
Комплекс оценочных материалов

Специальность: 09.02.01 «Компьютерные системы и комплексы»

Дисциплина: МДК 02.04 Разработка прикладных приложений

Задания закрытого типа на выбор правильного ответа

1. В Arduino IDE объявлен массив: int pins[] = {A0, A1, A2};

Какой фрагмент кода корректно определяет количество элементов в

этом массиве для дальнейшего перебора в цикле?

А) int n = pins.length;

Б) int n = sizeof(pins) / sizeof(pins[0]);

В) int n = pins.size();

Г) int n = length(pins);

Правильный ответ: Б

Компетенции (индикаторы): ПК 2.1, ОК 02.

2. В Java массив строк объявлен как: String[] logs = {"25°C", "60% RH",

"ON"};

Как получить значение последнего элемента массива?

А) logs[logs.length - 1];

Б) logs.last();

В) logs.get(logs.size() - 1);

Г) logs[-1];

Правильный ответ: А

Компетенции (индикаторы): ПК 2.1, ОК 01.

3. Какой из приведённых фрагментов кода на Java представляет

корректное объявление класса с приватным полем, конструктором и

геттером?

А) class Sensor { String type; }

Б) public class Sensor { private String type; public Sensor(String t) { type =

t; } public String getType() { return type; } }

В) Sensor(String type) { this.type = type; }

Г) class Sensor { public String type; }

Правильный ответ: Б

Компетенции (индикаторы): ПК 2.1, ОК 09.

4. В Java имеются два списка:

List<Sensor> sensors; // каждый Sensor имеет поля id и type

List<Device> devices; // каждый Device имеет поля sensorId и status

Какой фрагмент кода выведет пары «тип сенсора — статус устройства»

для всех устройств, связанных с сенсорами по совпадению sensor.id ==

device.sensorId?

А) System.out.println(sensors.type + " " + devices.status);

Б) for (Device d : devices) { Sensor s = findSensorById(d.sensorId);

System.out.println(s.type + " " + d.status); }

В) for (Sensor s : sensors) { for (Device d : devices) { if (s.id == d.sensorId)

System.out.println(s.type + " " + d.status); } }

Г) JOIN sensors, devices ON sensors.id = devices.sensorId

Правильный ответ: В

Компетенции (индикаторы): ПК 2.3, ПК 2.4.

5. При модификации класса Device в Java необходимо добавить поле

batteryLevel с соблюдением принципа инкапсуляции. Какой вариант

корректен?

А) public double batteryLevel;

Б) private double batteryLevel; public double getBatteryLevel() { return

batteryLevel; }

В) batteryLevel: double;

Г) field batteryLevel = 0.0;

Правильный ответ: Б

Компетенции (индикаторы): ПК 2.5, ОК 01.

6. Требуется отсортировать список объектов Device сначала по

убыванию поля status (лексикографически), а при равенстве — по

возрастанию поля name. Какой код реализует это?

А) Collections.sort(devices,

Comparator.comparing(Device::getStatus).thenComparing(Device::getName));

Б) Collections.sort(devices,

Comparator.comparing(Device::getStatus).reversed().thenComparing(Device::get

Name));

В) Collections.sort(devices,

Comparator.comparing(Device::getName).thenComparing(Device::getStatus).reve

rsed());

Г) devices.sort((a, b) -> b.status.compareTo(a.status));

Правильный ответ: Б

Компетенции (индикаторы): ПК 2.1, ОК 04.

7. В классе Sensor определены методы:

public void setStatus(String status) { this.status = status; }

public String getStatus() { return status; }

Какой фрагмент корректно устанавливает статус в "ACTIVE" и

выводит подтверждение в консоль?

А) sensor.status = "ACTIVE"; System.out.println("OK");

Б) sensor.set("status", "ACTIVE");

В) UPDATE sensor SET status = "ACTIVE";

Г) sensor.setStatus("ACTIVE"); System.out.println("Status: " +

sensor.getStatus());

Правильный ответ: Г

Компетенции (индикаторы): ПК 2.1, ОК 05.

8. Даны два списка:

List<Picture> pictures; // поля: name, painterId

List<Painter> painters; // поля: id, fullName

Какой фрагмент выведет все картины художника с fullName =

"Picasso"?

А) pictures.stream().filter(p -> p.painterId ==

1).forEach(System.out::println);

Б) pictures.stream().filter(p -> painters.stream().anyMatch(a -> a.id ==

p.painterId && a.fullName.equals("Picasso"))).forEach(System.out::println);

В) SELECT * FROM pictures WHERE painter = "Picasso";

Г) pictures.find("Picasso");

Правильный ответ: Б

Компетенции (индикаторы): ПК 2.3, ОК 02.

Задания закрытого типа на установление соответствия

1. Установите соответствие между этапом разработки и уровнем

проектирования:

Характеристика Уровень

А) Настройка режимов пинов в Arduino (INPUT/OUTPUT)
1)

Концептуальный

Б) Формулирование требований к функциональности

системы
2) Физический

В) Определение классов Sensor, Device с методами 3) Архитектурный

Г) Разработка схемы взаимодействия модулей управления

и отображения
4) Логический

 Правильный ответ: А–2, Б–1, В–4, Г–3

 Компетенции (индикаторы): ПК 2.1, ОК 01.

2. Соответствие между подходом к разработке и его характеристикой:

Описание Модель

А) Обработка данных через последовательное

чтение байтов из InputStream

1) Событийно-

ориентированный

Б) Использование extends для расширения 2) Процедурный

Описание Модель

функционала базового класса

В) Реакция на нажатие кнопки через ActionListener

в Swing

3) Объектно-

ориентированный

Г) Последовательный опрос датчиков в цикле

loop()
4) Потоковый

 Правильный ответ: А–4, Б–3, В–1, Г–2

 Компетенции (индикаторы): ПК 2.3, ОК 09.

3. Соответствие между типом идентификатора и его назначением:

Описание Название

А) Поле name используется только для сортировки и

поиска
1) Составной ключ

Б) Уникальный id у каждого объекта Device
2) Вспомогательный

атрибут

В) Комбинация deviceId + timestamp гарантирует

уникальность записи в логе
3) Первичный ключ

Г) Поле deviceId в классе Sensor ссылается на

объект Device
4) Внешний ключ

 Правильный ответ: А–2, Б–3, В–1, Г–4

 Компетенции (индикаторы): ПК 2.4, ОК 02.

4. Соответствие между фрагментом кода и его назначением:

Описание Название

А) double avg = sum / count; 1) Сортировка данных

Б) if (value > threshold) activate();
2) Вычисление агрегатной

функции

В) Arrays.sort(devices,

Comparator.comparing(...));
3) Условный оператор

Г) for (int i = 0; i < sensors.length; i++) 4) Цикл с параметром

 Правильный ответ: А–2, Б–3, В–1, Г–4

 Компетенции (индикаторы): ПК 2.1, ОК 01.

5. Операции над коллекциями в Java:

Описание Название

А) Удаление из списка devices всех ID,

отсутствующих в validIds
1) Пересечение

Б) Объединение двух списков показаний сенсоров в 2) Разность

Описание Название

один

В) Поиск сенсоров, присутствующих в обоих

списках
3) Объединение

Г) Генерация всех возможных пар «устройство–

сенсор»

4) Декартово

произведение

 Правильный ответ: А–2, Б–3, В–1, Г–4

 Компетенции (индикаторы): ПК 2.3, ОК 04.

6. Работа с файлами в Java:

Результат Оператор

А) При ошибке чтения данные не сохраняются

— буфер сбрасывается
1) flush() перед close()

Б) Файл закрывается в любом случае, даже при

возникновении исключения
2) Неиспользование flush()

В) Данные записываются в файл немедленно

по таймеру
3) try-finally с close()

Г) Все данные из буфера гарантированно

попадают на диск перед завершением

4) Планировщик задач с

автосохранением

 Правильный ответ: А–2, Б–3, В–4, Г–1

 Компетенции (индикаторы): ПК 2.5, ОК 07.

7. Обработка сигналов в Arduino:

Описание Название

А) Передача данных по Serial в строгом порядке,

байт за байтом
1) Повторяемый

Б) Повторное чтение сигнала до достижения

стабильного значения
2) Последовательный

В) Доступ к разделяемой переменной защищён

блокировкой
3) Асинхронный

Г) Чтение датчика запускается по прерыванию, без

ожидания в loop()

4)

Синхронизированный

 Правильный ответ: А–2, Б–1, В–4, Г–3

 Компетенции (индикаторы): ПК 2.4, ОК 06.

8. UML: связь между классами:

Фрагмент Описание

А) JFrame (1) — (1) JPanel 1) Обязательная с обеих сторон

Б) ArduinoBoard (0..1) — (1..*) Pin 2) Композиция (часть-целое)

Фрагмент Описание

В) Device (1) — (1..*) Sensor 3) Необязательная с одной стороны

Г) Class — (1..*) Method 4) Агрегация без обязательности

 Правильный ответ: А–1, Б–3, В–1, Г–2

 Компетенции (индикаторы): ПК 2.1, ОК 05.

Задания закрытого типа на установление правильной

последовательности

1. Расположите фундаментальные модели программирования в порядке

их исторического появления, начиная с процедурной модели в C для базовых

IoT-скриптов и заканчивая объектно-ориентированной в Java для

современных приложений.

 А) Объектно-ориентированная (Java для классов IoT)

 Б) Иерархическая (структуры данных в C++ для пинов Arduino)

 В) Сетевая (соединения устройств в IoT-протоколах)

 Г) Процедурная (основные функции в C для Arduino IDE)

 Правильный ответ: Г, Б, В, А

 Компетенции (индикаторы): ОК 02, ОК 03.

2. Расположите действия в порядке, в котором они фактически

выполняются при работе цикла for (int i = 0; i < 5; i++) { ... }:

 А) Проверка условия i < 5

 Б) Выполнение тела цикла

 В) Инициализация счётчика int i = 0

 Г) Увеличение счётчика i++

 Правильный ответ: В, А, Б, Г

 Компетенции (индикаторы): ПК 2.4, ОК 01.

3. Массив: ["ZigbeeModule", "Actuator", "DHT22", "ESP32"]

После сортировки по убыванию (DESC) получается определённый

порядок. Укажите, в какой последовательности элементы будут выведены:

 А) ZigbeeModule

 Б) ESP32

 В) DHT22

 Г) Actuator

Правильный ответ: А, Б, В, Г

 Компетенции (индикаторы): ПК 2.1, ОК 04.

4. Расположите части объявления метода в классе Java в синтаксически

правильном порядке:

 А) { return analogRead(pin); }

 Б) public

 В) (int pin)

 Г) int

 Д) readValue

 Правильный ответ: Б, Г, Д, В, А

 Компетенции (индикаторы): ПК 2.3, ОК 09.

5. Расположите виды обработки данных в Arduino в порядке

возрастания детерминированности выполнения (от наименее предсказуемой

к наиболее строгой):

 А) Чтение по прерыванию (например, attachInterrupt)

 Б) Последовательная передача по UART (Serial.write)

 В) Повторяемое опросное чтение (while (!ready) read();)

 Г) Обычный опрос в loop() без синхронизации

 Правильный ответ: А, Г, В, Б

 Компетенции (индикаторы): ПК 2.5, ОК 07.

6. Укажите правильный порядок структурных элементов в файле

Main.java:

 А) public class Main {

 Б) import java.util.List;

 В) private List<Sensor> sensors;

 Г) public static void main(String[] args) { ... }

 Д) } (закрывающая скобка класса)

Правильный ответ: Б, А, В, Г, Д

 Компетенции (индикаторы): ПК 2.4, ОК 02.

7. Укажите последовательность шагов инициализации пина для чтения

аналогового сенсора в Arduino на C++: включение библиотеки, объявление

пина в переменной, установка режима в setup(), чтение значения в loop().

А) void loop() { int value = analogRead(sensorPin); Serial.println(value); }

(чтение и вывод в основном цикле)

Б) const int sensorPin = A0; (объявление константы пина в начале

скетча)

В) #include <Arduino.h> (включение стандартной библиотеки Arduino в

начале файла)

Г) pinMode(sensorPin, INPUT); (установка режима ввода в функции

setup())

Правильный ответ: В, Б, Г, А

Компетенции (индикаторы): ПК 2.1, ОК 01.

8. Расположите элементы объектно-ориентированной структуры в

порядке их появления при запуске программы:

 А) Создание объекта: Sensor temp = new Sensor("temp", A0);

 Б) Определение класса: public class Sensor { ... }

 В) Объявление пакета: package iot.devices;

 Г) Импорт зависимостей: import java.io.Serializable;

 Правильный ответ: В, Г, Б, А

 Компетенции (индикаторы): ПК 2.3, ОК 03.

Задания закрытого типа на установление правильной

последовательности

1. Установите правильную последовательность этапов компиляции

и выполнения простого Java-приложения для IoT-устройства (от написания

кода до запуска).

Варианты шагов (в перемешанном порядке):

А) Запуск JVM: java Main

Б) Компиляция: javac Main.java (получение Main.class)

В) Написание кода в файле Main.java с методом main()

Г) Загрузка байт-кода и выполнение метода main()

Правильная последовательность: В → Б → А → Г

Компетенции (индикаторы): ПК 2.1, ОК 01.

2. Установите правильную последовательность действий при

создании и использовании объекта класса Sensor в Java.

Варианты шагов:

А) Вызов метода объекта: sensor.readValue()

Б) Импорт класса: import iot.Sensor; (если в пакете)

В) Создание экземпляра: Sensor sensor = new Sensor("temp");

Г) Объявление класса: public class Sensor { ... }

Правильная последовательность: Г → Б → В → А

Компетенции (индикаторы): ПК 2.3, ОК 09.

3. Установите правильную последовательность выполнения кода в

Arduino-скетче от момента загрузки на плату.

Варианты шагов:

А) Многократное выполнение void loop() { ... }

Б) Однократное выполнение void setup() { ... }

В) Инициализация аппаратных библиотек и переменных (до setup)

Г) Завершение загрузки скетча и старт выполнения

Правильная последовательность: Г → В → Б → А

Компетенции (индикаторы): ПК 2.4, ОК 02.

4. Установите правильную последовательность операций Stream

API в Java для фильтрации, сортировки и вывода списка устройств с

batteryLevel > 70.

Варианты шагов:

А) .forEach(System.out::println)

Б) .sorted(Comparator.comparing(Device::getName))

В) devices.stream()

Г) .filter(d -> d.getBatteryLevel() > 70)

Правильная последовательность: В → Г → Б → А

Компетенции (индикаторы): ПК 2.4, ОК 04.

5. Установите правильную последовательность добавления

элементов в ArrayList<String> readings и последующего получения размера.

Варианты шагов:

А) int size = readings.size();

Б) readings.add("25°C");

В) List<String> readings = new ArrayList<>();

Г) readings.add("60%");

Правильная последовательность: В → Б → Г → А

Компетенции (индикаторы): ПК 2.1, ОК 01.

6. Установите правильную последовательность шагов для

обработки прерывания в Arduino (на примере attachInterrupt).

Варианты шагов:

А) Выполнение функции обработчика ISR при возникновении события

Б) Определение функции-обработчика void handleInterrupt() { ... }

В) Регистрация прерывания: attachInterrupt(digitalPinToInterrupt(pin),

handleInterrupt, RISING);

Г) Настройка пина: pinMode(pin, INPUT_PULLUP); в setup()

Правильная последовательность: Б → Г → В → А

Компетенции (индикаторы): ПК 2.5, ОК 07.

7. Установите правильную последовательность наследования и

создания объектов в Java (базовый класс Device, дочерний SmartDevice).

Варианты шагов:

А) Создание объекта дочернего класса: SmartDevice sd = new

SmartDevice();

Б) Объявление дочернего класса: public class SmartDevice extends

Device { ... }

В) Объявление базового класса: public class Device { ... }

Г) Вызов переопределённого метода sd.readAdvancedData();

Правильная последовательность: В → Б → А → Г

Компетенции (индикаторы): ПК 2.3, ОК 05.

8. Установите правильную последовательность этапов чтения

данных с аналогового сенсора в Arduino и отправки по Serial.

Варианты шагов:

А) Serial.println(value);

Б) delay(1000); (задержка для читаемости)

В) int value = analogRead(A0);

Г) Serial.begin(9600); в setup()

Правильная последовательность: Г → В → А → Б

Компетенции (индикаторы): ПК 2.1, ОК 06.

Задания открытого типа на дополнение

Напишите пропущенное слово (словосочетание), раскрывающее суть

термина в контексте разработки.

1. В объектно-ориентированном программировании на Java количество

атрибутов (полей) в классе, описывающем сенсор (например, id, type, value),

называется _____ класса.

 Правильный ответ: арностью

 Компетенции (индикаторы): ОК 02.

2. В массиве объектов Device, хранящем 5 экземпляров IoT-устройств,

количество этих объектов называется _____ массива.

 Правильный ответ: мощностью

 Компетенции (индикаторы): ПК 2.4.

3. В принципах SOLID для проектирования классов Java первый

принцип (Single Responsibility Principle) требует, чтобы класс отвечал только

за одну _____ , например, класс Sensor только за чтение данных, а не за GUI.

Укажите аббревиатуру принципа.

 Правильный ответ: SRP

 Компетенции (индикаторы): ПК 2.1.

4. В цикле loop() Arduino логически неделимая последовательность

команд для чтения сенсора, обработки и вывода в Serial, переводящая

систему из состояния "ожидание" в "обработано", называется _____.

 Правильный ответ: итерацией цикла

 Компетенции (индикаторы): ПК 2.5.

5. В интерфейсе List<String> readings в Java метод, возвращающий

количество элементов показаний сенсоров для проверки полноты данных,

называется _____.

 Правильный ответ: size

 Компетенции (индикаторы): ПК 2.3.

6. Если класс SimpleDevice имеет поля id и name, то его _____ равна 2,

что определяет количество параметров в конструкторе.

 Правильный ответ: арность

 Компетенции (индикаторы): ОК 01.

7. При слиянии двух массивов в Java — одного с 8 показаниями

температуры и второго с 7 показаниями влажности — общее количество

элементов в результирующем массиве для анализа будет _____.

 Правильный ответ: 15

 Компетенции (индикаторы): ПК 2.4.

8. Метод из пакета java.util.Objects, который выбрасывает исключение,

если значение поля battery равно null, предотвращая ошибки в IoT-коде,

называется _____.

 Правильный ответ: requireNonNull

 Компетенции (индикаторы): ОК 09.

Задания открытого типа с кратким свободным ответом

1. В объектно-ориентированном программировании принцип,

обеспечивающий сокрытие внутренних данных класса Sensor (например,

private double value) от внешнего доступа с помощью геттеров/сеттеров,

называется _____.

 Правильный ответ: инкапсуляция

 Компетенции (индикаторы): ПК 2.1 (проектирование с защитой

данных).

2. Принцип ООП, позволяющий классу AdvancedDevice наследовать

методы readData() от базового Device и добавлять новые, расширяя

функциональность для сложных IoT-систем, называется _____.

 Правильный ответ: наследование

 Компетенции (индикаторы): ПК 2.3.

3. В коде Arduino для формирования строки сообщения "Температура:

25°C" из переменных, оператор соединения строк, аналогичный + в Java, но с

использованием String, — это _____.

 Правильный ответ: + (конкатенация)

 Компетенции (индикаторы): ПК 2.1.

4. В файле .java для создания базового класса, описывающего

устройство с конструктором, стандартная конструкция объявления

начинается с _____.

 Правильный ответ: public class

 Компетенции (индикаторы): ПК 2.5.

5. В ООП принцип, позволяющий методам разных классов (Sensor и

Actuator) обрабатывать один интерфейс readInput() по-разному, обеспечивая

гибкость в IoT, называется _____.

 Правильный ответ: полиморфизм

 Компетенции (индикаторы): ОК 07.

6. Оператор Java, позволяющий классу ChildDevice расширять базовый

ParentDevice, добавляя новые поля без изменения родителя, — это _____.

 Правильный ответ: extends

 Компетенции (индикаторы): ПК 2.5.

7. Конструкция языка Java для проверки условия (например, if (battery

> 50) activateDevice();) и выбора пути выполнения в ветвящемся алгоритме

обработки сигнала, называется _____.

 Правильный ответ: if-else

 Компетенции (индикаторы): ПК 2.4.

8. Функция в Arduino IDE, устанавливающая режим пина (INPUT или

OUTPUT) для подключения сенсора перед чтением данных в setup(),

называется _____.

 Правильный ответ: pinMode

 Компетенции (индикаторы): ОК 06.

Задания открытого типа с развернутым ответом

1. Выполните рефакторинг универсального класса UniversalIoT (с

полями sensor_id, type, value, device_id, location, battery_level) для

соответствия принципам ООП в Java, где один класс не должен отвечать за

все аспекты (нарушение SRP).

 Задачи:

 − проанализируйте предметную область IoT (сенсоры, устройства,

данные);

 − выявите нарушения (смешение данных устройства и сенсора);

 − предложите декомпозицию на 2–3 отдельных класса с объяснением

ролей каждого.

 Время выполнения – 15 мин.

 Ожидаемый ответ (один из вариантов):

 Класс Device (device_id, location, battery_level) — отвечает за

состояние устройства (геттеры для battery, метод updateLocation()).

 Класс Sensor (sensor_id, device_id, type, value) — отвечает за данные

сенсора (метод readValue(), ссылка на Device).

 Это устраняет SRP: Device — аппаратная часть, Sensor — данные.

Атрибуты распределены полностью.

 Критерии оценивания:

 − наличие 2+ классов с ролями;

 − соответствие SRP и инкапсуляции;

 − полное распределение атрибутов.

 Компетенции (индикаторы): ПК 2.1, ОК 01.

2. Составьте фрагмент кода на Java для обработки списка сенсоров:

выведите типы сенсоров и среднее battery_level только для тех, где

battery_level > 50%, группируя по типу (используйте Map или цикл).

 Задачи:

 − проанализируйте структуру (класс Sensor: String type, double

battery_level);

 − выберите средства (цикл for, HashMap для группировки, расчет

avg);

 − напишите код с выводом в консоль (например, "Temp: count=2,

avg=70.5").

 Время выполнения – 10 мин.

 Ожидаемый результат (вариант):

 Map<String, List<Double>> groups = new HashMap<>();

 for (Sensor s : sensors) {

 if (s.battery_level > 50) {

 groups.computeIfAbsent(s.type, k -> new

ArrayList<>()).add(s.battery_level);

 }

 }

 for (Map.Entry<String, List<Double>> e : groups.entrySet()) {

 double avg =

e.getValue().stream().mapToDouble(Double::doubleValue).average().orElse(0);

 System.out.println(e.getKey() + ": count=" + e.getValue().size() + ",

avg=" + avg);

 }

 Критерии оценивания:

 − правильный вывод с count и avg;

 − фильтр >50;

 − группировка и расчет; использование полей.

 Компетенции (индикаторы): ПК 2.4, ОК 02.

3. Дана UML-диаграмма классов для IoT-приложения (Device с полем

location, Sensor с type и value, связь 1-M). Дайте развернутое описание

особенностей предметной области.

 Задачи:

 − проанализируйте область (управление устройствами через

сенсоры);

 − выявите сущности (Device, Sensor) и классифицируйте атрибуты

(статические/динамические);

 − опишите связи (название, класс принадлежности, тип: 1-M

обязательная).

 Время выполнения – 30 мин.

 Ожидаемый результат (вариант):

 Сущности: Device (атрибуты: id — статический, location —

статический, battery — динамический); Sensor (type — статический, value —

динамический).

 Связь "Подключен": Device (1, обязательный) — Sensor (M,

обязательный) — тип "один-ко-многим", обеспечивает иерархию в IoT.

 Критерии оценивания:

 − все сущности с атрибутами и классификацией;

 − связи с названием, классом, типом;

 − все сущности в связях.

 Компетенции (индикаторы): ПК 2.2, ОК 04, ОК 05.

4. Составьте Java-код для анализа логов: из списка devices и logs (Log:

device_id, sensor_id, value) выведите ID и name устройств с >100 записями

логов только для сенсоров, как у "MainDevice", отсортировав по name.

 Задачи:

 − проанализируйте классы (Device: id, name; Log: device_id,

sensor_id);

 − выберите средства (Stream.filter, count, Comparator);

 − напишите код с выводом (id + " " + name).

 Время выполнения – 15 мин.

 Ожидаемый результат (вариант):

 Device main = devices.stream().filter(d ->

d.name.equals("MainDevice")).findFirst().orElse(null);

 if (main != null) {

 devices.stream().filter(d -> logs.stream().filter(l -> l.device_id == d.id

&& logs.stream().anyMatch(l2 -> l2.sensor_id == l.sensor_id && l2.device_id ==

main.id)).count() > 100)

 .sorted(Comparator.comparing(Device::getName)).forEach(d ->

System.out.println(d.id + " " + d.name));

 }

 Критерии оценивания:

 − вывод id/name;

 − фильтр >100 и совпадение сенсоров;

 − сортировка; циклы/Stream.

 Компетенции (индикаторы): ПК 2.4, ОК 02.

5. Перепишите код для поиска max value по pin в классе Sensor (поля

pin, value) с использованием Stream API, без вложенных циклов, выводя "pin

max_value" для каждого.

 Задачи:

 − проанализируйте класс (Sensor: int pin, double value);

 − выберите Stream (groupingBy, maxBy);

 − напишите фрагмент с выводом, гарантируя уникальность max.

 Время выполнения – 20 мин.

 Ожидаемый результат (вариант):

sensors.stream().collect(Collectors.groupingBy(Sensor::getPin)).values().stream()

 .map(list ->

list.stream().max(Comparator.comparing(Sensor::getValue)).orElse(null))

 .filter(Objects::nonNull).forEach(s -> System.out.println(s.pin + " " +

s.value));

 Компетенции (индикаторы): ПК 2.1, ПК 2.4, ОК 01.

6. Составьте Java-код для вывода названий улиц и городов из списков

Street (name, cityId) и City (id, name), соединив по cityId и отсортировав по

имени улицы.

 Задачи:

 − проанализируйте классы (Street: String name, int cityId; City: int id,

String name);

 − выберите средства (Map для City, Stream.map и sorted);

 − напишите код с выводом "street_name city_name".

 Время выполнения – 10 мин.

 Ожидаемый результат (вариант):

 Map<Integer, String> cityNames =

cities.stream().collect(Collectors.toMap(City::getId, City::getName));

 streets.stream().map(s -> s.name + " " +

cityNames.get(s.cityId)).sorted().forEach(System.out::println);

 Критерии оценивания:

 − вывод пар;

 − соединение по id;

 − сортировка.

 Компетенции (индикаторы): ПК 2.3, ОК 02.

7. Составьте Java-код для подсчета количества улиц по типу (Street:

String typstr) с выводом "typstr count" , отсортировав по убыванию count.

 Задачи:

 − проанализируйте класс (Street: String typstr);

 − выберите HashMap или groupingBy, counting;

 − напишите код с sorted reversed.

 Время выполнения – 10 мин.

 Ожидаемый результат (вариант):

 Map<String, Long> counts =

streets.stream().collect(Collectors.groupingBy(Street::getTypstr,

Collectors.counting()));

 counts.entrySet().stream().sorted(Map.Entry.<String,

Long>comparingByValue().reversed()).forEach(e -> System.out.println(e.getKey()

+ " " + e.getValue()));

 Критерии оценивания:

 − вывод typstr count;

 − группировка counting;

 − сортировка desc.

 Компетенции (индикаторы): ПК 2.4, ОК 04.

8. Составьте Java-код для нумерации картин по художнику: из Picture

(name, painterId) и Painter (id, fio) выведите "name fio number" , нумеруя по

алфавиту name для каждого fio.

 Задачи:

 − проанализируйте классы (Picture: String name, int painterId; Painter:

int id, String fio);

 − выберите группировку, sorted, индексацию;

 − напишите код с выводом.

 Время выполнения – 10 мин.

 Ожидаемый результат (вариант):

 Map<Integer, String> painterNames =

painters.stream().collect(Collectors.toMap(Painter::getId, Painter::getFio));

 Map<String, List<Picture>> grouped =

pictures.stream().collect(Collectors.groupingBy(p ->

painterNames.get(p.painterId)));

 grouped.forEach((fio, pics) -> IntStream.range(0, pics.size()).mapToObj(i

-> pics.get(i).name + " " + fio + " " + (i+1)).forEach(System.out::println)); // после

sorted pics

 Критерии оценивания:

 − вывод name fio number;

 − группировка по fio;

 − нумерация после sort.

 Компетенции (индикаторы): ПК 2.1, ОК 05.

9. Составьте Java-код для вывода адресов: из Abon (shifrcit, shifrstr,

nomerdoma), Street (id, name), City (id, name) выведите "city_name street_name

house_number" , соединив по id.

 Задачи:

 − проанализируйте классы (Abon: int shifrcit, shifrstr, String

nomerdoma; etc.);

 − выберите Map для справочников, Stream.map;

 − напишите код с выводом.

 Время выполнения – 10 мин.

 Ожидаемый результат (вариант):

 Map<Integer, String> cityMap =

cities.stream().collect(Collectors.toMap(City::getId, City::getName));

 Map<Integer, String> streetMap =

streets.stream().collect(Collectors.toMap(Street::getId, Street::getName));

 abons.stream().map(a -> cityMap.get(a.shifrcit) + " " +

streetMap.get(a.shifrstr) + " " + a.nomerdoma).forEach(System.out::println);

 Критерии оценивания:

 − вывод трех полей;

 − соединение по id;

 − использование Map/Stream.

 Компетенции (индикаторы): ПК 2.3, ОК 02.

