловского?
 - 85 Что называется фильтрацией?
 - 86 Что характеризует коэффициент фильтрации?
 - 87 Гидравлический радиус это:
 - 88 Минимальный уклон для трубопроводов горячего водоснабжения
 - 89 Кратность воздухообмена что это
- 90 Расход воды на противопожарную защиту здания, на 1 m^3 площади пола

- 91 На какое рабочее давление рассчитывается арматура хозяйственно-питьевого водопровода, МПа
- 92 Минимальное значение температуры горячей воды в точках водоразбора, °C
 - 93 Какая зависимость является характеристикой сети?
 - 94 Расстояние между гидрантами на городской сети водоснабжения, м
 - 95 Максимальная скорость сточных вод в металлических трубах, м/с
 - 96 Максимальная скорость сточных вод в неметаллических трубах
 - 97 Дроссель в гидросистеме
 - 98 Принцип гидравлического замка
- 99 Какая принципиальная схема насоса позволяет получить максимальный КПД по расходу
- 100 Какая цель достигается при последовательном соединении насосов и при параллельном включении насосов
 - 101 Прибор для определения наносов отрытом русле
 - 102 Какой трубопровод работает под давлением, ниже атмосферного?
 - 103 Что такое нижний бьеф

Критерии и шкала оценивания по оценочному средству промежуточный контроль (экзамен)

Шкала оценивания	Vayraayii oyoyynayya		
·	Критерий оценивания		
(интервал баллов)			
отлично (5)	Студент глубоко и в полном объёме владеет программны		
	материалом. Грамотно, исчерпывающе и логично его		
	излагает в устной или письменной форме. При этом знает		
	рекомендованную литературу, проявляет творческий подход		
	в ответах на вопросы и правильно обосновывает приняты		
	решения, хорошо владеет умениями и навыками при		
	выполнении практических задач.		
хорошо (4)	Студент знает программный материал, грамотно и по сути		
	излагает его в устной или письменной форме, допуская		
	незначительные неточности в утверждениях, трактовках,		
	определениях и категориях или незначительное количество		
	ошибок. При этом владеет необходимыми умениями и		
	навыками при выполнении практических задач.		
удовлетворительно (3)	Студент знает только основной программный материал,		
	допускает неточности, недостаточно чёткие формулировки, непоследовательность в ответах, излагаемых в устной или		
	письменной форме. При этом недостаточно владеет		
	умениями и навыками при выполнении практических задач.		
	Допускает до 30% ошибок в излагаемых ответах.		
неудовлетворительно (2)	Студент не знает значительной части программного		
	материала. При этом допускает принципиальные ошибки в		
	доказательствах, в трактовке понятий и категорий, проявляет		
	низкую культуру знаний, не владеет основными умениям		
	навыками при выполнении практических задач. Студент		
	отказывается от ответов на дополнительные вопросы		

Лист изменений и дополнений

No	Виды дополнений и	Дата и номер протокола	Подпись (с
Π/Π	изменений	заседания кафедры	расшифровкой)
		(кафедр), на котором были	заведующего кафедрой
		рассмотрены и одобрены	(заведующих кафедрами)
		изменения и дополнения	