КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ

для проведения текущего контроля и промежуточной аттестации в форме дифференцированного зачета

по учебной дисциплине **ЕН.02** Дискретная математика по специальности **09.02.05** Прикладная информатика (по отраслям)

РАССМОТРЕН И СОГЛАСОВАН

цикловой комиссией естественно - математических дисциплин Протокол N_2 1 от «26» августа 2022 г.

Председатель цикловой комиссии

Поп / Поперчук С.В.

Разработан на основе федерального государственного образовательного стандарта среднего профессионального образования по специальности по специальности 09.02.05 Прикладная информатика (по отраслям).

УТВЕРЖДЕН

заместителем директора по учебной работе

_/ Захаров В. В.

Составитель:

Захаров Владимир Викторович, преподаватель Колледжа Луганского национального университета имени Владимира Даля

(подпись)

1. Паспорт комплекта контрольно-оценочных средств

В результате освоения учебной дисциплины **ЕН.02** Дискретная математика обучающийся должен обладать предусмотренными ФГОС СПО по специальности **09.02.05** Прикладная информатика (по отраслям) следующими умениями:

- У1. применять методы дискретной математики;
- У2. строить таблицы истинности для формул логики;
- У3. представлять булевы функции в виде формул заданного типа;
- **У4.** выполнять операции над множествами, применять аппарат теории множеств для решения задач;
- У5. выполнять операции над предикатами;
- Уб. исследовать бинарные отношения на заданные свойства;
- У7. выполнять операции над отображениями и подстановками;
- У8. выполнять операции в алгебре вычетов;
- **У9.** применять простейшие криптографические шифры для шифрования текстов;
- У10. генерировать основные комбинаторные объекты;
- У11. находить характеристики графов;

знаниями:

- 31. логические операции, формулы логики, законы алгебры логики;
- **32.** основные классы функций, полноту множеств функций, теорему Поста;
- 33. основные понятия теории множеств, теоретико-множественные операции и их связь с логическими операциями;
- 34. логику предикатов, бинарные отношения и их виды;
- 35. элементы теории отображений и алгебры подстановок;
- **36.** основы алгебры вычетов и их приложение к простейшим криптографическим шифрам;
- 37. метод математической индукции;
- 38. алгоритмическое перечисление основных комбинаторных объектов;
- 39. основы теории графов;
- 310. элементы теории автоматов,

которые формируют профессиональную компетенцию, и общими компетенциями:

- **ОК 1.** Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- **ОК 2.** Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
 - ОК 3. Принимать решения в стандартных и нестандартных ситуациях

и нести за них ответственность.

- **ОК 4.** Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- **ОК 5.** Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- **ОК 6.** Работать в коллективе и в команде, эффективно общаться с коллегами, руководством, потребителями.
- **ОК 7.** Брать на себя ответственность за работу членов команды (подчиненных), за результат выполнения заданий.
- **ОК 8.** Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
- **ОК 9.** Ориентироваться в условиях частой смены технологий в профессиональной деятельности.

2. Оценивание уровня освоения учебной дисциплины

Предметом оценивания служат умения и знания, предусмотренные ФГОС СПО по дисциплине **EH.02** Дискретная математика, направленные на формирование общих и профессиональных компетенций. Промежуточная аттестация по учебной дисциплине проводится в форме экзамена.

Контроль и оценивание уровня освоения учебной дисциплины по темам (разделам)

Таблица 1

Элемент учебной дисциплины	Формы и методы контроля				
•	Текущий контроль	Промежуточная атте		чная аттестация	
	Форма контроля	Проверяемые ОК, У, 3	Форма контроля	Проверяемые ОК, У, 3	
Раздел 1. Основы математической логики.					
Тема 1.1. Формулы логики.					
Тема 1.2. Законы алгебры логики.	 Опрос по теоретическому материалу Экспертная оценка результатов деятельности обучающихся в процессе освоения программы на практических занятиях Самостоятельная работа Оценка результатов выполнения внеаудиторной индивидуальной работы 	OK 1 - OK 9, Y1, Y2 31			
 Тема 1.3. Нормальные формы формул алгебры логики. Экспертная оценка результатов деятельности обучающихся в процессе освоения программы на практических занятиях Письменное тестирование Оценка результатов выполнения внеаудиторной индивидуальной работы 		У1, У2 31			
Раздел 2. Булевы функции.					

Тема 2.1. Понятие булевой функции. Представление булевой функции в нормальных формах Тема 2.2. Полные системы булевых	 Опрос по теоретическому материалу Экспертная оценка результатов деятельности обучающихся в процессе освоения программы на практических занятиях Самостоятельная работа Экспертная оценка результатов деятельности обучающихся в процессе освоения программы на 	
функций. Критерий Поста.	практических занятиях	
Раздел 3. Основы теории множеств.		
Тема 3.1. Основные понятия теории множеств. Операции над множествами.	 Экспертная оценка результатов деятельности обучающихся в процессе освоения программы на практических занятиях Письменное тестирование Самостоятельная работа Оценка результатов выполнения внеаудиторной индивидуальной работы 	
Тема 3.2Бинарные отношения.	 Экспертная оценка результатов деятельности обучающихся в процессе освоения программы на практических занятиях Письменное тестирование Оценка результатов выполнения внеаудиторной индивидуальной работы 	
Тема 3.3. Логика предикатов.	 Опрос по теоретическому материалу Экспертная оценка результатов деятельности обучающихся в процессе освоения программы на практических занятиях Письменное тестирование Самостоятельная работа 	OK 1 - OK 9 У5 34, 38

	• Оценка результатов выполнения внеаудиторной	
	индивидуальной работы	
Раздел 4. Элементы теории	индивидуальной рассты	
отображений и алгебры		
подстановок.		
Тема 4.1.	Опрос по теоретическому материалу	OK 1 - OK 9
Отображения.		У7
Отооражения.	• Экспертная оценка результатов деятельности	35
	обучающихся в процессе освоения программы на	
	практических занятиях	
T 12	• Самостоятельная работа	
Тема 4.2.	• Опрос по теоретическому материалу	OK 1 - OK 9
Подстановки.	• Экспертная оценка результатов деятельности	У7
	обучающихся в процессе освоения программы на	35
	практических занятиях	
	• Оценка результатов выполнения внеаудиторной	
	индивидуальной работы	
Раздел 5. Элементы алгебры		
вычетов и их приложение к		
простейшим		
криптографическим шифрам.		
Тема 5.1.	• Опрос по теоретическому материалу	OK 1 - OK 9
Основы алгебры вычетов.	• Экспертная оценка результатов деятельности	<u> </u>
	обучающихся в процессе освоения программы на	36
	практических занятиях	
	• Самостоятельная работа	
Тема 5.2.	• Опрос по теоретическому материалу	OK 1 - OK 9
Простейшие криптографические	• Экспертная оценка результатов деятельности	У9
шифры.	обучающихся в процессе освоения программы на	36
	практических занятиях	
	• Самостоятельная работа	
Раздел 6. Алгоритмическое	, A	
	1	<u> </u>

	1	T	T	T
перечисление (генерирование)				
комбинаторных объектов.				
Тема 6.1.	• Опрос по теоретическому материалу	OK 1 - OK 9		
Генерирование комбинаторных	• Экспертная оценка результатов деятельности	У10		
объектов.	обучающихся в процессе освоения программы на	38		
	практических занятиях			
	• Самостоятельная работа			
Раздел 7. Основы теории				
графов и автоматов.				
Тема 7.1.	• Опрос по теоретическому материалу	ОК 1 - ОК 9		
Основные понятия теории	• Экспертная оценка результатов деятельности	У11		
графов.	обучающихся в процессе освоения программы на	39		
	практических занятиях			
	• Самостоятельная работа			
Тема 7.2.	Опрос по теоретическому материалу	OK 1 - OK 9		
Связные компоненты графа	• Экспертная оценка результатов деятельности	У11		
1 1	обучающихся в процессе освоения программы на	39		
	практических занятиях			
	Самостоятельная работа			
T. 7.2	*	OK 1 OK 0		
Тема 7.3.	• Опрос по теоретическому материалу	OK 1 - OK 9		
Основные понятия теории	• Экспертная оценка результатов деятельности	310		
автоматов.	обучающихся в процессе освоения программы на			
	практических занятиях			
Промежуточная аттестация			Экзамен	У1 – У11;
				31 – 310;
				ОК1 – ОК9,
				ПК 1.1, ПК 1.3,
				ПК 2.1, ПК 2.2,
				ПК 2.6, ПК 3.3,
				ПК 4.2

3. Задания для оценки освоения учебной дисциплины

3.1. Задания для текущего контроля

Текущий контроль проводится по темам в соответствии с рабочей программой учебной дисциплины **EH.02** Дискретная математика.

Задания для проведения текущего контроля приведены в Приложении №1.

Критерии оценивания текущего контроля

Оценка тестовых работ обучающихся

Уровень учебных достижений	Показатели оценки результата
«5»	правильно выполнено 85% - 100% заданий
«4»	правильно выполнено 70% - 84% заданий
«3»	правильно выполнено 50% - 69% заданий
«2»	правильно выполнено 25% - 49% заданий
«1»	правильно выполнено 0% - 24% заданий

Оценка устных ответов обучающихся

Оценка устивіх	ответов обучающихся
Уровень учебных достижений	Показатели оценки результата
«5»	 полно раскрыл содержание материала в объеме, предусмотренном программой; изложил материал грамотным языком в определенной логической последовательности, точно используя терминологию и символику; правильно выполнил рисунки, чертежи, графики, сопутствующие опвету; показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания; продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при отработке умений и навыков; отвечал самостоятельно без наводящих вопросов преподавателя. Возможны одна-две неточности при освещении второстепенных вопросов или в выкладках, которые обучающийся легко исправил по замечанию преподавателя.
«4»	 в изложении допустил небольшие пробелы, не исказившие содержание ответа; допустил один-два недочета при освещении основного содержания ответа; допустил ошибку или более двух недочетов при освещении второстепенных вопросов или в выкладках.
«З»	• неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения,

	достаточные для дальнейшего усвоения программного материала;				
	• имелись затруднения или допущены ошибки в определении понятий,				
	использовании терминологии, чертежах, выкладках, исправленные				
	после нескольких наводящих вопросов;				
	• студент не справился с применением теории в новой ситуации при				
	выполнении практического задания, но выполнил задания				
	обязательного уровня сложности по данной теме;				
	• при изложении теоретического материала выявлена недостаточная				
	сформированность основных умений и навыков.				
«2»	• не раскрыто основное содержание учебного материала;				
	• обнаружено незнание или непонимание студентом большей или наиболее				
	важной части учебного материала;				
	• допущены ошибки в определении понятий, при использовании				
	математической терминологии, в рисунках, чертежах или графиках, в				
	выкладках, которые не исправлены после нескольких наводящих				
	вопросов.				

Для речевой культуры обучающихся важны и такие умения, как умение слушать и принимать речь преподавателя и одногруппников, внимательно относится к высказываниям других, умение поставить вопрос, принимать участие в обсуждении проблемы и т.п.

Оценка письменных работ обучающихся

Оценка писыменных работ боу чающихся			
Показатели оценки результатов			
работа выполнена правильно и в полном объеме; в логических рассуждениях			
и обосновании решения нет пробелов и ошибок; в решении нет			
математических ошибок (возможна одна неточность, описка, не являющаяся			
следствием незнания или непонимания учебного материала).			
работа выполнена правильно, но обоснования шагов решения недостаточны			
(если умение обосновывать рассуждения не являлось специальным объектом			
проверки); допущена одна ошибка или два-три недочета в выкладках,			
рисунках, чертежах или графиках (если эти виды работы не являлись			
специальным объектом проверки); выполнено без недочетов не менее 75%			
заданий.			
допущены более одной ошибки или более трех недочетов в выкладках,			
чертежах или графиках, но учащийся владеет обязательными умениями по			
проверяемой теме; без недочетов выполнено не менее 50% работы.			
допущены существенные ошибки, показавшие, что обучающийся не владеет			
обязательными умениями по данной теме в полной мере; правильно			
выполнено менее 50% работы.			

Критерии ошибок:

К ошибкам относятся:

- ошибки, которые обнаруживают незнание учащимися формул, правил, основных свойств и неумение их применять;
- незнание приемов решения задач, а также вычислительные ошибки, если они не являются опиской;
- неумение выделить в ответе главное, неумение делать выводы и обобщения, неумение пользоваться первоисточниками, учебником и справочниками.

К недочетам относятся:

• описки, недостаточность пояснений, обоснований в решениях,

- небрежное выполнение записей, чертежей, схем, графиков;
- орфографические ошибки, связанные с написанием терминов.

3.2. Задания для промежуточной аттестации

В соответствии с учебным планом ППССЗ по специальности 09.02.05 Прикладная информатика (по отраслям) по учебной дисциплине **ЕН.02** Дискретная математика предусмотрено проведение промежуточной аттестации в форме экзамена. Задания для проведения промежуточной аттестации приведены в Приложении №2.

4. Условия проведения промежуточной аттестации

Количество вариантов заданий для аттестующихся – по количеству аттестующихся.

Время выполнения задания — 80 мин. Оборудование: бланки документов.

5. Критерии оценивания промежуточной аттестации

Уровень учебных достижений	Показатели оценки результатов		
«5»	работа выполнена правильно и в полном объеме; в логических рассуждениях и обосновании решения нет пробелов и ошибок; в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала).		
«4»	работа выполнена правильно, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки); допущена одна ошибка или два-три недочета в выкладках, рисунках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки); выполнено без недочетов не менее 75% заданий.		
«3»	допущены более одной ошибки или более трех недочетов в выкладках, чертежах или графиках, но учащийся владеет обязательными умениями по проверяемой теме; без недочетов выполнено не менее 50% работы.		
«2»	допущены существенные ошибки, показавшие, что обучающийся не владеет обязательными умениями по данной теме в полной мере; правильно выполнено менее 50% работы.		

ПРИЛОЖЕНИЕ

Контрольно-оценочные средства промежуточной аттестации

Учебная дисциплина ЕН.02 Дискретная математика

Специальность 09.02.05 Прикладная математика (по отраслям)

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

	Задаг	ния первого уровня		
1.	Таблица истинности для	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	операции конъюнкции имеет	0 0 1 0 0		
	вид	0 1 1 0 1 1		
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
		0 0 0 0 1		
		1 0 0 1 0 0		
2.	Укажите ДНФ булевой функции	A. $f(x_1, x_2) = \bar{x}_1 x_2 \vee x_1 \bar{x}_2$		
	$f(x_1, x_2) = x_1 \to x_1 x_2$	B. $f(x_1, x_2) = x_1 \vee x_1 x_2$		
		C. $f(x_1, x_2) = (\bar{x}_1 \lor x_2)(x_1 \lor x_2)$		
		D. $f(x_1, x_2) = \overline{x_1} \vee x_2$		
3.	Постройте многочлен	A. $P(x, y) = x \oplus y \oplus 1$		
	Жегалкина для функции	B. $P(x, y) = x \oplus y \oplus 1$		
	f = (1011).	C. $P(x, y) = xy \oplus x \oplus y$		
4.	Various was accommon an indicating	D. $P(x, y) = xy \oplus x \oplus 1$ A. $A = \{\text{понедельник, вторник, среда, четверг,}$		
4.	Какие из множеств являются универсальными?	A = {понедельник, вторник, среда, четверг, пятница, суббота, воскресенье}		
	универсальными.	В. A = {понедельник, среда, пятница}		
		С. А – множество студентов группы,		
		отсутствующих на занятии		
		D. А – множество студентов группы		
5.	Известно, что $x \in (A \setminus B)$. Какие	\mathbf{A} , $x \in A$		
	из утверждений являются	B. $x \notin (A \cap B)$		
	верными?	$\mathbf{C}. x \in (A \cup B)$		
		D. $x \notin B$		
		Е. все утверждения верны		
6.	Укажите свойства отношения	, рефлексивность		
	$P = \{(a;b) a \perp b\}$ на множестве	В. симметричностьС. антисимметричность		
	всех прямых в пространстве.	С. антисимметричностьD. транзитивность		
		Е. антитранзитивность		
7.	Чему равна $ A \cap B $, если	$\mathbf{A.} m+n$		
	Temy padita [21] [10], Cellin			

Задания первого уровня				
	$ A =n, A\setminus B =m$.	B.	m-n	
		C.	n-m	
		D.	0	
		E.	невозможно определить	
8.	Предложение « $x + y = 0$ »	A.	нуль-местным предикатом	
	является	В.	одноместным предикатом	
		C.	двухместным предикатом	
		D.	трехместным предикатом	
9.	Найдите отрицание формулы $\exists x (P(x) \land Q(x))$		$\exists x (\overline{P(x)} \land \overline{Q(x)})$	
			$\forall x (\overline{P(x)} \vee \overline{Q(x)})$	
			$\forall x (\overline{P(x)} \land \overline{Q(x)})$	
		D.	$\exists x (\overline{P(x)} \vee \overline{Q(x)})$	
10.	Граф называется, если все его	Α.	Неориентированным	
	связи заданы дугами.	B.	Ориентированным	
			Смешанным	
		D.	Зависит от графа	
11.	Укажите множество ребер		$\{(X_1, X_1), (X_1, X_3), (X_2, X_2), (X_3, X_1), (X_3, X_3)\}$	
	графа, матрица смежности		$\{(X_1, X_2), (X_2, X_3)\}$	
	которого имеет вид	C.	$\{(X_1, X_1); (X_1, X_2); (X_1, X_3); (X_2, X_2); (X_3, X_3)\}$	
	$A(G) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$	D.	$\{(X_1, X_1), (X_2, X_2), (X_3, X_3)\}$	
	$A(G) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$			
12.	Определите эксцентриситет	Α.	1	
	вершины X_5 графа	В.		
	x_2	C.		
	- ~	D.	4	
	X_3			
	A5			

Председатель методической комиссии	 Поперчук С.В.
Преподаватель	 Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

	Задания первого уровня						
1.	Таблица истинности для операции импликации имеет вид	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
2.	Среди предложенных равенств укажите закон ассоциативности	A. $(x \lor y)(x \lor z) = x \lor yz$ B. $(x \lor y) \lor z = x \lor (y \lor z)$ C. $xy \lor x\overline{y} = x$ D. $xy = yx$					
3.	Укажите, каким классам Поста принадлежит функция $f(x, y, z) = (01111111)$	A. T ₀ B. T ₁ C. S D. M					
4.	Задайте множество $A = \{1,3,9,27,81,\dots\}$ с помощью характеристического свойства	A. $A = \{3n \mid n \in N\}$ B. $A = \{3^n \mid n = 0, n \in N\}$ C. $A = \{3^n \mid n \ge 0\}$ D. $A = \{n^3 \mid n \le 5\}$					
5.	Известно, что $x \in A$. Какие из утверждений являются верными?	A. $x \in (A \cup B)$ B. $x \in (A \cap B)$ C. $x \in (A \setminus B)$ D. $x \in (A \triangle B)$ E. верных утверждений нет					
6.	Какое из отношений P на множестве $M = \{a;b;c;d;e;f\}$ является диагональю множества M ?	A. $P = \{(a;b),(b;c),(c;d),(d;e),(e;f),(f;a)\}$ B. $P = \{(a;a),(a;b),(a;c),(a;d),(a;e),(a;f)\}$ C. $P = \{(a;a),(b;b),(c;c),(d;d),(e;e),(f;f)\}$ D. $P = \{(a;f),(b;e),(c;d)\}$					

	Задания первого уровня						
7.	На множестве $M = \{a, c, k, n\}$	A.	всюду определенное				
	задано бинарное отношение	В.	частично определенное				
	$P = \{(a; a), (c; k), (k; n), (n; k)\}.$	C.	сюръекция				
	Укажите вид отношения	D.	инъекция				
	$P \subset (M \times M)$.	Ε.	функция				
	,	F.	биекция				
8.	Предикатом называется	Α.	предмет				
	предложение, которое	В.	высказывательную переменную				
	превращается в при	C.	предикат				
	подстановке вместо предметных	D.	высказывание				
	переменных любых конкретных						
	элементов из предметных						
	областей						
9.	Предложение «Если найдется	Α.	$\forall x P(x) \to \exists x \overline{Q(x)}$				
	какой-нибудь x , что $P(x)$	В.	$\exists x P(x) \land \exists x \overline{Q(x)}$				
	выполним, то не для всех х		$\exists x P(x) \to \overline{\forall x Q(x)}$				
	выполним $Q(x)$ » символически						
	может быть записано в виде	D.	$\forall x P(x) \vee \overline{\exists x Q(x)}$				
		E.	$\exists x P(x) \leftrightarrow \overline{\exists x Q(x)}$				
10.	Две вершины графа, которые	A.	Смежными				
	принадлежат одному ребру	В.	Инцидентными				
	(дуге), называются	C.	Соседними				
		D.	Висячими				
11.	Граф, содержащий	Α.	Ориентированным				
	изолированные вершины, не	В.	Полным				
	может быть	C.	Связным				
		D.	Мультиграфом				
12.	Маршрут	Α.	Путем				
	X2, X5, X3, X4, X2, X1	В.	Простым путем				
	является	C.	Цепью				
		D.	Циклом				
<u></u>							

Председатель методической комиссии	 Поперчук С.В.
Преподаватель	 Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

	Задания первого уровня						
1.	Таблица истинности для	$\begin{array}{ c c c c c c c } \hline \textbf{A.} & x & y & F \\ \hline \end{array} \begin{array}{ c c c c } \hline \textbf{B.} & x & y & F \\ \hline \end{array}$					
	формулы $F = X \leftrightarrow \overline{Y}$ имеет вид	0 0 1 0 0 0					
		0 1 0 0 1 1					
		1 0 0 1					
		1 1 1 1 0					
		$\begin{array}{ c c c c c c } \hline \textbf{C.} & x & y & F \\ \hline \end{array} \qquad \begin{array}{ c c c c } \hline \textbf{D.} & x & y & F \\ \hline \end{array}$					
		1 0 0 1					
		1 1 1 1 1 1					
2.	Какая из приведенных формул	A. $(x \lor y \lor z) \land (\overline{x} \lor y \lor \overline{z}) \land (x \lor \overline{y} \lor z)$					
	является совершенной	B. $(x \wedge y \wedge z) \vee (\overline{x} \wedge y \wedge \overline{z}) \vee (x \wedge \overline{y} \wedge z)$					
	дизъюнктивной нормальной	C. $(x \wedge y) \vee (\bar{x} \wedge y \wedge \bar{z}) \vee (\bar{y} \wedge z)$					
	формой?	$\mathbf{D.} \frac{\langle x \wedge y \wedge z \rangle}{\langle x \wedge y \wedge z \rangle} \vee (\overline{x} \wedge \overline{y} \wedge z)$					
3.	Какая из функций принадлежит	A. $f = (11101110)$					
	классу самодвойственных	B. $f = (00100101)$					
	функций?	C. $f = (0100101)$					
		D. $f = (00011000)$					
4.	Количество элементов, из	А. размерностью					
	которых состоит множество,	В. порядком					
	называется	С. объемомD. мощностью					
		D. мощностью					
5.	Выполните операции над	A. $[-6;1]$					
	множествами	B. $[-6;2)$					
	$[-6;2)\setminus(1;2)$	C. (1;2)					
		D. [-6;2]					
6.	Какие из заданных отношений	А. «обозначать гласный звук» на множестве букв					
	являются бинарными на	алфавита					
	указанных множествах	В. «быть равными» на множестве действительных					
		чисел					
		С. «быть столицей» на множестве городов					
		D. «содержать одинаковые ссылки» на множестве					
		WEB-страниц					

		111 <i>7</i> 1 11	ервого уровня
7.	Пусть $f: A \rightarrow B$. Множество	A.	областью определения соответствия f
	$\{x \in A \mid \exists y \in B : (x; y) \in f\}$	B.	областью образов соответствия f
	называется	C.	областью прообразов соответствия f
		D.	областью значений соответствия f
8.	Е сли в предикате $P(x, y, z)$		нуль-местный предикат
	предметные переменные х и у	B.	одноместный предикат
	замещены конкретными		двухместный предикат
	значениями (предметами), то он	D.	трехместный предикат
	превращается в		
9.	Какие из переменных x , y , z		все переменные в формуле являются свободными
	входят в формулу логики		x, y, z
	предикатов		x, z
	$\exists y \forall z (P(x,y) \rightarrow P(y,z))$ связно?	D.	y , z
10.	Элементами	A.	Вершины
	неориентированного графа		Дуги
	G=Gig(X,Vig) являются		Ребра
		D.	Маршруты
11.	Укажите дуги, инцидентные	A.	e_1, e_2, e_6
	вершине V_3 графа,	B.	e_{3}, e_{4}
	изображенного на рисунке	C.	e_4, e_5 e_3, e_4, e_5
	e_1 e_2 e_2	D.	e_3, e_4, e_5
	e_4 e_3 e_6 v_3 e_5 v_4		
12.	Граф G, все вершины и ребра	A.	объединением графов G1 и G2
	(дуги) которого принадлежат	В.	дополнением графа G1 до графа G2
	или графу G1, или графу G2,	C.	пересечением графов G1 и G2
	называется	D.	разностью графов G1 и G2

Председатель методической комиссии	· · · · · · · · · · · · · · · · · · ·	Поперчук С.В.
Преподаватель		Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Специальность 09.02.05 Прикладная математика (по отраслям)

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

	Задан	ия п	ерво	го уров	ня				
1.	Таблица истинности для	A.		v	$x \lor y$		B. <i>x</i>	v	$x \vee y$
	операции дизъюнкции имеет	l	0	0	1		0	0	1
	вид		0	1	1		0	1	0
			1	0	0		1	0	0
			1	1	0		1	1	1
		C.	х	y	$x \vee y$		D. <i>x</i>	y	$x \vee y$
			0	0	0		0	0	0
			0	1	1		0	1	1
			1	0	1		1	0	1
			1	1	0		1	1	1
2.	Укажите булеву функцию,	A.	$f(x_1,$	$\overline{(x_2)} = x_1 \oplus$	$\ni x_2$				
	заданную геометрически	В.	$f(x_1,$	$(x_2) = \overline{x}_1$					
	$x_2 \uparrow$	C.	$f(x_1,$	$(x_2) = \overline{x}_2$					
	•	$\mathbf{D.} \ f(x_1, x_2) = x_1 \leftrightarrow x_2$							
	x_1								
3.	Какие из элементарных булевых	A.	-	ицание					
	функций сохраняют константу	В.		тьюнкци					
	0?	C.	, ,	ъюнкци					
				тликаци					
		E.		иваленц	· · · · · · · · · · · · · · · · · · ·				
4.	Определите, какие из множеств	A.			студенто				
	являются конечными	B. C.			геометри			, .	
		C. множество планет Солнечной системыD. множество натуральных чисел							
5.	Даны множества			$B = \{-7\}$	• •	пЫ	л чиссл		
٦.	$A = \{-7; -2; -1; 0; 7; 9\}$ и $B =$			$B = \{-7, 9\}$ $B = \{7, 9\}$					
	{неположительные			•	*				
	действительные числа}. Найдите пересечение множеств A и B.			$ B = \{-/\}$ $ B = \emptyset$	';-2;-1;0}				
	пересечение множеств А и В.								

	Задания первого уровня					
6.	Соответствие $f: A \rightarrow B$	$\mathbf{A.} Domf = A$				
	называется инъективным, если	B. Im $f = B$				
		С. Каждому прообразу соответствует единственный				
		образ				
		D. Каждому образу соответствует единственный				
		прообраз				
7.	Бинарное отношение $P \subset M \times M$	$\begin{pmatrix} 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$				
	задано ориентированным	$\begin{bmatrix} \mathbf{A.} \begin{pmatrix} 0 & 1 \end{pmatrix} & \mathbf{B.} & 1 & 0 & 0 \end{bmatrix}$				
	графом. Задайте отношение Р	$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$				
	матрицей.	(1, 1, 2)				
	*	$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$				
	$a \nearrow c$	$\mathbf{C}. \begin{pmatrix} 1 & 0 & 1 \end{pmatrix} \qquad \qquad \mathbf{D}. \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$				
	○					
8.	Областью истинности	\mathbf{A} . $P^+ = \emptyset$				
	предиката $P(x, y) = \langle x \rangle = y \rangle$,	B. $P^+ = \{1, 3, 5\}$				
	заданного на множестве					
	$M = \{1, 3, 5\}$, есть множество	C. $P^+ = \{(1,1), (3,3), (5,5)\}$				
		D. $P^+ = \{(1,3),(3,5)\}$				
9.	Формула логики предикатов	А. Существует предметная область, на которой эта				
	называется общезначимой, если	формула выполнима				
		В. Она принимает истинные значения для всех				
		значений переменных, входящих в эту формулу и				
		отнесенных к конкретной предметной области М				
		С. Она тождественно истинная на всякой области				
10	E	D. Она выполнима на всякой области				
10.	Если две вершины соединены	А. Смежными				
	одним ребром, то они	В. Инцидентными				
	называются этому ребру	С. Достижимыми				
		D. Висячими				
11.	Выберите правильное	А. Все элементы матрицы смежности полного графа				
	утверждение	равны 1.				
		В. Все элементы матрицы смежности полного графа				
		равны 1, кроме элементов главной диагонали. С. Все элементы матрицы смежности полного графа				
		равны 0.				
		равны о. D. Все элементы матрицы смежности полного графа				
		равны 0, кроме элементов главной диагонали.				
12.	Определите длину маршрута	A. 6				
12.	X2, X5, X3, X4, X2, X1	B. 5				
	,,,,- ,	C. 4				
		D. 3				

Председатель методической комиссии	Поперчук С.В.
Преподаватель	Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

	Задан	ия первого уровня			
1.	Таблица истинности для		y		
	операции ⊕ (сложение по	0 0 1 0 0 1			
	модулю 2) имеет вид	0 1 1 0 1 0			
		1 0 0 1 0 0			
		1 1 0 1 1 1			
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	\overline{y}		
		0 0 0 0 0			
		0 1 1 0 1 1			
		1 0 1 1 0 1			
		1 1 0 1 1 1			
2.	Количество булевых функций п	A. <i>n</i>			
	переменных равно	B. 2^n			
		C. n^2			
		D. $2^{(2^n)}$			
3.	Какая из функций f^* является	А. Функция f самодвойственна			
	двойственной к функции	B. $f^* = (10101010)$			
	f = (01010101)?	C. $f^* = (00110011)$			
		D. $f^* = (11110000)$			
4.	Какое из множеств задается	A. $A = \{2;5;8;11;14;17\}$			
	порождающей процедурой:	B. $A = \{2,5,8,11,14\}$			
	$2 \in M$;	C. $A = \{2;5;8;11\}$			
	если $k \in M$, то $(k+3) \in M$, $k \le 14$	D. $A = \{2,5,8,11,14,17,\}$			
5.	Определите симметрическую	$\mathbf{A.} A\Delta B = \{1; 2; 3\}$			
	разность множеств А и В, где	B. $A\Delta B = \{1; 2; 3; 6; 7\}$			
	$A = \{1;2;3;4;5\}$ и	C. $A\Delta B = \{1; 2; 3; 4; 5; 6; 7\}$			
	$B = \{ x \mid x \in N, 3 < x \le 7 \}$	D. $A\Delta B = \{4,5\}$			
6.	Определите свойства отношения	А. рефлексивность			
	$P = \{(1;1), (1;2), (1;3), (2;1), (2;2), (2;3), (2$	В. антирефлексивность			
	(3;1), (3;2), (3;3)} на множестве	С. симметричность			
	$M = \{1,2,3\}.$	D. транзитивность			
	$M = \{1, 2, 3\}.$	Е. антитранзитивность			

	Задания первого уровня					
7.	Пусть $f: A \rightarrow B$ - соответствие	A.	$\operatorname{Im} f = \{b; d; e; f; g\}$			
	на множествах $A = \{1;3;5;7\}$ и	В.	$Im f = \{1;3;5;7\}$			
	$B = \{b; d; e; f; g\}$, заданное	C.	$\operatorname{Im} f = \{b; e\}$			
	списком $(3;e)$, $(5;b)$, $(7;b)$.	D.	$\operatorname{Im} f = \{3,5,7\}$			
	Укажите область значений		,			
	соответствия.					
8.	На множестве действительных	Α.	Ø			
	чисел заданы предикаты	В.	(−∞;3]			
	$P(x) = \langle x \rangle 1 \text{ w } Q(x) = \langle x \rangle \leq 3 \text{ w.}$	C.	[1;+∞] (1;3]			
	Определите множество	D	(1:3]			
	истинности предиката	D.	(1,5]			
	$P(x) \rightarrow Q(x)$.					
9.	Формулы логики предикатов	A.	они равносильны на всякой области			
	называются равносильными,	В.	они одновременно выполнимы			
	если	C.	они принимают одинаковые логические значения			
			при всех значениях входящих в них переменных,			
			отнесенных к области М			
		D.	они истинны при всех значениях входящих в них			
10			переменных, отнесенных к области М			
10.	Элементами		Вершины			
	неориентированного графа		Дуги			
	G=Gig(X,Vig) являются		Ребра			
1.1			Маршруты			
11.	Если в графе существуют хотя		Мультиграф			
	бы две вершины, которые	B. C.	Псевдограф			
	соединены более, чем одним		Полный граф			
	ребром (дугой), то такой граф называется	ν.	Плотный граф			
12.	Неориентированный граф из 7	Α.	7			
12.	вершин является связным, если	B.				
	степень каждой его вершины не		3			
	менее, чем		1			
			-			

Председатель методической комиссии	 Поперчук С.В.
Преподаватель	 Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс <u>II</u> Форма обучения <u>очная</u> Семестр <u>III</u>

	Задан	ия первого уровня				
1.	Таблица истинности для	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
	операции штрих Шеффера	0 0 1 0 0				
	имеет вид					
		1 0 1 1 0 1				
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
		0 0 0 0 1				
		0 1 0 0 1 0				
		1 0 0 1 0 0				
		1 1 1 1 1				
2.	Какая булева функция	A. $f(x_1, x_2) = (0110)$				
	соответствует данной карте	B. $f(x_1, x_2, x_3) = (01100110)$				
	Карно?	C. $f(x_1, x_2, x_3) = (01010101)$				
		D. $f(x_1, x_2, x_3) = (00001111)$				
		,				
3.	Какая из систем булевых	$\mathbf{A.} \{\oplus, \wedge, \neg\}$				
	функций образует базис Жегалкина?	B. {⊕,∧,1}				
	жегалкина:	C. {⊕, ¬,1}				
		D. {⊕,∧}				
4.	Укажите способы задания	А. порождающей процедурой				
	множеств	В. матрицей				
		С. графом				
		D. характеристическим свойством элементов				
	H	Е. списком				
5.	По заданной диаграмме Эйлера-	$A. A \cap D = \emptyset$				
	Венна определите, какие из утверждений являются верными	$\mathbf{B.} A \cup B = \emptyset$				
	утверждении ивлиются верными	$\begin{array}{ccc} \mathbf{C}, & D \cap C = D \\ \mathbf{D}, & C = D \end{array}$				
		$\begin{array}{ccc} \mathbf{D.} & C \subset D \\ \mathbf{F.} & A \sqcup C = B \end{array}$				
	$\begin{pmatrix} A & B \end{pmatrix}$	$\mathbf{E.} A \cup C = B$				
	$\setminus (X \setminus Z)$					

	Задания первого уровня					
6.	Бинарное отношение	A.	$P = \{(\alpha; \alpha), (\beta; \beta), (\gamma; \gamma)\}$			
	$P \subset (M imes M)$, где $M = \{lpha, eta, \gamma\}$	В.	$P = \{(\alpha; \alpha), (\alpha; \gamma), (\beta; \beta), (\gamma; \alpha), (\gamma; \gamma)\}$			
	задано матрицей $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$		$P = \{(\alpha; \beta), (\beta; \alpha), (\beta; \gamma), (\gamma; \beta)\}$			
	задано матрицей 0 1 0.		$P = \{(\alpha; \beta), (\alpha; \gamma), (\beta; \alpha), (\gamma; \alpha), (\gamma; \beta)\}$			
	$\begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$	υ.	$I = \{(\alpha, \beta), (\alpha, \gamma), (\beta, \alpha), (\gamma, \alpha), (\gamma, \beta)\}$			
	Задайте отношение Р списком.					
7.	Из множества А во множество	A.	20			
	В установлено взаимно	В.	19			
	однозначное соответсвие.	C.	18			
	Определите мощность	D.	Определить невозможно			
	множества А, если					
	$B = \{x \mid x \in N, 2 \le x < 20\}$					
8.	Операцией связывания	A.	выполнимый			
	квантором общности	В.	опровержимый			
	называется правило, по	C.	тождественно истинный			
	которому предикату $P(x)$	D.	тождественно ложный			
	ставится в соответствие					
	высказывание $\forall x \ P(x)$, которое					
	является ложным, если					
	предикат $P(x)$					
9.	Формула $\exists x P(x) \land \forall y Q(y)$	Α.	$\exists x \overline{P(x)} \land \forall y \overline{Q(y)}$			
	` ′					
	равносильна формуле		$\exists x P(x) \to \forall y \overline{Q(y)}$			
		C.	$\forall x \overline{P(x)} \lor \exists y \overline{Q(y)}$			
		D.	$\forall x \overline{P(x)} \lor \exists y Q(y)$			
10.	Граф называется, если все его	Α.	Неориентированным			
	связи заданы ребрами.	В.	Ориентированным			
		C.	Смешанным			
		D.	Зависит от графа			
11.	Степень висячей вершины	A.	0			
	равна	В.	1			
		C.	Зависит от графа			
		D.	Невозможно определить			
12.	Расстояние от вершины графа	Α.	Длина дуги			
	до наиболее удаленной вершины	В.	Радиус графа			
	называется	C.	Диаметр графа			
		D.	Эксцентриситет вершины			
	<u> </u>		<u> </u>			

Председатель методической комиссии	I	Поперчук С.В.
Преподаватель		Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

	Задания первого уровня					
1.	Укажите правильный порядок	A.	Конъюнкция, импликация, сложение по модулю			
	выполнения логических		2, дизъюнкция			
	операций в формуле	В.	Конъюнкция, дизьюнкция, импликация,			
			сложение по модулю 2			
		C.	Сложение по модулю 2, импликация,			
			дизъюнкция, конъюнкция			
			Дизъюнкция, сложение по модулю 2,			
			импликация, конъюнкция			
2.	Среди предложенных равенств	A.	$x \lor xy = x$			
	укажите закон поглощения	В.	$(x \lor y)(x \lor z) = x \lor yz$			
		C.	$x \lor x = x$			
		D.	$(x \lor y)(x \lor \overline{y}) = x$			
2	TC					
3.	Какие из свойств справедливы в	A.	$(x \oplus y)z = xz \oplus yz$			
	алгебре Жегалкина?	-	$\overline{x} = x \oplus 1$			
			$x \vee y = x \oplus y$			
		D.	$x \oplus x = x$			
4.	Множество тех и только тех	A.	пересечением множеств A и B			
	элементов, которые	В.	симметрической разностью множеств A и B			
	принадлежат хотя бы одному из	C.	дополнением множества A до множества B			
	множеств A или B , называется	D.	объединением множеств А и В			
		E.	разностью множеств А и В			
5.	Определите множество $A \cap \overline{A}$	A.	$\frac{A}{\overline{\cdot}}$			
		B.	\overline{A}			
		C.	U			
	T.	D.	Ø			
6.	Бинарным отношением на		$P \subset (A_1 \cap A_2)$			
	множествах A_1, A_2 называется		$P \subset (A_1 \cup A_2)$			
	множество <i>Р</i> такое, что	C.	$P \subset (A_1 \times A_2)$			
		D.	$P \subset A_1, P \subset A_2$			

	Задания первого уровня				
7.	Укажите вид соответствия	A.	всюду определенное		
	$f:A \rightarrow B$, заданного графом.	В.	частично определенное		
		C.	сюръективное		
		D.	инъективное		
	$\begin{pmatrix} 2 & & & & \\ & & & & \\ & & & & \end{pmatrix}$	E.	функциональное		
	3	F.	биективное		
	4				
8.	Выберите множество М так,	A.	множество натуральных чисел		
	чтобы конъюнкция предикатов	В.	множество четных чисел		
	$P(x) = \langle x - $ простое число» и		множество простых чисел		
	$Q(x) = \mathbf{x} - \mathbf{y}$ етное число» над	D.	$M = \{2,3\}$		
	ним была тождественно	E.	$M = \{2\}$		
	истинным предикатом				
9.	Запишите формулу логики	A.	$\forall x (P(x, y) \land Q(x))$		
	предикатов $\forall x P(x, y) \land Q(x)$ в		$\forall x P(x, y) \land Q(x)$		
	предваренной нормальной		$\forall u(P(u,y) \land Q(x))$		
	форме		$\exists x \overline{P(x,y)} \vee \overline{Q(x)}$		
		D .	$\exists x P(x, y) \lor Q(x)$		
10.	Ребро (дуга), начало и конец	A.	Цепь		
	которого совпадают, называется	В.	Петля		
		C.	Контур		
		D.	Цикл		
11.	Последовательность вершин	A.	Маршрут		
	$(x_1, x_2,, x_n)$ графа, такая, что		Путь		
	для каждого $i = 1; 2;; n-1$	C.	Цепь		
	вершины x_i, x_{i+1} соединены	D.	Цикл		
	дугой (ребром), называется				
12.	По заданной матрице	Α.	1		
12.	расстояний графа	B.			
	$\begin{pmatrix} 0 & 2 & 0 & 0 & 0 \end{pmatrix}$	C.			
	$\begin{bmatrix} 0 & 2 & 0 & 0 & 0 \\ 2 & 0 & 0 & 3 & 4 \end{bmatrix}$	D.			
	$R = \begin{bmatrix} 2 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$				
	$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 3 & 1 & 0 & 2 \end{bmatrix}$				
	$\begin{pmatrix} 0 & 3 & 1 & 0 & 2 \\ 0 & 4 & 1 & 2 & 0 \end{pmatrix}$				
	определите расстояние между				
	вершинами X_2 и X_5 .				
	reprinted A 2 in A 5 ·				

Председатель методической комиссии	 Поперчук С.В.
Преподаватель	 Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

	Задан	ия первого уровня
1.	Таблица истинности для операции эквиваленции имеет вид	A. x y $x \leftrightarrow y$ 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1
3.	Укажите ДНФ булевой функции $f(x_1,x_2)=x_1\downarrow x_2$ Какая из предложенных формул является многочленом Жегалкина?	A. $f(x_1, x_2) = x_1 \lor x_2$ B. $f(x_1, x_2) = \overline{x_1} \lor x_2$ C. $f(x_1, x_2) = \overline{x_1} \overline{x_2}$ D. $f(x_1, x_2) = \overline{x_1} \lor \overline{x_2}$ A. $x\overline{y} \oplus 1$ B. $xyz \oplus x \oplus 1$ C. $xy \oplus xz \oplus xy \oplus x$ D. $x(y \oplus 1)(z \oplus 1)$
5.	Известно, что $A \subset B$. Какие из утверждений являются истинными? Выполните операции над множествами $[-2;8)\cap (-2;7)$	A. $\forall x \in B \ x \notin A$ B. $\forall x \in A \ x \in B$ C. $B \subset A$ D. A является подмножеством множества B A. $(-2;7)$ B. $[-2;7]$ C. $[-2;8)$ D. \varnothing
6.	На множествах $A = \{1;2;3;4\}$ и $B = \{a,b,c;d\}$ задано бинарное отношение	$\mathbf{A.} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \qquad \mathbf{B.} \begin{pmatrix} 1 & 2 & 3 & 4 \\ a & b & c & d \end{pmatrix}$

	Задания первого уровня					
	$P = \{(1;b), (1;c), (2;a), (3;d)\}$. Укажите матрицу заданного отношения.	C.	$\begin{pmatrix} 1 & 0 & 1 & 1 \\ & & & & & \end{pmatrix}$			
7.	Соответствие $f:A\to B$ называется функциональным, если	B. C. D.	Каждому образу соответствует единственный прообраз Каждому прообразу соответствует единственный образ $Domf = A$ Im $f = B$ Отношение всюду определено, сюръективно, инъективно,			
8.	Переменные $x_1, x_2,, x_n$ в предикате $P(x_1, x_2,, x_n)$ называются	В. С.	высказывательными переменными предикатными переменными предметными переменными предметами			
9.	Предложение $(\forall x \in N)(x^2 - y = 0)$ является	В. С.	Двухместным предикатом Одноместным выполнимым предикатом Одноместным тождественно истинным предикатом Одноместным тождественно ложным предикатом			
10.	Какие значения могут принимать элементы матрицы инцидентности некоторого графа?	A. B. C. D.	-1 0 1			
11.	Граф, в котором все вершины соединены между собой, называется	A. B. C. D.	Мультиграф Псевдограф Связный граф Полный граф			
12.	Расстояние от вершины X_1 до вершины X_1 равно	A. B. C. D.				

Председатель методической комиссии	· 	Поперчук С.В.
Преподаватель		Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

	Задания первого уровня					
1.	Выберите набор значений		P = 0; Q = 0			
	переменных, на котором	В.	P = 0; Q = 1			
	формула алгебры	C.	P = 1; Q = 0			
	высказываний $P \to (P \land \overline{Q})$	D.	P = 1; Q = 1			
	принимает значение «ложь»:	E.	Формула является тождественно истинной			
2.	Какая из булевых функций		$f(x, y) = xy \vee \overline{x} \ \overline{y}$			
	равна функции сложение по	В.	$f(x,y) = x\overline{y} \vee \overline{x}y$			
	модулю 2?		$f(x, y) = (\overline{x} \vee y)(\overline{x} \vee \overline{y})$			
			$f(x,y) = (\overline{x} \vee y)(x \vee \overline{y})$			
3.	Система функций называется	_	она целиком принадлежит одному из классов			
	полной, если		Поста			
		В.	она целиком не принадлежит ни одному из			
		C.	классов Поста			
		C.	любая булева функция может быть выражена через функции системы			
		D.	любая функция системы может быть выражена			
			через другие функции системы			
4.	Какие из записей являются	Α.	$a \in [a;b]$			
	верными?	В.	$\emptyset \in (a;b)$			
		C.	$\{a;b\} \not\subset (a;b]$			
		D.	$a \subset (a;b]$			
5.	Определите множество $\overline{A \cup B}$	Α.	$A \cap B$			
	1	В.	$\overline{A} \cap \overline{B}$			
		C.	$\overline{A} \cup \overline{B}$			
		D.	$A \cup B$			
6.	Какие из разбиений являются	A.	разбиение множества людей по старшинству			
	разбиением множества на	В.	разбиение множества треугольников по			
	классы эквиваленитности?		свойствам сторон (разносторонние,			
		C.	равнобедренные, равносторонние) разбиение множества квартир в доме по			
		·	подъездам			
		D.	разбиение множества треугольников по			
			свойствам углов (остроугольные, прямоугольные,			
			тупоугольные)			

	Задания первого уровня				
7.	Укажите вид соответствия	Α.	всюду определенное		
	f:A o B , заданного матрицей	В.	частично определенное		
	$(1 \ 0 \ 0 \ 1 \ 0)$	C.	сюръекция		
	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	D.	инъекция		
		E.	функция		
	$(0 \ 0 \ 1 \ 0 \ 1)$	F.	биекция		
8.	Предикат $P(x, y)$ от двух	A.	Высказывание		
	переменных предметных на	В.	Свойство		
	множестве $M_1 \times M_2$ задает		Бинарное отношение		
	1 2	_	<i>n</i> – арное отношение		
9.	Какая из формул имеет	A.	$P(x, y) \leftrightarrow \exists z Q(x, z) \lor \forall x R(x)$		
	приведенную форму?		$P(x,y) \wedge \exists z Q(x,z) \vee \overline{\forall x R(x)}$		
			$P(x,y) \wedge \exists z \overline{Q(x,z)} \vee \forall x R(x)$		
		D.	$P(x,y) \wedge \exists z \overline{Q(x,z)} \vee \forall x R(x)$		
10.	Размером графа $G = G(V, E)$	Α.	G		
	называется	B.	V		
		C.	E		
		D.	$ V \cup E $		
11.	Определите вид графа,	A.	Нуль-граф		
	изображенного на рисунке	B.	Связный граф		
	X_1 X_2	C.	Слабо связный граф		
	X_3 X_4	D.			
12.	По заданной матрице весов		14		
	определите длину маршрута Е –		17		
	B-D-C.		24		
	A B C D E	D.	8		
	A 2 6				
	B 5 7				
	C 2 2 8				
	D 5 2 3				
	E 6 7 8 3				

Председатель методической комиссии	·	Поперчук С.В.
Преподаватель		Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

	Задания	пері	вого уровня
1.	Какие из приведенных формул алгебры высказываний являются тавтологиями?	A. B. C.	$X \lor Y \lor \overline{X}$ $X \land Y \land \overline{X}$ $X \lor Y \lor 1$ $X \land Y \land 0$
2.	Функция $f(x_1, x_2,, x_n)$ с областью значений $E = \{0,1\}$, переменные $x_1, x_2,, x_n$ которой также принимают только эти два значения, называется Упростите $x \oplus \bar{x} \oplus 1$		высказыванием предикатом булевой многочленом Жегалкина
<i>J</i> .	s apoctate x o x o t		$x \oplus 1$ 1
4.	Множество, содержащее определенное число элементов, называется	A. B. C. D.	конечным бесконечным ограниченным счетным
5.	Определите, какие из перечисленных множеств являются пустыми	В.	$A \cap \overline{A}$ $(A \cap B) \setminus A$ $\overline{A} \cup A$ все множества непустые
6.	На множестве целых чисел задано бинарное отношение $P = \{(a;b) a \in Z, b \in Z, a$ — делитель $b\}$ Какие из пар элементов принадлежат заданному отношению?	A. B. C. D.	(0;5) (2;4) (3;282) (10;5)
7.	Определите $ A $, если известно, что $ B = 4, A \cap B = 2, A \cup B = 7$	A. B. C. D.	13 9 5 1

	Задания первого уровня				
8.					
	x и y — родители z » является	В.	одноместным предикатом		
		C.	двухместным предикатом		
		D.	трехместным предикатом		
	7 2()				
9.	Пусть $P(x)$ и $Q(x)$ – предикатные	Α.	$\forall x P(x) \equiv \exists x P(x)$		
	переменные.	В.	$\exists x P(x) \equiv \forall x P(x)$		
	Какие из равносильностей имеют	C.	$\exists x [P(x) \land Q(x)] \equiv \exists x P(x) \lor \exists x Q(x)$		
	место в логике предикатов?	D.	$\forall x [P(x) \land Q(x)] \equiv \forall x P(x) \land \forall x Q(x)$		
10.	Количество ребер (дуг),	A.	0		
	инцидентных изолированной	В.	1		
	вершине графа, равно	C.	∞		
			Невозможно определить		
11	V				
11.	Укажите матрицу смежности графа, изображенного на рисунке		$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$		
	u_1	A.	$\left[egin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]$		
	u_4 X_2				
	X_1 u_2 u_3		$(0 \ 0 \ 1 \ 1)$		
	u_2 u_5		$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$		
	X_3 X_4	В.	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$		
	u_3				
			$(0 \ 0 \ 0 \ 1)$		
			$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$		
		C.	$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$		
			$\begin{pmatrix} 0 & 0 & 1 & 1 \end{pmatrix}$		
			$\begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$		
		D.			
10	D W4	_	$(0 \ 0 \ 0 \ 2)$		
12.	Вершина Х1 неориентированного	Α.	существует маршрут из вершины X1 в		
	графа G называется достижимой из вершины X2, если	R	вершину X2 существует маршрут из вершины X2 в		
	вершины А2, сели	ъ.	вершину Х1		
		C.	существует маршрут между вершинами X1 и		
			X2		
		D.	все предыдущие утверждения правильные		

Председатель методической комиссии	[Поперчук С.В.
Преподаватель		Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

	Задания первого уровня					
2.	Таблица истинности для операции стрелка Пирса имеет вид Какая из булевых функций	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
2.	равна функции импликации?	A. $f(x, y) = \overline{x}y$ B. $f(x, y) = x\overline{y}$ C. $f(x, y) = x \vee \overline{y}$ D. $f(x, y) = \overline{x} \vee y$				
3.	Укажите функцию, двойственную к функции $f(x,y) = x \oplus y$.	A. $f(x, y) = x \downarrow y$ B. $f(x, y) = x \rightarrow y$ C. $f(x, y) = x \leftrightarrow y$ D. 1				
4.	Известно, что $B \subset C$. Какие из утверждений являются ложными?	A. $\forall x \notin C \ x \in B$ B. $\forall x \in B \ x \in C$ C. $\emptyset \subset B \subset C$ D. C является подмножеством множества B				
5.	Выполните операции над множествами [-1;3) Δ (6;9]	A. [-1;3)∪(6;9] B. [-1;9] C. [-1;3) D. (6;9]				
6.	Отношение <i>P</i> на множестве всех WEB-страниц определим следующим образом: две WEB-страницы находятся в отношении <i>P</i> , если они	 A. рефлексивность B. симметричность C. антисимметричность D. транзитивность E. нетранзитивность 				

	Задания первого уровня				
	содержат ссылки на одни и те же Internet-ресурсы. Какими свойствами обладает отношение <i>P</i> ?				
7.	Пусть $f: A \to B$. Множество $\{y \in B \mid \exists x \in A : (x; y) \in P\}$ называется	A. областью определения соответствия f B. областью значений соответствия f C. областью образов соответствия f D. областью прообразов соответствия f			
8.	При каких значениях предметной переменной x предикат $P(x) = \ll x - \text{государство}$ в Европе» превращается в истинное высказывание?	A. $x = \text{«Индия»}$ B. $x = \text{«Франция»}$ C. $x = \text{«Португалия»}$ D. $x = \text{«Бразилия»}$			
9.	Операция связывания квантором по одной переменной превращает $n-$ местный предикат $(n \ge 2)$ в	 A. (n-1) – местный предикат B. (n+1) – местный предикат C. Ложное высказывание D. Истинное высказывание 			
10.	Количество ребер, инцидентных вершине графа, называется вершины.	А. МощностьюВ. ПорядкомС. РангомD. Степенью			
11.	Граф G, все вершины и ребра (дуги) которого одновременно принадлежат и графу G1, и графу G2, называется	 A. объединением графов G1 и G2 B. дополнением графа G1 до графа G2 C. пересечением графов G1 и G2 D. разностью графов G1 и G2 			
12.	Какие из указанных циклов в графе с вершинами A, B, C, D, E являются простыми?	A. ACDA B. BECAB C. CBEADB D. ABCDBA			

Председатель методической комиссии	 Поперчук С.В.
Преподаватель	 Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

Задания первого уровня				
1.	1. Повествовательное предложение, о		понятием	
	котором можно судить, является	В.	суждением	
	оно истинным или ложным,	C.	высказыванием	
	называется	D.	умозаключением	
2.	По набору значений переменных	A.	$f(x,y) = \overline{x} \wedge y$	
	(0,1) укажите булеву функцию, которая принимает истинное		$f(x,y) = \overline{x} \wedge \overline{y}$	
	значение только на этом наборе	C.	$f(x,y) = x \wedge \overline{y}$	
	значений переменных	D.	$f(x, y) = x \wedge y$	
3.	Упростите функцию	A.	$f(x,y) = \overline{x}_1 x_2$	
	$f(x_1, x_2) = (1101)$ до минимальной	B.	$f(x,y) = \overline{x}_1 \vee \overline{x}_2$	
	ДНФ	C.	$f(x,y) = \bar{x}_1 \vee x_2$	
		D.	$f(x,y) = x_1 \vee x_2$	
4.	Известно, что $M \subset N$ и $N \subset M$.	A.	$M \neq N$	
	Какие из утверждений являются	В.	M = N	
	истинными?	C.	$N \subset \emptyset$	
		D.	$M \subset M$	
5.	По заданной диаграмме Эйлера-	A.	$A\Delta B = B \setminus A$	
	Венна определите, какие из	В.	$A \cap C \neq \emptyset$	
	утверждений являются верными	C.	$A \bigcup B = A$	
	BAC	D.	$A \subset B$	
6.	О тношение $R \subset (M \times M)$ называется	A.	рефлексивно, антисимметрично, транзитивно	
	отношением эквивалентности, если	В.	рефлексивно, симметрично, транзитивно	
	оно	C.	антирефлексивно, антисимметрично,	
		_	транзитивно	
		D.	нерефлексивно, несимметрично,	
			нетранзитивно	
7.	На множествах	A.	всюду определенное	
	$A = \{1;2;3;4\}$ $B = \{a,b,c;d\}$	В.	частично определенное	
	задано соответствие	C.	сюръективное	
	$f = \{(1; a), (1; c), (2; a), (3; d)\}$. Укажите	D.	инъективное	
	вид соответствия $f:A \to B$.	E.	функциональное	

	Задания первого уровня			
	F. биективное			
8.	Предикатом является следующее	A. $(x+2)-(3x-4)$		
	предложение	В. При $x = 2$ выполняется равенство $x^2 - 1 = 0$		
		С. <i>х</i> и <i>у</i> - родители <i>z</i>		
		D. Однозначное число x кратно 5		
		Е. Число 7 является делителем числа 42		
9.	Применение кванторов к	А. Уменьшает		
	многоместным предикатам	В. Увеличивает		
	количество свободных переменных,	С. Не изменяет		
	от которых зависит предикат	D. Зависит от предиката		
10.	Порядком графа $G = G(V, E)$	$\mathbf{A.} \ G $		
	называется	$\mathbf{B.}$ $ V $		
		$\mathbf{C.} E $		
		$\mathbf{D.} V \cup E $		
11.	Выберите правильное утверждение	А. Полный граф – это граф, в котором каждые		
		две вершины не смежны.		
		В. Полный граф – это граф, в котором некоторые		
		вершины смежны.		
		С. Полный граф – это граф, в котором любые две		
		вершины смежны.		
		D. Полный граф – это граф, в котором никакие две вершины не смежны.		
12.	Граф G содержит <i>m</i> вершин и <i>n</i>	две вершины не смежны. А. квадратной матрицей порядка <i>n</i>		
12.	ребер. Матрица достижимости	В. прямоугольной матрицей из <i>m</i> строк и <i>n</i>		
	графа G является	столбцов		
	-r-r	\mathbf{C} . квадратной матрицей порядка m		
		${f D.}$ прямоугольной матрицей из n строк и m столбцов		

Председатель методической комиссии	I	Поперчук С.В.
Преподаватель		Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Специальность 09.02.05 Прикладная математика (по отраслям)

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

	Задания первого уровня					
1.	Укажите соответствия между А. Закон двойного отрицания					
	законами логики и их названиями	В.	Закон дистрибутивности			
	1. $A \wedge 0 = 0$	C.	Закон нуля			
	2. $\overline{A \vee B} \equiv \overline{A} \wedge \overline{B}$	D.	Закон де Моргана			
	3. $\overline{\overline{A}} = A$		•			
	3. $A = A$ 4. $(A \lor B) \land C \equiv (A \land C) \lor (B \land C)$					
	$4. (A \lor B) \land C \equiv (A \land C) \lor (B \land C)$					
2.	Укажите булеву функцию,	Δ	$f(x_1, x_2) = x_1 x_2$			
-	заданную геометрически		\ 1 2/ 1 2			
			$f(x_1, x_2) = x_1 \mid x_2$			
	$x_2 \uparrow$		$f(x_1, x_2) = x_1 \vee x_2$			
	 	D.	$f(x_1, x_2) = x_1 \to x_2$			
	X_1					
3.	Постройте многочлен Жегалкина	A	$P(x,y) = \overline{x}y$			
٥.	для функции $f(x, y) = \overline{x}(x \vee y)$					
	для функции $f(x, y) = x(x \vee y)$		$P(x,y) = xy \oplus y$			
		C.	$P(x,y) = xy \oplus x$			
		D.	$P(x,y) = xy \oplus x \oplus y$			
4.	Множество тех и только тех	A.	объединением множеств A и B			
	элементов, которые принадлежат	В.	пересечением множеств A и B			
	множеству A , но не принадлежат	C.	симметрической разностью множеств A и B			
	множеству B , называется	D.	дополнением множества A до универсума U			
	T	E.	разностью множеств А и В			
5.	По заданной диаграмме Эйлера-	A.	$A \cap B \neq \emptyset$			
	Венна определите, какие из		$A \cap C = \emptyset$			
	утверждений являются верными		$B \bigcup C = B$			
		D .	$C \subset B$			
	A ((C) B).	E.	$A \cup C = B$			
6.	Какие из предложенных пар	Α.	(дочь; мать)			
	элементов принадлежат	В.	(дед; внук)			
	отношению «быть предком» на	C.	(отец; сын)			
	множестве людей	D.	(мать; отец)			

	Задания первого уровня				
7.	Какие из заданных отношений A. $x - y > 0$ на множестве R				
	являются отношениями	В.	«быть подчиненным» на множестве		
	эквивалентности?		сотрудников организации		
		C.	«быть параллельными» на множестве		
			плоскостей в пространстве		
		D.	среди приведенных отношений нет отношений эквивалентности		
8.	Пусть х, у и z – переменные,	A	x > y		
	которые принимают значения из		x + y - z		
	множества <i>R</i> . Укажите, какие из		•		
	следующих предложений не		$y^2 - 1 = z^2$		
	являются предикатами	D.	$2 \times 2 = 4$		
9.	Какая из формул логики	A.	$\forall x (P(x) \land \overline{P(x)})$		
	предикатов является тождественно ложной?	В.	$\forall x \Big(P(x) \lor \overline{P(x)} \Big)$		
			$\exists x (P(x) \lor \overline{P(x)})$		
			$\exists x \Big(P(x) \land \overline{P(x)} \Big)$		
10.	Определите степень вершины V_2	A.	1		
	графа, изображенного на рисунке	В.			
	v_1 e_1 v_2	C.	3		
	e_2	D.	4		
	e_4 e_3 e_5 v_4	Е.	5		
11.	Длина маршрута - это	A.	количество вершин, через которые проходит		
		D	маршрут		
		D.	количество ребер (дуг), через которые проходит маршрут		
		C	проходит маршрут количество вершин и ребер (дуг), через		
		••	которые проходит маршрут		
		D.	количество вершин или ребер (дуг), через		
			которые проходит маршрут		
12.	Элементами матрицы расстояний	Α.	0		
	графа являются	В.	1		
		C.	-1		
		D.	∞		
		E.	Любые положительные числа		

Председатель методической комисси	ии	Поперчук С.В.
Преподаватель		Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

	Задания первого уровня				
1.	Определите правильный порядок	A.	Отрицание, дизъюнкция, импликация, штрих		
	выполнения логических операций		Шеффера		
	в формуле $X \vee \overline{Y} \to X \mid Y$	В.	Отрицание, штрих Шеффера, импликация,		
			дизъюнкция		
		C.	Отрицание, штрих Шеффера, дизъюнкция,		
		_	импликация		
		D.	Отрицание, импликация, штрих Шеффера,		
2.	20000000000000000000000000000000000000		дизъюнкция		
۷.	Запишите формулу, реализующую булеву функцию	A.	$f(x_1, x_2, x_3) = \overline{x}_1 x_2 \overline{x}_3 \vee x_1 \overline{x}_2 \overline{x}_3$		
	$f(x_1, x_2, x_3) = (01001000)$	В.	$f(x_1, x_2, x_3) = (x_1 \lor x_2 \lor \overline{x}_3)(\overline{x}_1 \lor x_2 \lor x_3)$		
	$f(x_1, x_2, x_3) = (01001000)$	C.	$f(x_1, x_2, x_3) = \overline{x}_1 \overline{x}_2 x_3 \lor x_1 \overline{x}_2 \overline{x}_3$		
		D.	$f(x_1, x_2, x_3) = x_1 x_2 \overline{x}_3 \vee \overline{x}_1 x_2 x_3$		
3.	Какие системы функций являются	A.	$\{\neg, \land\}$		
	функционально полными?	В.	↓ }		
		C.	$\{\rightarrow, \leftrightarrow\}$		
		D.	{0;1}		
4.	Множество, не содержащее ни	Α.	нулевым		
	одного элемента, называется	В.	универсальным		
		C.	неопределенным		
		D.	пустым		
5.	Какие из предложенных равенств	A.	$A \setminus B = \overline{A} \cap B$		
	являются верными?	В.	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$		
		C.	$A\Delta B = (A \cup B) \setminus (A \cap B)$		
			$A\Delta B = (A \setminus B) \cap (B \setminus A)$		
6.	Бинарное отношение $P \subset (M \times M)$,		$P = \{(\alpha; \alpha), (\alpha; \gamma), (\beta; \beta), (\gamma; \alpha), (\gamma; \gamma)\}$		
	где $M = \{ lpha, eta, \gamma \}$ задано матрицей		$P = \{(\alpha; \beta), (\alpha; \gamma), (\beta; \alpha), (\gamma; \alpha), (\gamma; \beta)\}$		
	$(1 \ 0 \ 1)$	C.	$P = \{(\alpha; \alpha), (\beta; \beta), (\gamma; \gamma)\}$		
	1 0 0 . Задайте отношение Р	D.	$P = \{(\alpha; \beta), (\beta; \alpha), (\beta; \gamma), (\gamma; \beta)\}\$		
	$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$				
	списком.				
7.	Укажите область определения	Α.	$Dom f = \{1; 2; 3; 4\}$		
	соответствия $f: A \to B$ из		$Domf = \{x; z\}$		
	множества $A = \{1;2;3;4\}$ во		$Domf = \{1, 2, 3\}$		
	, , ,	C.	Dong - (1,2,5)		

	Задания первого уровня				
	множество $B = \{x; y; z\}$, заданного	D.	$Dom f = \{1; 2; 4\}$		
	списком $f = \{(1; x), (2; x); (4; x); (4; z); (4; y)\}.$				
8.	Множеством истинности предиката	_	$P^+ = \{1, 3, 5, 7, 9\}$		
0.	$P(x) = \langle x \rangle 5$ », заданного на		$P^{+} = \{5,7,9\}$ $P^{+} = \{5,7,9\}$		
	множестве $M = \{1,3,5,7,9\}$, есть		$P^{+} = \{7,9\}$		
	множество		$P^{+} = \{1,3\}$		
9.	Расположите формулы логики		$\forall x(x^2 + 2y = z)$		
	предикатов в порядке возрастания		$\forall x \exists y (x + y + z + t + u = 3)$		
	количества свободных переменных	C.	$\exists y(x^2 - y = 3)$		
		D.	$x^2 + y^2 - z + t = 0$		
10.	Две вершины графа, которые	A.	Смежными		
	принадлежат одному ребру (дуге),	В.	Инцидентными		
	называются	C.	Соседними		
		D.	Висячими		
11.	Вершина X1 ориентированного	A.	существует маршрут из вершины X1 в		
	графа G называется достижимой из	D	вершину Х2		
	вершины X2, если	В.	существует маршрут из вершины X2 в вершину X1		
		C.	существует маршрут между вершинами Х1 и		
		_	X2		
12	0		все предыдущие утверждения правильные		
12.	Определите эксцентриситет вершины X_{\perp} графа	A. B.	1 2		
		C.			
	X ₂	D.			
	x_3				
	X_i X_i				

Председатель методической комиссии	 Поперчук С.В.
Преподаватель	 Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

	Задания первого уровня				
1.	Формулы называются, если они	А. Эквивалентными			
	принимают одинаковые значения	В. Тождественными			
	при всех значениях переменных,	С. Равносильными			
	входящих в эти формулы	D. Одинаковыми			
2.	Представьте функцию	A. $f(x, y) = (0101)$			
	$f(x,y) = (x \lor y)\overline{y}$ в цифровой форме	B. $f(x, y) = (1101)$			
		C. $f(x, y) = (0001)$			
		D. $f(x, y) = (0010)$			
3.	Какие из заданных функций	A. $f = (0011)$			
	являются монотонными?	B. $f = (1010)$			
		C. $f = (11001100)$			
		D. $f = (00000111)$			
4.	Множество тех и только тех	А. объединением множеств A и B			
	элементов, которые одновременно	$\bf B$. пересечением множеств A и B			
	принадлежат и множеству A , и	С. симметрической разностью множеств A и B			
	множеству B , называется	D. дополнением множества A до множества B			
		\mathbf{E} . разностью множеств A и B			
5.	Какие множества равны множеству	\mathbf{A} . $\overline{A} \cup B$			
	$A \setminus B$?	B. $A \cap \overline{B}$			
		\mathbf{C} . $(A \cup B) \setminus (A \cap B)$			
		\mathbf{D} . $B \setminus A$			
6.	Определите свойства отношения Р	А. рефлексивность			
	$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$	В. антирефлексивность			
	$\begin{bmatrix} $ заданного матрицей $P = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$.	С. симметричность			
	_	D. транзитивность			
	(1 1 0)	Е. антитранзитивность			
7.	Укажите вид соответствия	А. всюду определенное			
	f:A o B , заданного графом	В. частично определенное			
		С. сюръекция			
		D. инъекция Б. Алимина			
		Е. функция			
		F. биекция			

	Задания первого уровня				
8.	Одноместными предикатами	A.	число 5 является делителем числа 12		
	являются следующие предложения	В.	$2x - 8 \le x + y$		
		C.	при $x = 2$ выполняется равенство $x^2 - y^2 = 0$		
		D.	однозначное число х меньше числа 10		
9.	Если формула логики предикатов	A.	Приведенную форму		
	содержит только операции	В.	Совершенную нормальную форму		
	конъюнкции, дизъюнкции и	C.	Предваренную нормальную форму		
	кванторные операции, а операция	D.	Общезначимую форму		
	отрицания отнесена к				
	элементарным формулам, то				
	говорят, что она имеет				
10.	Две вершины графа, которые	A.	Инцидентными		
	принадлежат одному ребру (дуге),	В.	Соседними		
	называются	C.	Смежными		
		D.	Висячими		
11.	Какие значения могут принимать	A.	-1		
	элементы матрицы инцидентности	В.	0		
	ориентированного графа?	C.	1		
		D.	2		
		Е.	Любые натуральные значения		
12.	Величина наименьшего	Α.	Длина дуги		
	эксцентриситета вершин графа	В.	Радиус графа		
	называется		Диаметр графа		
		D.	Эксцентриситет вершины		

Председатель методической комиссии	Поперчук С.В.
Преподаватель	Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

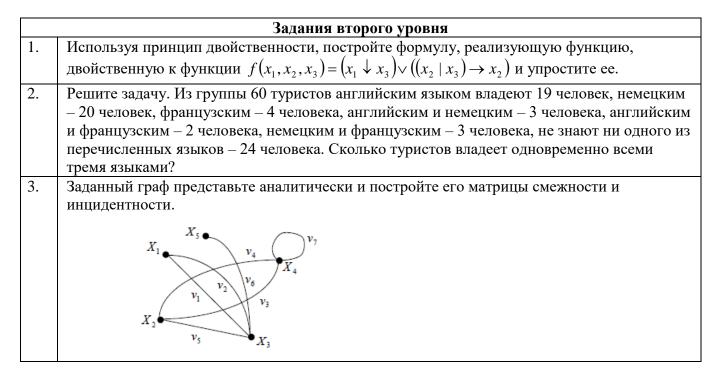
	Задания первого уровня				
1.	Упростите формулу $P \lor \left(Q \land \overline{P}\right)$	$\begin{array}{ccc} \mathbf{A.} & P \\ \mathbf{B.} & P \lor Q \end{array}$			
		$ \begin{array}{ll} \mathbf{C.} & (P \lor Q) \land \overline{P} \\ \mathbf{D.} & 0 \end{array} $			
2.	Задание булевой функции с помощью формулы является	 А. Цифровой формой В. Табличной формой С. Аналитической формой D. Геометрической формой E. Картой Карно 			
3.	Сколько конъюнкций содержит минимальная ДНФ функции, заданной картой Карно? 0 1 0 1 1 0 0 1	A. 1 B. 2 C. 3 D. 4			
4.	Множество тех и только тех элементов, которые принадлежат одному из множеств <i>A</i> или <i>B</i> , но не принадлежат им одновременно, называется	 А. объединением множеств А и В В. пересечением множеств А и В С. дополнением множества А до множества В D. разностью множеств А и В Е. симметрической разностью множеств А и В 			
5.	Выполните операции над множествами $[-7;1) \cup (0;+\infty)$	A. $(0;1)$ B. $[-7;0]$ C. $(0;+\infty)$ D. $[-7;+\infty)$ A. $f \subset (A_1 \times A_2)$			
6.	Соответствием $f: A \mapsto B$ называется	A. $f \subset (A_1 \times A_2)$ B. $f \subset A_1, P \subset A_2$ C. $f \subset (A_1 \cap A_2)$ D. $f \subset (A_1 \cup A_2)$			
7.	Определите мощность множества $A \cup B$, если известно, что $ A = 5$, $ B = 10$ и $A \cap B = \emptyset$.	A. 50 B. 15 C. 10 D. 5			
8.	Укажите тождественно истинные предикаты на множестве <i>R</i> действительных чисел	A. $\sin^2 x + \cos^2 x = 1$ B. $\sin^2 x + \cos^2 y = 1$ C. $x^2 > 0$			

	Задания	первого уровня
		D. $x^2 + y^2 \ge 0$
9.	Расположите в правильной	А. Индуктивный вывод
	последовательности этапы	В. База индукции
	доказательства утверждения	С. Индуктивное доказательство
	методом математической	D. Индуктивное предположение
	индукции.	
10.	Граф называется, если все его	А. Неориентированным
	связи заданы ребрами.	В. Ориентированным
		С. Смешанным
		D. Зависит от графа
11.	Какие значения могут принимать	A. -1
	элементы матрицы инцидентности	B. 0
	неориентированного графа?	C. 1
		D. 2
		Е. Любые натуральные значения
12.	По заданной матрице расстояний	A. 1
	графа	B. 2
	$(0 \ 2 \ \infty \ \infty \ \infty)$	C. 3
	$\begin{bmatrix} 2 & 0 & \infty & 3 & 4 \end{bmatrix}$	D. 4
		E. ∞
	$R = \begin{bmatrix} \infty & \infty & 0 & 1 & 1 \end{bmatrix}$	
	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$R = \begin{pmatrix} 0 & 2 & \infty & \infty & \infty \\ 2 & 0 & \infty & 3 & 4 \\ \infty & \infty & 0 & 1 & 1 \\ \infty & 3 & 1 & 0 & 2 \\ \infty & 4 & 1 & 2 & 0 \end{pmatrix}$	
	определите расстояние между	
	вершинами X_5 и X_4 .	

Председатель методической комиссии	 Поперчук С.В.
Преподаватель	 Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$


	Задания первого уровня				
1.	Формула F задана таблицей истинности X Y F 0 0 1 0 1 0 1 0 1	A. $(\overline{X} \wedge \overline{Y}) \vee (X \wedge \overline{Y})$ B. $(X \vee \overline{Y}) \wedge (\overline{X} \vee \overline{Y})$ C. $(\overline{X} \wedge Y) \vee (X \wedge Y)$ D. СДНФ не существует			
2.	Запишите формулу <i>F</i> в СДНФ. Среди предложенных равенств	A (((), ())			
۷.	укажите закон склеивания	$\mathbf{A.} x(x \vee y) = x$			
		$\mathbf{B.} (x \vee y)(x \vee z) = x \vee yz$			
		C. $x \lor x = x$ D. $(x \lor y)(x \lor \overline{y}) = x$			
3.	Какие из заданных функций	$\mathbf{A.} f(x_1, x_2) = x_1 \vee x_2$			
	принадлежат классам T_0 и T_1 ?	B. $f(x_1, x_2) = \bar{x}_1 \vee \bar{x}_2$			
		C. $f(x_1, x_2) = x_1 x_2$			
		$\mathbf{p.} f(x_1, x_2) = \overline{x_1} \overline{x_2}$			
4.	Определите мощность множества	A. 100			
	всех трехзначных натуральных	B. 899			
	чисел	C. 900			
_	n	D. 999			
5.	Выполните операции над множествами	A. (7;8]			
	[-2;8]\(\Delta(7;9)]	B. [-2;9]			
	[-, -, -, -, -, -, -, -, -, -, -, -, -,	C. $[-2;7]$			
		D. [−2;7]∪(8;9]			
6.	Какие из заданных отношений не являются бинарными на	А. «обозначать гласный звук» на множестве букв алфавита			
	указанных множествах	в. «быть столицей» на множестве городов			
	J	С. «быть равными» на множестве			
		действительных чисел			
		D. «содержать одинаковые ссылки» на			
7.	Укажите область значений	множестве WEB-страниц			
/.	соответствия $f:A \to B$, где	А. Im $f = \{\text{столяр}, \text{маляр}, \text{токарь}\}$			
	$A = \{$ столяр, маляр, строитель,	В. Im $f = \{$ краски, стамеска, молоток, токарный станок $\}$			
	$A = \{cronnp, малир, crpourchs, rokapь\}, B = \{краски, стамеска, rokapь\}$	C . Im $f = \{$ краски, стамеска, молоток, токарный			
	молоток, токарный станок,	(Apackii, Classocka, Mosfolok, Tokapiinii			

	Задания первого уровня				
	микроскоп} и $P = \{(x, y) x \in A, y \in B, x \text{ работает } y \}$		станок, микроскоп $\}$ Im $f = \{$ стамеска, молоток, токарный станок, микроскоп $\}$		
8.	Установите соответствие 1) Тождественно истинный предикат 2) Тождественно ложный предикат 3) Выполнимый предикат	В. С.	$x^{2} + y^{2} < 0, x \in R, y \in R$ $x + 2y = 0, x \in R, y \in R$ $P(x) \leftrightarrow Q(x)$ $\sin^{2} x + \cos^{2} x = 1, x \in R$		
9.	Если в приведенной форме формулы логики предикатов кванторные операции или отсутствуют, или используются после всех операций алгебры высказываний, то говорят, что она имеет	B. C. D.	Нормальную форму Совершенную нормальную форму Предваренную нормальную форму Общезначимую форму		
10.	Укажите матрицу инцидентности графа, изображенного на рисунке	A.	$B(G) = \begin{pmatrix} -1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 1 & 1 & -1 \end{pmatrix}$		
	V ₁ V ₂ V ₃ X ₄ V _b X ₃	В.	$B(G) = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 0 & 0 \end{pmatrix}$		
	V ₅		$B(G) = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$		
		D.	$B(G) = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$		
11.	Граф, в котором все вершины соединены между собой, называется	B. C.	Полный граф Мультиграф Псевдограф Связный граф		
12.	Величина наибольшего эксцентриситета вершин графа называется	C.	Длина дуги Радиус графа Диаметр графа Эксцентриситет вершины		

Председатель методической комиссии		Поперчук С.В.
Преподаватель		Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс <u>II</u> Форма обучения <u>очная</u> Семестр <u>III</u>

Председатель методической комиссии	 Поперчук С.В.
Преподаватель	Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Специальность 09.02.05 Прикладная математика (по отраслям)

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

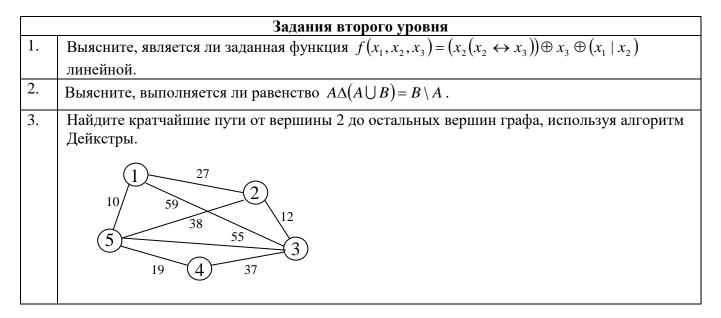
Задания второго уровня					
1.	В заданном высказывании выделите простые высказывания (не более трех), обозначьте их				
	буквами и запишите составное высказывание в виде формулы. Составьте таблицу				
	истинности формулы.				
	«Автомобиль подлежит конфискации, если он служил орудием преступления или был				
	добыт преступным путём».				
2.	Бинарное отношение на множестве M задано матрицей				
	$\begin{pmatrix} 1 & 0 & 1 & 0 \end{pmatrix}$				
$P = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$					
$P = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$.	$P = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$.				
	$(0 \ 1 \ 0 \ 0)$				
	Определите, сколько элементов содержит множество M . Определите свойства				
	отношения.				
3.	Постройте матрицу достижимости и матрицу расстояний графа, заданного матрицей				
	смежности $A(G) = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 3 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 \end{pmatrix}$. Определите диаметр, радиус и центр графа.				
	$\begin{bmatrix} 0 & 0 & 3 & 1 & 1 \end{bmatrix}$				
	смежности $A(G) = \begin{bmatrix} 2 & 0 & 0 & 1 & 0 \end{bmatrix}$. Определите диаметр, радиус и центр графа.				
	$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 \end{bmatrix}$				
	$\begin{pmatrix} 0 & 1 & 1 & 0 & 1 \end{pmatrix}$				
	(0 1 1 0 1)				

Председатель методической комиссии	 Поперчук С.В.
Преподаватель	 Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

Задания второго уровня		
1.	Изобразите с помощью диаграмм Эйлера-Венна множество $(A \setminus B) \cap (C\Delta B)$.	
2.	Используя метод математической индукции докажите, что	
	$1^2+2^2+3^2++n^2=rac{n(n+1)(2n+1)}{6}$ для любого натурального числа n .	
3.	Постройте дополнение графа до полного. Дополнение представьте отдельным графом.	


Председатель методической комиссии	Поперчук С.В.
Преподаватель	Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Специальность 09.02.05 Прикладная математика (по отраслям)

Курс <u>II</u> Форма обучения <u>очная</u> Семестр <u>III</u>

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №4

 Председатель методической комиссии
 Поперчук С.В.

 Преподаватель
 Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

	Задания второго уровня		
1.	Постройте логическую схему, которую реализует булева функция		
	$f(x_1, x_2, x_3) = ((x_1 \to x_2) \leftrightarrow (x_2 \to \overline{x}_1))x_3.$		
2.	Определите тип предиката $x^2 + y^2 = 1$, заданного на множестве натуральных чисел $N \times N$,		
	и укажите область его истинности. Дайте аргументированный ответ.		
3.	Задайте граф геометрическим и аналитическим способом, если задана его матрица инцидентности		
	$B(G) = \begin{pmatrix} 1 & -1 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ -1 & 0 & 0 & 1 & 1 \end{pmatrix}.$		

Председатель методической комиссии	 Поперчук С.В.
Преподаватель	 Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

Задания второго уровня		
1.	Приведите формулу алгебры высказываний $(A \lor B \lor C) \land (A \to B)$ к дизъюнктивной	
	нормальной форме.	
2.	Постройте матрицу и граф бинарного отношения «относиться к одному времени года» на множестве месяцев {март, май, июнь, июль, сентябрь, декабрь}, определите свойства этого отношения.	
3.	Определите множество истинности предиката $(x \ge 4) \leftrightarrow (x < -3)$.	

Председатель методической комиссии	ſ	Поперчук С.В.
Преподаватель		Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

	Задания второго уровня	
1.	Упростите выражение $((A \cup B) \cap \overline{A}) \cap (B \cup A)$.	
2.	2. Запишите предваренную нормальную форму формулы логики предикатов	
	$\exists x P(x) \to \forall x P(x)$.	
3.	Изобразите графически неориентированный граф $G = G(V, E)$, заданный множеством	
	вершин $V = \{X_1, X_2, X_3, X_4, X_5, X_6\}$ и множеством ребер $v(X_1) = \{X_1, X_2, X_3, X_6\}$,	
	$v(X_2) = \{X_1, X_3, X_5\}, \ v(X_3) = \{X_1, X_2, X_6\}, \ v(X_4) = \{X_5\}, \ v(X_5) = \{X_2, X_4\},$	
	$v(X_6) = \{X_1, X_3\}$. Постройте матрицы смежности и инцидентности данного графа.	

Председатель методической комиссии	Поперчук С.В.
Преподаватель	Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

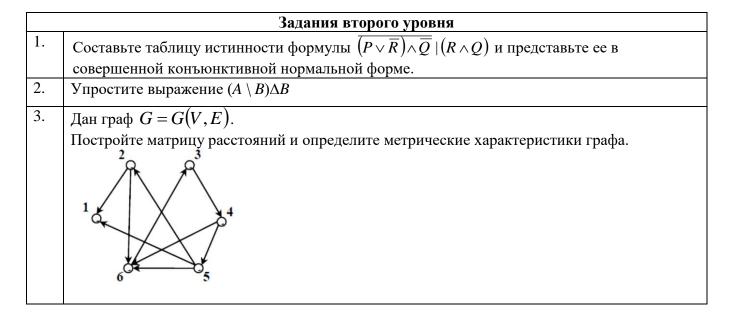
Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

	Задания второго уровня	
1.	1. Постройте минимальную ДНФ функции $f(x_1, x_2, x_3) = \overline{x_3 x_1} \to \overline{x_1} \mid \overline{x_2 \oplus x_3}$.	
2.	2. Задайте различными способами (списком, матрицей, графом) и установите свойства бинарного отношения $P = \{(x; y) x \in M, y \in M, x - y = 2\}$ на множестве чисел $M = \{-2;0;2;4;6\}$.	
3.	Представьте формулу логики предикатов $\forall x \exists y P(x, y) \rightarrow \exists x Q(x)$ в приведенной форме.	

Председатель методической комиссии	 Поперчук С.В.
Преподаватель	 Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$


	Задания второго уровня	
1.	Составьте таблицу истинности формулы $R \wedge \overline{P o \overline{Q} \mid R} \oplus (R \vee Q)$ и представьте ее в	
	совершенной дизъюнктивной нормальной форме.	
2.	Решите задачу. В группе у 11 студентов имеются водительские права на категорию «А», у	
	11 студентов – на категорию «В», у 11 студентов – на категорию «С», у двух студентов	
	имеются права на все три категории. Категории «А» и «В» имеют 3 студента, «А» и «С» - 4	
	студента, «В» и «С» - 5 студентов. Трое студентов вообще не имеют прав на вождение.	
	Сколько всего студентов в группе?	
3.	Докажите, что в полном графе с n вершинами количество ребер равно $\frac{n(n-1)}{2}$.	

Председатель методической комиссии	 Поперчук С.В.
Преподаватель	 Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Специальность 09.02.05 Прикладная математика (по отраслям)

Курс <u>II</u> Форма обучения <u>очная</u> Семестр <u>III</u>

Председатель методической комиссии	Поперчук С.В.
Преподаватель	Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

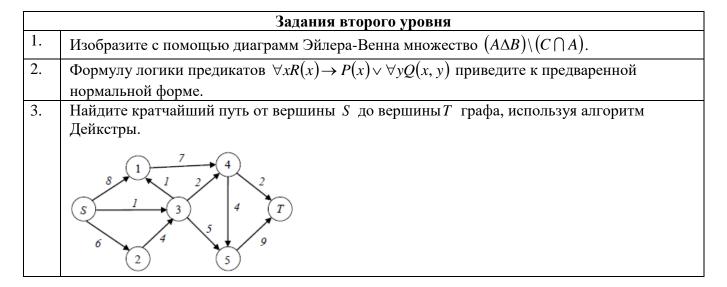
	Задания второго уровня	
1.	По таблице истинности функции $f(x,y,z) = (x \to y) \oplus (z \to (x \leftrightarrow \overline{z}))$ постройте СДНФ и	
	задайте ее многочленом Жегалкина.	
2.	Соответствие $f:A\mapsto B$ задано матрицей $\begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.	
	Определите мощность декартова произведения множеств A и B . Укажите тип соответствия.	
3.	Из Москвы в Санкт-Петербург выехали пять разных машин Audi, BMW, Lexus, Mercedes, Toyota. BMW едет впереди Mercedes, Toyota впереди Audi, но позади Mercedes, Lexus впереди BMW. Определите порядок движения машин. Постройте матрицы смежности и инцидентности соответствующего графа.	

Председатель методической комиссии	Поперчук С.В.
Преподаватель	Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Специальность 09.02.05 Прикладная математика (по отраслям)

Курс <u>II</u> Форма обучения <u>очная</u> Семестр <u>III</u>



Председатель методической комиссии	Поперчук С.В.
Преподаватель	Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Специальность 09.02.05 Прикладная математика (по отраслям)

Курс <u>II</u> Форма обучения <u>очная</u> Семестр <u>III</u>

Председатель методической комиссии	Поперчук С.В.
Преподаватель	Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

	Задания второго уровня	
1.	Представьте формулу $X \lor Y \lor Z \to (X \lor Y) \land Z$ в конъюнктивной нормальной форме.	
2.	Решите задачу. В мае было 12 дождливых, 8 ветреных, 4 холодных, 5 дождливых и ветреных, 3 дождливых и холодных, 2 ветреных и холодных дней, а один день был и дождливый, и ветреный, и холодный. В течение скольких дней в мае было тепло без ветра и дождя?	
3.	Орграф $G=G(X,V)$ задан матрицей инцидентности $B(G)=\begin{pmatrix} -1 & 0 & 0 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & -1 \end{pmatrix}.$	
	Постройте матрицу достижимости и матрицу расстояний графа. Определите метрические характеристики графа.	

Председатель методической комиссии	 Поперчук С.В.
Преподаватель	 Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

	Задания второго уровня		
	Выясните, образует ли базис система булевых функций		
1	$F = \left\{ x_1 \oplus \left(x_2 \downarrow x_3 \right), \left(x_1 \oplus x_2 \right) \lor x_3; x_1 \leftrightarrow \left(x_2 \lor x_3 \right) \right\}$		
2. 3	Вадайте различными способами (списком, матрицей, графом) и установите свойства		
б	бинарного отношения «быть кратным» на множестве чисел {2,3,4,6,9}.		
	Используя метод математической индукции, докажите, что $2^n > n^2$ для любого		
Н	натурального $n \ge 5$.		

Председатель методической комиссии	Поперчук С.	В.
Преподаватель	Захаров В.B.	

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

Задания второго уровня			
1.	1. Постройте минимальную ДНФ функции $f(x_1, x_2, x_3) = x_1 \lor x_3 \lor (x_3 \leftrightarrow x_2 \to x_1)$.		
2.	2. Определите тип предиката $x^3 - x^2 + 6x = 0$ на множестве натуральных чисел и область его истинности. Дайте аргументированный ответ.		
3.	Дана матрица $A(G) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 1 & 0 & 0 & 1 \\ 2 & 1 & 0 & 0 \end{pmatrix}$. Постройте ориентированный граф, для которого матрица $A(G)$ является матрицей смежности. Найдите матрицу инцидентности этого графа.		

Председатель методической комиссии	Поперчук С.В.
Преподаватель	Захаров В.В.

Учебная дисциплина ЕН.02 Дискретная математика

Курс $\underline{\text{II}}$ Форма обучения $\underline{\text{очная}}$ Семестр $\underline{\text{III}}$

Задания второго уровня		
1.	Постройте логическую схему, которую реализует булева функция	
	$f(x_1, x_2, x_3) = (x_1 \leftrightarrow x_3) \rightarrow ((x_1 \leftrightarrow x_2) \land (x_2 \leftrightarrow x_3)).$	
2.	Решите задачу. 55% опрошенных ответили, что используют бытовую технику фирмы	
	Phillips, 37% - технику фирмы LG, 50% - технику фирмы Samsung. Опрос также показал,	
	что клиенты пользуются техникой от разных производителей: LG и Samsung - 22%, LG и	
	Phillips - 14%, Samsung и Phillips - 20%. Каков процент пользующихся техникой только от	
	Phillips?	
3.	Представьте формулу логики предикатов $\exists x P(x,z) \land (Q(x,y) \rightarrow \forall x R(x,z))$ в приведенной	
	форме.	

Председатель методической комиссии	 Поперчук С.В.
Преподаватель	 Захаров В.В.