МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля»

Колледж

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ для проведения текущего контроля и промежуточной аттестации в форме дифференцированного зачета

по учебной дисциплине

<u>EH.02 Дискретная математика с элементами математической логики</u>

(код и наименование учебной дисциплины)

по специальности

<u>09.02.07 Информационные системы и программирование</u>

(код, наименование специальности)

РАССМОТРЕН И СОГЛАСОВАН

методической комиссией <u>естественно-математических дисциплин</u> (наименование комиссии)

Протокол № <u>1</u> от «<u>31</u>» <u>августа</u> 20 <u>23</u> г.

Разработан на основе федерального государственного образовательного стандарта среднего профессионального образования по специальности <u>09.02.07 Информационные системы и программирование</u> (код), наименование специальности)

УТВЕРЖДЕН

заместителем директора

/ Захаров Владимир Викторович (подпись, Ф.И.О.)

Составитель:

Захаров Владимир Викторович, преподаватель дисциплинобщепрофессионального цикла

(Ф.И.О., должность)

1. Паспорт комплекта контрольно-оценочных средств

В результате освоения учебной дисциплины ЕН.02 Дискретная математика с элементами математической логики обучающийся должен обладать предусмотренными ФГОС СПО по специальности 09.02.07 Информационные системы и программирование следующими умениями (У):

- У 1. применять логические операции, формулы логики, законы алгебры логики;
- У 2. формулировать задачи логического характера и применять средства математической логики для их решения;

знаниями (3):

- 3 1. основные принципы математической логики, теории множеств и теории алгоритмов;
 - 3 2. формулы алгебры высказываний;
 - 3 3. методы минимизации алгебраических преобразований;
 - 3 4. основы языка и алгебры предикатов;
 - 3 5. основные принципы теории множеств

и общими компетенциями:

- ОК 1. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;
- ОК 2. Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности;
- ОК 4. Работать в коллективе и команде, эффективно взаимодействовать с коллегами, руководством, клиентами;
- ОК 5. Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста;
- ОК 9. Использовать информационные технологии в профессиональной деятельности;
- ОК 10. Пользоваться профессиональной документацией на государственном и иностранном языках.

2. Оценивание уровня освоения учебной дисциплины

Предметом оценивания служат умения и знания, предусмотренные ФГОС СПО по дисциплине ЕН.02 Дискретная математика с элементами математической логики, направленные на формирование общих компетенций. Промежуточная аттестация по учебной дисциплине проводится в форме дифференцированного зачета.

Контроль и оценивание уровня освоения учебной дисциплины по темам (разделам)

Таблица 1

Элемент учебной дисциплины	Формы и методы контроля					
·	Текущий контроль	Промежуточная аттестация				
	Форма контроля	Проверяемые ОК, У, 3	Форма контроля	Проверяемые ОК, У, 3		
Раздел 1. Элементы теории множеств.						
Тема 1.1. Основы теории множеств.	 Опрос по теоретическому материалу Письменное тестирование Практическая работа Оценка результатов выполнения внеаудиторного индивидуального задания 	OK 1, OK 2, OK 4, OK 5, OK 9, OK 10 Y2, 31, 35				
Раздел 2. Основы математической логики.						
Тема 2.1. Логика высказываний	 Опрос по теоретическому материалу Экспертная оценка результатов деятельности обучающихся в процессе освоения программы на практических занятиях Практические работы 	OK 1, OK 2, OK 4, OK 5, OK 9, OK 10 У1, 32				
Тема 2.2. Булевы функции.	 Опрос по теоретическому материалу Письменное тестирование Практические работы Контрольная работа Оценка результатов выполнения внеаудиторного индивидуального задания 	OK 1, OK 2, OK 4, OK 5, OK 9, OK 10 У1, 32, 33				
Раздел 3. Логика предикатов.						
Тема 3.1. Предикаты.	 Опрос по теоретическому материалу Экспертная оценка результатов деятельности обучающихся в процессе освоения программы на практических занятиях Письменное тестирование 	OK 1, OK 2, OK 4, OK 5, OK 9, OK 10 Y1, Y2, 34				

Элемент учебной дисциплины	Формы и методы контроля						
·	Текущий контроль	Текущий контроль					
	Форма контроля	Проверяемые ОК, У, 3	Форма контроля	Проверяемые ОК, У, 3			
	• Практическая работа						
	• Оценка результатов выполнения						
	внеаудиторного индивидуального задания						
Раздел 4.							
Элементы теории графов.							
Тема 4.1.	• Опрос по теоретическому материалу	OK 1, OK 2, OK 4,					
Основы теории графов	• Экспертная оценка результатов деятельности	OK 5, OK 9, OK 10					
	обучающихся в процессе освоения программы на	У2, 31, 35					
	практических занятиях						
	• Письменное тестирование						
	• Практические работы						
	• Оценка результатов выполнения внеаудиторной						
	индивидуальной работы						
Раздел 5.	•						
Элементы теории алгоритмов.							
Тема 5.1.	• Опрос по теоретическому материалу	OK 1, OK 2, OK 4,					
Элементы теории алгоритмов.	• Экспертная оценка результатов деятельности	OK 5, OK 9, OK 10					
	обучающихся в процессе освоения программы на	У2, 31					
	практических занятиях						
Промежуточная аттестация			Дифференцир	У1 – У2;			
			ованный	31 - 35;			
			зачет	OK 1, OK 2,			
				OK 4, OK 5,			
				OK 9, OK 10			

3. Задания для оценки освоения учебной дисциплины

3.1. Задания для текущего контроля

Текущий контроль проводится по темам в соответствии с рабочей программой учебной дисциплины EH.02 Дискретная математика с элементами математической логики.

Задания для проведения текущего контроля приведены в Приложении А. (задания для текущего контроля прилагаются в соответствии с таблицей 1 данного документа

Критерии оценивания текущего контроля

Оценка тестовых работ обучающихся

Уровень учебных достижений	Показатели оценки результата
«5»	правильно выполнено 85% - 100% заданий
« 4 »	правильно выполнено 70% - 84% заданий
«3»	правильно выполнено 50% - 69% заданий
«2»	правильно выполнено 25% - 49% заданий
«1»	правильно выполнено 0% - 24% заданий

Оценка устных ответов обучающихся

оценка у	embix orberob coy idiominica
Уровень учебных достижений	Показатели оценки результата
«5»	 полно раскрыл содержание материала в объеме, предусмотренном программой; изложил материал грамотным языком в определенной логической последовательности, точно используя терминологию и символику; правильно выполнил рисунки, чертежи, графики, сопутствующие опету; показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания; продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при отработке умений и навыков; отвечал самостоятельно без наводящих вопросов преподавателя. Возможны одна-две неточности при освещении второстепенных вопросов или в выкладках, которые обучающийся легко исправил по замечанию преподавателя.
«4»	 в изложении допустил небольшие пробелы, не исказившие содержание ответа; допустил один-два недочета при освещении основного содержания ответа; допустил ошибку или более двух недочетов при освещении второстепенных вопросов или в выкладках.

Уровень учебных	Показатели оценки результата					
достижений						
«З»	 неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала; имелись затруднения или допущены ошибки в определении понятий, использовании терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов; студент не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме; при изложении теоретического материала выявлена недостаточная сформированность основных умений и навыков. 					
«2»	• не раскрыто основное содержание учебного материала;					
	• обнаружено незнание или непонимание студентом большей или наиболее					
	важной части учебного материала;					
	• допущены ошибки в определении понятий, при использовании					
	математической терминологии, в рисунках, чертежах или графиках, в					
	выкладках, которые не исправлены после нескольких наводящих вопросов.					

Для речевой культуры обучающихся важны и такие умения, как умение слушать и принимать речь преподавателя и одногруппников, внимательно относится к высказываниям других, умение поставить вопрос, принимать участие в обсуждении проблемы и т.п.

Оценка письменных работ обучающихся

П					
Показатели оценки результатов					
работа выполнена правильно и в полном объеме; в логических рассуждениях и					
обосновании решения нет пробелов и ошибок; в решении нет математических					
ошибок (возможна одна неточность, описка, не являющаяся следствием незнания					
или непонимания учебного материала).					
работа выполнена правильно, но обоснования шагов решения недостаточны (если					
умение обосновывать рассуждения не являлось специальным объектом					
проверки); допущена одна ошибка или два-три недочета в выкладках, рисунках,					
чертежах или графиках (если эти виды работы не являлись специальным					
объектом проверки); выполнено без недочетов не менее 75% заданий.					
допущены более одной ошибки или более трех недочетов в выкладках, чертежах					
или графиках, но учащийся владеет обязательными умениями по проверяемой					
теме; без недочетов выполнено не менее 50% работы.					
допущены существенные ошибки, показавшие, что обучающийся не владеет					
обязательными умениями по данной теме в полной мере; правильно выполнено					
менее 50% работы.					

Критерии ошибок:

К ошибкам относятся:

- ошибки, которые обнаруживают незнание учащимися формул, правил, основных свойств и неумение их применять;
- незнание приемов решения задач, а также вычислительные ошибки, если они не являются опиской;
- неумение выделить в ответе главное, неумение делать выводы и обобщения, неумение пользоваться первоисточниками, учебником и справочниками.

К недочетам относятся:

- описки, недостаточность пояснений, обоснований в решениях,
- небрежное выполнение записей, чертежей, схем, графиков;
- орфографические ошибки, связанные с написанием терминов.

3.2. Задания для промежуточной аттестации

В соответствии с учебным планом ППССЗ по специальности 09.02.07 Информационные системы и программирование по учебной дисциплине ЕН.02 Дискретная математика с элементами математической логики предусмотрено проведение промежуточной аттестации в форме дифференцированного зачёта. Дифференцированный зачёт в соответствии с настоящим КОС проводится в форме комплексной контрольной работы.

Задания контрольной работы охватывают содержание основных разделов дисциплины:

Раздел 1. Элементы теории множеств.

Раздел 2. Основы математической логики.

Раздел 3. Логика предикатов.

Раздел 4. Элементы теории графов.

Структура контрольной работы:

работа состоит из двух частей: теоретическая часть – тестовые задания; практическая часть – решение задач.

Каждый вариант включает 10 заданий теоретической части и 3 задания практической части.

Задания для проведения промежуточной аттестации приведены в Приложении Б.

4. Условия проведения промежуточной аттестации

Количество вариантов заданий – по количеству обучающихся.

Время выполнения задания – 80 мин.

Оборудование: бланки документов.

5. Критерии оценивания промежуточной аттестации

Уровень учебных достижений	Показатели оценки результатов		
«5»	работа выполнена правильно и в полном объеме; в логических рассуждениях и обосновании решения нет пробелов и ошибок; в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала).		
«4»	работа выполнена правильно, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки); допущена одна ошибка или два-три недочета в выкладках, рисунках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки); выполнено без недочетов не менее 75% заданий.		
«3»	допущены более одной ошибки или более трех недочетов в выкладках, чертежах или графиках, но учащийся владеет обязательными умениями по проверяемой теме; без недочетов выполнено не менее 50% работы.		
«2»	допущены существенные ошибки, показавшие, что обучающийся не владеет обязательными умениями по данной теме в полной мере; правильно выполнено менее 50% работы.		

Критерии оценивания выполнения комплексной контрольной работы:

Каждое задание первой группы оценивается в:

- 2 балла, если все варианты ответов указаны верно;
- 1 балл, если не все варианты ответов указаны верно или указаны частично;
 - 0 баллов, если варианты ответов указаны полностью неверно.

Каждое задание второй группы оценивается в:

- 5 баллов, если получен правильный ответ, четко аргументированы основные этапы решения задачи;
- 4 балла, если получен правильный ответ, но недостаточно аргументированы основные этапы решения задачи;
- 3 балла, если получен неправильный ответ или ответ не найден, решение выполнено более чем наполовину;
- 2 балла, если или ответ не найден, решение выполнено менее чем наполовину;
- 0 баллов, если студент не приступал к выполнению задания. Шкала перевода в пятибалльную оценку:
 - «5» 31-35 баллов
 - «4» 26-30 баллов
 - «3» 18-25 баллов
 - «2» менее 18 баллов.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

колледж

Рассмотрено и утверждено		УТВЕРЖДАЮ)	
на заседании методической ко	миссии	Заместитель директор		
естественно-математических д	цисциплин			
Протокол от «»20	года №	В.В. Захаро	В	
Председатель комиссии		«»20 ı	Γ.	
С.В. П	оперчук			
	комплект зада	ДАНИЙ		
для пров	едения промежуточ	очной аттестации		
-	ме дифференцирова			
- T ~F	And de de la marie and a			
	по учебной дисци	иплине		
ЕН.02 Лискретная ма	•	тами математической логики		
	р и название дисциплины по ј			
	•			
	по специально	ости		
<u>09.02.07 Инфор</u>	мационные системь	ны и программирование		
(код и назва	ние специальности в соотве	зетствии с ФГОС СПО)		

для студентов <u>II</u> курса				
_				
форма обучения <u>оч</u>	ная			
	_			
	Преподавате	гель В.В. Захаров		

(подпись)

колледж

Учебная дисциплина **ЕН.02 Дискретная математика с элементами математической логики**

(шифр и название дисциплины по учебному плану)

Специальность 09.02.07 Информационные системы и программирование

(код и название специальности в соответствии с ФГОС СПО)

Курс <u>II</u>

Форма обучения очная

			-	го уровн					
2.	Укажите способы задания множеств Определите, какие из	B. C. D. E.	граф хара спис	оом ктерист ском оицей	ей проце	• 1	й	ементов	3
2.	перечисленных множеств являются пустыми	В. С.	$(A \cap \overline{A} \cup \overline{A})$	$(B)\backslash A$ A	гва непус	стые			
3.	На множествах $A = \{1;2;3;4\}$ и $B = \{a,b,c;d\}$ задано отображение $P:A\mapsto B$ $P = \{(1;b),(1;c),(2;a),(3;d)\}$. Укажите матрицу заданного отношения.	A. C.	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 0 1			B. $\begin{pmatrix} 1 \\ a \end{pmatrix}$ D. $\begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$		
4.	Отображение $P: A \mapsto B$ называется инъективным, если	C.	Каж, соот	ветству	ообразу ет ый образ		В. <i>E</i> (<i>P</i>) D. Кажд соответс единств	ому обр ствует	•
5.	Таблица истинности для операции ⊕ (сложение по модулю 2) имеет вид	A. 0)	y 0 1 0	$ \begin{array}{c c} x \oplus y \\ \hline 1 \\ 0 \\ 0 \end{array} $		B. x 0 0 1 1	y 0 1 0	$ \begin{array}{c} x \oplus y \\ 1 \\ 0 \\ 0 \\ 1 \end{array} $

	Зада	ния первого уровня
6.	Какая из приведенных формул является совершенной дизъюнктивной нормальной формой?	$ \begin{array}{ c c c c c } \hline \textbf{C.} & x & y & x \oplus y \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 0 \\ \hline $
7.	Множеством истинности предиката $P(x)$: $x > 5$, заданного на множестве $M = \{1,3,5,7,9\}$, есть множество	A. $P^{+} = \{1,3,5,7,9\}$ B. $P^{+} = \{5,7,9\}$ C. $P^{+} = \{7,9\}$ D. $P^{+} = \{1,3\}$
8.	Предложение $\exists x \forall y (x + y = 0)$ на множестве действительных чисел является	 А. истинным высказыванием В. ложным высказыванием С. одноместным предикатом D. двуместным предикатом
9.	Элементами неориентированного графа $G = G(X, V)$ являются	А. ВершиныВ. ДугиС. РебраD. Маршруты
10.	По заданной матрице весов определите длину маршрута E – B – D – C.	A. 24 B. 17 C. 14 D. 8

	Задания второго уровня				
11.	Докажите тождество $\overline{A \setminus B} = \overline{A} \cup B$.				
	Ответ:				
12.	По таблице истинности функции $f(x, y, z) = (x \to y) \oplus (z \to (x \leftrightarrow \overline{z}))$ постройте СКНФ и упростите ее.				
	Ответ:				
13.	Заданный граф представьте аналитически и постройте его матрицы смежности и инцидентности. $X_1 \qquad \qquad$				
	Ответ:				

Председатель методической комиссии		С.В. Поперчук
•	(подпись)	
Преподаватель	(полпись)	В.В. Захаров

колледж

Учебная дисциплина **ЕН.02 Дискретная математика с элементами математической логики**

(шифр и название дисциплины по учебному плану)

Специальность 09.02.07 Информационные системы и программирование

(код и название специальности в соответствии с ФГОС СПО)

Курс <u>II</u>

Форма обучения очная

	Задания первого уровня				
1.	Какие из записей являются верными?	A. $a \subset (a;b]$ B. $a \in [a;b]$ C. $\{a;b\} \not\subset (a;b]$ D. $\varnothing \in (a;b)$			
2.	Определите объединение множеств A и B , где $A = \{1;2;3;4;5\}$ и $B = \{x \mid x \in N, 3 < x \le 7\}$	A. $A \cup B = \{1;2;3\}$ B. $A \cup B = \{1;2;3;4;5;6;7\}$ C. $A \cup B = \{4;5\}$ D. $A \cup B = \{1;2;3;6;7\}$			
3.	Какие из заданных отношений являются бинарными на указанных множествах	 А. «обозначать гласный звук» на множестве букв алфавита В. «быть равными» на множестве действительных чисел С. «быть столицей» на множестве городов D. «содержать одинаковые ссылки» на множестве WEB-страниц 			
4.	Определите свойства отношения $P = \{(a;b) a$ — делитель $b\}$ на множестве натуральных чисел.	 A. рефлексивность B. антирефлексивность C. симметричность D. антисимметричность E. транзитивность 			
5.	Таблица истинности для операции дизьюнкции имеет вид	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			

	Задания первого уровня								
		C.		v	$x \vee y$		D. <i>x</i>	v	$x \lor y$
		l	0	0	0		0	0	0
			0	1	1		0	1	1
			1	0	1		1	0	1
			1	1	0		1	1	1
6.	Функция $f(x_1, x_2,, x_n)$ с	A.	выс	казыван	ием				
	областью значений $E = \{0,1\}$,	B.		цикатом					
	` '			евой фун					
	переменные $x_1, x_2,, x_n$ которой	D.	МНО	гочлено	м Жегал	кина			
	также принимают только эти два								
7	значения, называется	A		5				12	
7.	Одноместными предикатами	A. B.				тител	ем числа	12	
	являются следующие предложения			$-8 \le x +$	•			2 2	
			-			-	авенство	-	=0
		D.	одн	означно	е число	х мен	ныше числ	та 10	
8.	Найдите отрицание формулы	A.	∃x($\overline{P(x)} \wedge \overline{Q(x)}$	(x)				
	$\exists x \big(P(x) \land Q(x) \big)$	В.	∀x(.	$\overline{P(x)} \vee \overline{Q(x)}$	$\overline{(x)}$)				
			_	$\overline{P(x)} \wedge \overline{Q(x)}$					
			_	$\overline{P(x)} \vee \overline{Q(x)}$					
9.	Какие значения могут принимать	Α.		(*) (
	элементы матрицы инцидентности	В.	0						
	некоторого графа?	C.	1						
		D.	2						
		Ε.			ральные	знач	ения		
10.	Какие из указанных циклов в		ACL						
	графе с вершинами A, B, C, D, E			CDBA					
	являются простыми?	C.		EADB					
		D.	BEC	CAB					

Задания второго уровня			
	Постройте логическую схему, которую реализует булева функция		
11.	$f(x_1, x_2, x_3) = ((x_1 \to x_2) \leftrightarrow (x_2 \to \overline{x}_1))x_3.$		
	Ответ:		
12.	Определите тип предиката $x^3 - x^2 + 6x = 0$ на множестве натуральных чисел и область его		
	истинности. Дайте аргументированный ответ.		
	Ответ:		
	Постройте граф бинарного отношения $P = $ «относиться к одному времени года» на		
13.	множестве месяцев {март, май, июнь, июль, декабрь}. Определите матрицу смежности и		
	матрицу инцидентности полученного графа.		
	Ответ:		

Председатель методической комиссии		С.В. Поперчук
_	(подпись)	_
Преподаватель	(подпись)	_ В.В. Захаров

колледж

Учебная дисциплина **ЕН.02 Дискретная математика с элементами** математической логики

(шифр и название дисциплины по учебному плану)

Специальность 09.02.07 Информационные системы и программирование

(код и название специальности в соответствии с ФГОС СПО)

Курс <u>II</u>

Форма обучения очная

	Зада	п кин	іервого	уровн	Я				
1.	Определите мощность множества всех трехзначных натуральных чисел	A. B. C. D.	100 899 900 999						
2.	По заданной диаграмме Эйлера-Венна определите, какие из утверждений являются верными	B. C. D.	$ \begin{array}{c} A \cap B \\ A \cap C \\ B \cup C \\ C \subset B \\ A \cup C \end{array} $	$C = \emptyset$ $C = B$ B					
3.	Бинарным отношением на множествах A_1, A_2 называется множество P такое, что	A. B.	$P \subset A$ $P \subset ($	$A_1, P \subset A_1 \cup A_2$	A_2	C D	$P \subset ($	$A_1 \cap A_2$ $A_1 \times A_2$	
4.	На множествах $A = \{1;2;3;4\}$ и $B = \{a,b,c;d\}$ задано отображение $P:A \mapsto B$ $P = \{(1;b),(1;c),(2;a),(3;d)\}$. Укажите вид отображения.	A. B. C. D. E. F.	части сюръ инъен функт	-	e				
5.	Таблица истинности для операции импликации имеет вид		0 0 1 1	y 0 1 0	$ \begin{array}{c c} x \to y \\ \hline 1 \\ 0 \\ 1 \end{array} $		B. x 0 0 1 1	y 0 1 0	$ \begin{array}{c c} x \to y \\ \hline 0 \\ 0 \\ \hline 1 \\ 0 \end{array} $

Задания первого уровня				
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
6.	Какие из приведенных формул алгебры высказываний являются тавтологиями?	A. $X \vee Y \vee \overline{X}$ C. $X \vee Y \vee 1$ B. $X \wedge Y \wedge \overline{X}$ D. $X \wedge Y \wedge 0$		
7.	При каких значениях предметной переменной x предикат $P(x) = \ll x$ —государство в Европе» превращается в истинное высказывание?	A. x = «Индия» B. x = «Франция» C. x = «Португалия» D. x = «Бразилия»		
8.	Если предикат $P(x)$ логически следует из предиката $Q(x)$, то	A. $P^{+} \subset Q^{+}$		
9.	Порядком графа $G = G(V, E)$ называется	A. $ G $ C. $ E $ B. $ V $ D. $ V \cup E $		
10.	Расстояние от вершины графа до наиболее удаленной вершины называется	 А. Длина дуги В. Радиус графа С. Диаметр графа D. Эксцентриситет вершины 		

	Задания второго уровня				
11.	В заданном высказывании выделите простые высказывания (не более трех), обозначьте их буквами и запишите составное высказывание в виде формулы. Составьте таблицу истинности формулы. «Автомобиль подлежит конфискации, если он служил орудием преступления или был добыт преступным путём».				
12.	Решите задачу. В мае было 12 дождливых, 8 ветреных, 4 холодных, 5 дождливых и ветреных, 3 дождливых и холодных, 2 ветреных и холодных дней, а один день был и				
13.	Найдите кратчайшие пути от вершины X_2 до остальных вершин графа, используя алгоритм Дейкстры.				
	Ответ:				

Председатель методической комиссии		С.В. Поперчук
	(подпись)	
Преподаватель		_ В.В. Захаров
	(подпись)	

колледж

Учебная дисциплина **ЕН.02 Дискретная математика с элементами** математической логики

(шифр и название дисциплины по учебному плану)

Специальность 09.02.07 Информационные системы и программирование

(код и название специальности в соответствии с ФГОС СПО)

Курс <u>II</u>

Форма обучения очная

	Задания первого уровня					
1.	Известно, что $M \subset N$ и $N \subset M$. Какие из утверждений являются истинными?	A. $M \neq N$ C. $M \subset M$ B. $M = N$ D. $N \subset \emptyset$				
2.	Определите симметрическую разность множеств A и B , где $A = \{1; 2; 3; 4; 5\}$ и $B = \{x \mid x \in N, 3 < x \le 7\}$	A. $A\Delta B = \{1;2;3\}$ C. $A\Delta B = \{4;5\}$ B. $A\Delta B = \{1;2;3;4;5;6;7\}$ D. $A\Delta B = \{1;2;3;6;7\}$				
3.	Бинарное отношение $P \subset M \times M$ задано ориентированным графом. Задайте отношение P матрицей.	$\mathbf{A.} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \qquad \mathbf{B.} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\mathbf{C.} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad \mathbf{D.} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$				
4.	Какие из разбиений являются разбиением множества на классы эквиваленитности?	 A. разбиение множества людей по старшинству B. разбиение множества квартир в доме по подъездам С. разбиение множества треугольников по свойствам сторон (разносторонние, равнобедренные, равносторонние) D. разбиение множества треугольников по свойствам углов (остроугольные, прямоугольные, тупоугольные) 				

	Задания первого уровня				
5.	Таблица истинности для операции штрих Шеффера имеет вид	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
6.	Задана булева функция $f = (1010)$. Представьте функцию f в СДНФ.	A. $\overline{x} \ \overline{y} \lor x \ \overline{y}$ B. $(x \lor \overline{y}) \lor (\overline{x} \lor \overline{y})$ C. $\overline{x} \ y \lor x \ y$ D. $(\overline{x} \lor \overline{y})(x \lor \overline{y})$ E. СДНФ не существует			
7.	Каким из способов предикат можно превратить в высказывание?	 А. Заменить предикатные переменные конкретными предикатами В. Применить ко всем свободным переменным кванторы С. Заменить предметные переменные, входящие в предикат, конкретными предметами D. Подставить вместо переменных значения 0 и 1 			
8.	Постройте отрицание формулы логики предикатов $\forall x (P(x) \land Q(x))$	A. $\forall x (\overline{P(x)} \lor Q(x))$ C. $\exists x (\overline{P(x)} \land \overline{Q(x)})$ B. $\exists x (\overline{P(x)} \lor \overline{Q(x)})$ D. $\forall x (\overline{P(x)} \lor \overline{Q(x)})$			
9.	Укажите количество ребер в полном неориентированном графе с 7 вершинами	A. 7 B. 21 C. 42 D. 49			
10.	Определите вид графа, изображенного на рисунке x_1 x_2 x_3 x_4	А. Нуль-граф В. Связный граф С. Сильно связный граф D. Слабо связный граф			

	Задания второго уровня				
11.	Изобразите с помощью диаграмм Эйлера-Венна множество $(A\Delta B)\setminus (C\cap A)$.				
	Ответ:				
	Используя равносильные преобразования, выясните, равносильны ли формулы				
12.	$F_1 = (x \to y) \land \overline{z \to y}$ и $F_2 = \overline{x} \land y \land \overline{z}$. Результат проверьте по таблицам истинности.				
	Ответ:				
	Постройте матрицу достижимости и матрицу расстояний графа, заданного матрицей				
	$ \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 3 & 1 & 1 \end{pmatrix} $				
13.	смежности $A(G) = \begin{bmatrix} 0 & 0 & 3 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 \end{bmatrix}$. Определите диаметр, радиус и центр графа.				
15.					
	$ \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix} $				
	Ответ:				

Председатель методической комиссии		С.В. Поперчук
·	(подпись)	
Преподаватель	(подпись)	В.В. Захаров

колледж

Учебная дисциплина **ЕН.02 Дискретная математика с элементами** математической логики

(шифр и название дисциплины по учебному плану)

Специальность 09.02.07 Информационные системы и программирование

(код и название специальности в соответствии с ФГОС СПО)

Курс <u>II</u>

Форма обучения очная

	Задания первого уровня						
1.	Задайте множество $A = \{1,3,9,27,81,\}$ с	A.	$A = \{3n \mid n \in N\}$	C.	$A = \left\{ 3^n \mid n \ge 0 \right\}$		
	помощью характеристического свойства	В.	$A = \{3n \mid n \in N\}$ $A = \{3^n \mid n = 0, n \in N\}$ $\overline{A} = \{0;1;2;3;4;5;6;7;8;9\}$	D.	$A = \left\{ n^3 \mid n \le 5 \right\}$		
2.	Определите дополнение множества А до	A.	$\overline{A} = \{0;1;2;3;4;5;6;7;8;9\}$	C.	$\overline{A} = \{0;3;5;7;8\}$		
	универсального множества U всех цифр, где $A = \{1;2;4;6;9\}$				$\overline{A} = \{1;3;5;7;9\}$		
3.	Пусть $P: A \mapsto B$ — отображение из множества A в множество B. Множество $\{y \in B \mid \exists x \in A : (x; y) \in P\}$ называется	A. B. C. D.	областью определения областью значений ото областью образов отобробластью прообразов о	браж раже	кения <i>Р</i> ения <i>Р</i>		
4.	Укажите свойства отношения $P = \{(a;b) a \perp b\}$ на множестве всех прямых в пространстве.	A. B. C. D. E.	рефлексивность симметричность антисимметричность транзитивность антитранзитивность				
5.	Таблица истинности для операции эквиваленции имеет вид		$ \begin{array}{c cccc} x & y & x \leftrightarrow y \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array} $		$\begin{array}{c cccc} x & y & x \leftrightarrow y \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}$		
			$ \begin{array}{c ccccc} x & y & x \leftrightarrow y \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} $		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

	Задания первого уровня					
6.	Булева функция f таблицей	$\mathbf{A.} x_1 \vee \overline{x}_2$				
	$egin{array}{c ccccc} x_1 & x_2 & f & \\ \hline 0 & 0 & 0 & \\ \hline 0 & 1 & 0 & \\ \hline 1 & 0 & 1 & \\ \hline 1 & 1 & 0 & \\ \hline \end{array}$ Запишите функцию f в СКНФ.	B. $(x_1 \lor x_2)(x_1 \lor \bar{x}_2)(\bar{x}_1 \lor \bar{x}_2)$ C. $(x_1 \lor x_2)(\bar{x}_1 \lor x_2)(\bar{x}_1 \lor \bar{x}_2)$ D. $x_1x_2 \lor x_1\bar{x}_2 \lor \bar{x}_1\bar{x}_2$ E. CKH Φ не существует				
7.	Укажите тождественно истинные предикаты на множестве <i>R</i> действительных чисел	A. $\sin^2 x + \cos^2 x = 1$ B. $x^2 > 0$ C. $\sin^2 x + \cos^2 y = 1$ D. $x^2 + y^2 \ge 0$				
8.	Пусть $P(x)$ и $Q(x)$ –предикатные переменные. Какие из равносильностей имеют место в логике предикатов?	A. $\forall x P(x) \equiv \exists x \overline{P(x)}$ B. $\exists x P(x) \equiv \forall x P(x)$ C. $\exists x [P(x) \land Q(x)] \equiv \exists x P(x) \lor \exists x Q(x)$ D. $\forall x [P(x) \land Q(x)] \equiv \forall x P(x) \land \forall x Q(x)$				
9.	Количество ребер (дуг), инцидентных изолированной вершине, равно	 A. 0 B. 1 C. ∞ D. Невозможно определить 				
10.	Укажите матрицу смежности графа, изображенного на рисунке X_1 u_1 X_2	$\mathbf{A.} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \qquad \qquad \mathbf{B.} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$				
	X_3 u_3 X_4	$\mathbf{C.} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \qquad \mathbf{D.} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$				

	Задания второго уровня				
	По таблице истинности формулы алгебры высказываний $(A \lor B \lor C) \land (A \to B)$ постройте				
11.	СДНФ и СКНФ формулы.				
	Ответ:				
12.	Определите область истинности предиката $(x \ge 4) \leftrightarrow (x < -3)$.				
12.	Ответ:				
	Постройте дополнение графа до полного. Дополнение представьте отдельным графом.				
13.	3 2 5				
	Ответ:				

Председатель методической комиссии		С.В. Поперчук
•	(подпись)	
Преподаватель		В.В. Захаров

колледж

Учебная дисциплина **ЕН.02 Дискретная математика с элементами** математической логики

(шифр и название дисциплины по учебному плану)

Специальность 09.02.07 Информационные системы и программирование

(код и название специальности в соответствии с ФГОС СПО)

Курс <u>II</u>

Форма обучения очная

	Задания первого уровня						
1.	Известно, что $A \subset B$. Какие из утверждений являются истинными?	A. B. C. D.	$\forall x \in B \; x \notin A$ $\forall x \in A \; x \in B$ $B \subset A$ A является подмножеством множества B				
2.	Даны множества $A = \{-7; -2; -1; 0; 7; 9\}$ и $B = \{$ неположительные действительные числа $\}$. Найдите пересечение множеств A и B .	A.	$A \cap B = \{-7; -2; -1\}$ C. $A \cap B = \{-7; -2; -1; 0\}$ $A \cap B = \{7; 9\}$ D. $A \cap B = \emptyset$				
3.	Бинарное отношение $P \subset M \times M$, где $M = \{\alpha, \beta, \gamma\}$ задано матрицей $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$. Задайте отношение списком.	В. С.	$P = \{(\alpha; \alpha), (\alpha; \gamma), (\beta; \beta), (\gamma; \alpha), (\gamma; \gamma)\}$ $P = \{(\alpha; \alpha), (\beta; \beta), (\gamma; \gamma)\}$ $P = \{(\alpha; \beta), (\beta; \alpha), (\beta; \gamma), (\gamma; \beta)\}$ $P = \{(\alpha; \beta), (\alpha; \gamma), (\beta; \alpha), (\gamma; \alpha), (\gamma; \beta)\}$				
4.	Отношение P на множестве всех WEB-страниц определим следующим образом: две WEB-страницы находятся в отношении P , если они содержат ссылки на одни и те же Internet-ресурсы. Какими свойствами обладает отношение P ?	A. B. C. D. E.	рефлексивность симметричность антисимметричность транзитивность нетранзитивность				
5.	Таблица истинности для операции стрелка Пирса имеет вид		A. x y $x \downarrow y$ 0 0 1 0 1 0 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

	Задания первого уровня				
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
6.	Выберите набор значений переменных, на котором формула логики высказываний $P \to (P \land \overline{Q})$ принимает значение «ложь»:	A. $P = 0; Q = 0$ B. $P = 0; Q = 1$ C. $P = 1; Q = 0$ D. $P = 1; Q = 1$ E. Формула является тождественно истинной			
7.	Какие из переменных x , y , z входят в формулу логики предикатов $\exists y \forall z (P(x,y) \rightarrow P(y,z))$ связно?	 A. x, y, z B. x, z C. y, z D. все переменные в формуле являются свободными 			
8.	Предложение «Для каждого x выполним $P(x)$, но не существует x такой, что выполним $Q(x)$ » может быть записано в виде формулы логики предикатов	A. $\forall x P(x) \lor \exists x \overline{Q(x)}$ B. $\forall x P(x) \land \exists x \overline{Q(x)}$ C. $\exists x P(x) \land \exists x \overline{Q(x)}$ E. $\forall x P(x) \to \exists x \overline{Q(x)}$			
9.	Степень висячей вершины равна	A. 0B. 1C. Зависит от графаD. Невозможно определить			
10.	По заданной матрице расстояний графа $R = \begin{pmatrix} 0 & 2 & 0 & 0 & 0 \\ 2 & 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 3 & 1 & 0 & 2 \\ 0 & 4 & 1 & 2 & 0 \end{pmatrix}$ определите расстояние между вершинами X_2 и X_5 .	A. 1 B. 2 C. 3 D. 4			

Задания второго уровня					
12	Докажите тождество $A\Delta(A \cup B) = B \setminus A$.				
13.	Ответ:				
14.	Выясните, является ли заданная функция $f(x_1, x_2, x_3) = (x_2(x_2 \leftrightarrow x_3)) \oplus x_3 \oplus (x_1 \mid x_2)$ тождественно ложной. Ответ:				
	Задайте граф геометрическим и аналитическим способом, если задана его матрица инцидентности				
15.	$B(G) = \begin{pmatrix} 1 & -1 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ -1 & 0 & 0 & 1 & 1 \end{pmatrix}.$				
	Ответ:				

Председатель методической комиссии		С.В. Поперчук
•	(подпись)	
Преподаватель		В.В. Захаров

колледж

Учебная дисциплина **ЕН.02 Дискретная математика с элементами математической логики**

(шифр и название дисциплины по учебному плану)

Специальность 09.02.07 Информационные системы и программирование

(код и название специальности в соответствии с ФГОС СПО)

Курс <u>II</u>

Форма обучения очная

	Задания	перв	ого уровня
1.	Количество элементов, из которых состоит множество, называется	A. B.	размерностью С. порядком мощностью D. объемом
2.	По заданной диаграмме Эйлера-Венна определите, какие из утверждений являются верными	D.	$A \cup B = \emptyset$ $A \cap D = \emptyset$ $D \cap C = D$ $C \subset D$ $A \cup C = B$
3.	На множестве целых чисел задано бинарное отношение $P = \{(a;b) a \in Z, b \in Z : a - $ делитель $b\}$. Какие из пар элементов принадлежат заданному отношению?	A. B. C. D.	(0;5) (2;4) (3;282) (10;5)
4.	Определите свойства отношения $P = \{(1;1), (1;2), (1;3), (2;1), (2;2), (2;3), (3;1), (3;2), (3;3)\}$ на множестве $M = \{1,2,3\}$.	A. B. C. D. E.	рефлексивность антирефлексивность симметричность транзитивность антитранзитивность
5.	Таблица истинности для операции конъюнкции имеет вид		A. x y $x \wedge y$ 0 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1

	Задания	первого у	/ровня				
6.	Укажите правильный порядок выполнения логических операций в формуле	мод В. Ког сло С. Сло диз В. Ди	цулю 2, д нъюнкци ожение п ожение г въюнкци зъюнкци	x \lambda y 0 0 0 1 ия, имплик цизьюнкци ия, дизьюно о модулю им одулю им одулю <th>ия 1кция, им 2 2, импли кция ие по мод</th> <th>пликац икация,</th> <th>ия,</th>	ия 1кция, им 2 2, импли кция ие по мод	пликац икация,	ия,
7.	Предложение « x и y — родители z » является	А. нул В. одн С. дву	іь-местн іоместнь хместнь	я, конъюн ым предин ым предик ым предик ым предик	катом атом атом		
8.	Запишите формулу логики предикатов $\forall x P(x, y) \land Q(x)$ в предваренной нормальной форме	$\mathbf{A.} \ \forall x$	$P(x,y) \wedge$	Q(x)	B. $\forall xP$		
9.	Укажите множество ребер графа, матрица смежности которого имеет вид $A(G) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$	A. $\{(X_1, X_1), (X_1, X_3), (X_2, X_2), (X_3, X_3)\}$ B. $\{(X_1, X_2), (X_2, X_3)\}$ C. $\{(X_1, X_1), (X_1, X_3), (X_2, X_2), (X_3, X_1), (X_3, X_3)\}$ D. $\{(X_1, X_1), (X_2, X_2), (X_3, X_3)\}$					
10.	Граф, содержащий изолированные вершины, не может быть	В. Пол С. Свя					

Задания второго уровня				
	Задайте различными способами бинарное отношение «быть в сумме нечетным числом» на множестве чисел {2,3,4,6,9} и определите его свойства.			
11.				
	Ответ:			
	Используя равносильные преобразования, привести формулу $X \lor Y \lor Z \to (X \lor Y) \land Z$ к			
12.	ДНФ.			
	Ответ:			
	Изобразите графически неориентированный граф $G = G(V, E)$, заданный множеством			
	вершин $V = \{X_1, X_2, X_3, X_4, X_5, X_6\}$ и множеством ребер $v(X_1) = \{X_1, X_2, X_3, X_6\}$,			
13.	$v(X_2) = \{X_1, X_3, X_5\}, \ v(X_3) = \{X_1, X_2, X_6\}, \ v(X_4) = \{X_5\}, \ v(X_5) = \{X_2, X_4\}, \ v(X_6) = \{X_1, X_3\}$			
	. Постройте матрицы смежности и инцидентности данного графа.			
	Ответ:			

Председатель методической комиссии		С.В. Поперчук
•	(подпись)	
Преподаватель		_ В.В. Захаров

колледж

Учебная дисциплина **ЕН.02 Дискретная математика с элементами математической логики**

(шифр и название дисциплины по учебному плану)

Специальность 09.02.07 Информационные системы и программирование

(код и название специальности в соответствии с ФГОС СПО)

Курс <u>II</u>

Форма обучения очная

	Задания	ого уровня	
1.	Какое из множеств задается порождающей процедурой: $2 \in M$; если $k \in M$, то $(k+3) \in M$, $k \le 14$.	В. С.	$A = \{2;5;8;11;14;17\}$ $A = \{2;5;8;11;14\}$ $A = \{2;5;8;11\}$ $A = \{2;5;8;11;14;17;\}$
2.	По заданной диаграмме Эйлера-Венна определите, какие из утверждений являются верными	В. С.	$A\Delta B = B \setminus A$ $A \cap C \neq \emptyset$ $A \cup B = A$ $A \subset B$
3.	Какие из предложенных пар элементов принадлежат отношению «быть предком» на множестве людей	A. B. C. D.	(дочь; мать) (дед; внук) (отец; сын) (мать; отец)
4.	Пусть $P: A \mapsto B$ - отображение на множествах $A = \{1;3;5;7\}$ и $B = \{b;d;e;f;g\}$, заданное списком $(3;e),(5;b),(7;b)$. Укажите область значений отображения.	C.	$E(P) = \{b; d; e; f; g\}$ $E(P) = \{1; 3; 5; 7\}$ $E(P) = \{b; e\}$ $E(P) = \{3; 5; 7\}$
5.	Таблица истинности для формулы $F = X \leftrightarrow \overline{Y} \;\; \text{имеет вид}$		A. x y F 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 1 0

	Задания первого уровня				
6. 7. 8.	Какие из логических операций не являются допустимыми в нормальных формах формул алгебры высказываний? Выберите множество так, чтобы над ним конъюнкция предикатов $P(x) = \ll x$ — простое число» и $Q(x) = \ll x$ — четное число» была тождественно истинным предикатом Формула логики предикатов называется общезначимой, если	С. x y F 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 3 2 2 4 3 3 4 4 4 4 4 4 5 4 4 6 4 4 7 4 4 8 4 4 8 4 4 8 4 4 9 4 4 10 4 4 10 4 4 10 4 4 10 4 4 10 4 4 10 4 <t< th=""></t<>			
9.	Ребро (дуга), начало и конец которого совпадают, называется Определите эксцентриситет вершины X_5 графа	D. Она выполнима на всякой области A. Цепь B. Петля C. Контур D. Цикл A. 1 B. 2 C. 3 D. 4			

	Задания второго уровня				
11	Постройте минимальную ДНФ функции $f(x_1, x_2, x_3) = x_1 \lor x_3 \lor (x_3 \leftrightarrow x_2 \rightarrow x_1)$.				
11.	Ответ:				
12.	Решите задачу. Из группы 60 туристов английским языком владеют 19 человек, немецким — 20 человек, французским — 4 человека, английским и немецким — 3 человека, английским и французским — 2 человека, немецким и французским — 3 человека, не знают ни одного из перечисленных языков — 24 человека. Сколько туристов владеет одновременно всеми тремя языками?				
	Ответ:				
13.	Задайте ориентированный граф графическим и аналитическим способом, если задана его матрица инцидентности $B(G) = \begin{pmatrix} 1 & -1 & 2 & -1 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ -1 & 0 & 0 & 1 & 1 \end{pmatrix}.$				
	Ответ:				

Председатель методической комиссии	 С.В. Поперчук
Преподаватель	 В.В. Захаров

колледж

Учебная дисциплина **ЕН.02 Дискретная математика с элементами** математической логики

(шифр и название дисциплины по учебному плану)

Специальность 09.02.07 Информационные системы и программирование

(код и название специальности в соответствии с ФГОС СПО)

Курс <u>II</u>

Форма обучения очная

	Задания первого уровня								
1.	Укажите способы задания множеств	A. B. C. D. E.	 А. порождающей процедурой В. графом С. характеристическим свойством элементов D. списком 						
2.	Определите, какие из перечисленных множеств являются пустыми	B.	$\overline{\overline{A}}$ \bigcup	$(A \cap B) \setminus A$	гва непус	стые			
3.	На множествах $A = \{1;2;3;4\}$ и $B = \{a,b,c;d\}$ задано отображение $P:A \mapsto B$ $P = \{(1;b),(1;c),(2;a),(3;d)\}$. Укажите матрицу отображения.	A. C.	$\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ \end{pmatrix}$	1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1			B. $\begin{pmatrix} 1 \\ a \end{pmatrix}$ D. $\begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$,	
4.	Отображение $P: A \mapsto B$ называется сюръективным, если	A. C.	<i>D</i> (<i>I</i> Каж соо	P = A кдому пр	оообразу ет ый образ		В. <i>E</i> (<i>P</i>) D. Кажд	= <i>В</i> цому обр ствует	
5.	Таблица истинности для операции ⊕ (сложение по модулю 2) имеет вид	A	0 0 1 1	y 0 1 0	$ \begin{array}{c c} x \oplus y \\ \hline 1 \\ 1 \\ 0 \\ 0 \end{array} $		B. x 0 0 1 1	y 0 1 0	$ \begin{array}{c} x \oplus y \\ 1 \\ 0 \\ 0 \\ 1 \end{array} $

	Задания первого уровня						
6.	Какая из приведенных формул	$ \begin{array}{ c c c c c c } \hline \textbf{C.} & x & y & x \oplus y \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 0 \\ \hline $					
	является совершенной дизъюнктивной нормальной формой?	B. $(x \wedge y) \vee (\overline{x} \wedge y \wedge \overline{z}) \vee (\overline{y} \wedge z)$ C. $(x \wedge y \wedge z) \vee (\overline{x} \wedge y \wedge \overline{z}) \vee (x \wedge \overline{y} \wedge z)$ D. $\overline{x \wedge y \wedge z} \vee (\overline{x} \wedge \overline{y} \wedge z)$					
7.	Множеством истинности предиката $P(x)$: $x < 5$, заданного на множестве $M = \{1,3,5,7,9\}$, есть множество	A. $P^+ = \{1, 3, 5, 7, 9\}$ B. $P^+ = \{5, 7, 9\}$ C. $P^+ = \{7, 9\}$ D. $P^+ = \{1, 3\}$					
8.	Предложение $\exists x \forall y (x + y = 0)$ на множестве действительных чисел является	 A. истинным высказыванием B. ложным высказыванием C. одноместным предикатом D. двуместным предикатом 					
9.	Укажите дуги, инцидентные вершине V_3 графа, изображенного на рисунке e_1 e_2 e_3 e_6 e_5 v_4	A. e_1, e_2, e_6 B. e_3, e_4 C. e_4, e_5 D. e_3, e_4, e_5					
10.	Маршрут X2, X5, X3, X4, X2, X1 является	А. ПутемВ. Простым путемС. ЦепьюD. Циклом					

	Задания второго уровня
1.1	Упростите выражение $(A \cup B) \cap \overline{A} \cap (B \cup A)$.
11.	Ответ:
12.	Представьте булеву функцию $f(x, y, z) = ((x \to y) \leftrightarrow (y \to \overline{x})) \land z$ в СДНФ и упростите ее.
12.	Ответ:
13.	Дан граф $G = G(X,V)$. Постройте матрицу достижимости графа. Постройте матрицу расстояний и определите метрические характеристики графа. X_1 V_1 V_2 V_3 V_4 V_5 V_5 V_4 V_5 V_5 V_5
	Ответ:

Председатель методической комиссии	 С.В. Поперчук
Преподаватель	 В.В. Захаров

колледж

Учебная дисциплина **ЕН.02 Дискретная математика с элементами** математической логики

(шифр и название дисциплины по учебному плану)

Специальность 09.02.07 Информационные системы и программирование

(код и название специальности в соответствии с ФГОС СПО)

Курс <u>II</u>

Форма обучения очная

	Задания первого уровня						
1.	Какие из записей не являются верными?	A. $a \subset (a;b]$ B. $a \in [a;b]$					
		C. $\{a;b\} \not\subset \{a;b\}$ D. $\varnothing \in \{a;b\}$					
2.	Определите объединение множеств A и B , где $A = \{1;2;3;4;5\}$ и $B = \{x \mid x \in N, 3 < x \le 7\}$	A. $A \cup B = \{1;2;3\}$ B. $A \cup B = \{1;2;3;4;5;6;7\}$ C. $A \cup B = \{4;5\}$ D. $A \cup B = \{1;2;3;6;7\}$					
3.	Какие из заданных отношений являются бинарными на указанных множествах	 А. «обозначать гласный звук» на множестве букв алфавита В. «быть равными» на множестве действительных чисел С. «быть столицей» на множестве городов D. «содержать одинаковые ссылки» на множестве WEB-страниц 					
4.	Определите свойства отношения $P = \{(a;b) a$ — делитель $b\}$ на множестве натуральных чисел.	 A. рефлексивность B. антирефлексивность C. симметричность D. антисимметричность E. транзитивность 					
5.	Таблица истинности для операции дизьюнкции имеет вид	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					

	Задания первого уровня								
		C	. <i>x</i>	v	$x \vee y$		D. <i>x</i>	v	$x \lor y$
			0	0	0		0	0	0
			0	1	1		0	1	1
			1	0	1		1	0	1
			1	1	0		1	1	1
6.	Функция $f(x_1, x_2,, x_n)$ с	A.	выс	казыван	ием				
	областью значений $E = \{0,1\}$,	В.		цикатом					
	переменные $x_1, x_2,, x_n$ которой	C.		евой фун					
		D.	МНО	гочлено	м Жегал	кина			
	также принимают только эти два значения, называется								
7.	Одноместными предикатами	Α.	чист	то 5 явля	ется лепи	тепем	числа 12		
'`	являются следующие предложения	B.		$-8 \le x +$		1 CJICIVI	mena 12		
		C.			•	ea nan	енство x^2	$x^2 - y^2 - $	0
		D.	-			-	не числа 1	•	U
8.	Найдите отрицание формулы		-			мены	пе числа	10	
0.	$\exists x (P(x) \land Q(x))$			$P(x) \wedge Q($					
			_	$P(x) \vee \overline{Q(}$					
				$P(x) \wedge \overline{Q(}$					
		D.	∃x($P(x) \vee \overline{Q(}$	(x)				
9.	Какие значения могут принимать	A.	-1						
	элементы матрицы инцидентности	B.	0						
	некоторого графа?	C.	1						
		D. E.	2 Птоб		120 HI III X		ound.		
10.	Какие из указанных циклов в	A.	ACL		ральные	знач	киия		
10.	графе с вершинами A, B, C, D, E	В. В.		DBA					
	являются простыми?	C.		EADB					
	лымотея простыми:	D.	BEC						

	Задания второго уровня
11.	Постройте логическую схему, которую реализует булева функция $f(x_1, x_2, x_3) = (x_1 \leftrightarrow x_3) \rightarrow ((x_1 \leftrightarrow x_2) \land (x_2 \leftrightarrow x_3)).$
	Ответ:
	Определите тип предиката $x^2 + y^2 = 1$, заданного на множестве натуральных чисел $N \times N$,
12.	и укажите область его истинности. Дайте аргументированный ответ.
	Ответ:
13.	Постройте граф бинарного отношения $P = $ «быть раньше в календаре» на множестве месяцев {март, май, июнь, июль, декабрь}. Определите матрицу смежности и матрицу инцидентности полученного графа.
	Ответ:
	Председатель методической комиссии С.В. Поперчук

В.В. Захаров

Преподаватель

колледж

Учебная дисциплина **ЕН.02 Дискретная математика с элементами** математической логики

(шифр и название дисциплины по учебному плану)

Специальность 09.02.07 Информационные системы и программирование

(код и название специальности в соответствии с ФГОС СПО)

Курс <u>II</u>

Форма обучения очная

	Зада	п кин	ервог	о уровн	ЯЯ					
1.	Определите мощность множества	A.	100							
	всех трехзначных натуральных чисел	В.	899							
		C.	900							
		D.	999							
2.	По заданной диаграмме Эйлера-	Α.	$A \cap A$	$B \neq \emptyset$						
	Венна определите, какие из утверждений не являются верными	В.	$A \cap c$	$C = \emptyset$						
	утверждении не являются верными		$B \bigcup c$	C = B						
			$C \subset$	В						
	(A ((C) B).	F.	$A \bigcup c$	C = B						
		12.								
3.	Бинарным отношением на	_	$P \subset$	$A_1, P \subset$	A_2		F	$P \subset (A)$	$\overline{A_1 \cap A_2}$	
	множествах A_1, A_2 называется	Α.	D _	$(A_1 \cup A_2)$)	C) - ($A_1 \cap A_2$ $A_1 \times A_2$	
	множество Р такое, что	В.	1 _	$(A_1 \cup A_2)$	2)	D	•	<u></u>	$\mathbf{A}_1 \wedge \mathbf{A}_2$	
4.	На множествах $A = \{1; 2; 3; 4\}$ и	A.	всюд	у опред	еленное					
	$B = \{a, b, c; d\}$ задано отображение	В.	части	ично опр	ределенно	oe .				
	$P:A\mapsto B$	C.	сюръ	ективно	e					
	$P = \{(1;b), (1;c), (2;a), (3;d)\}.$	D.	инъе	ктивное						
	Укажите вид отображения.	E.	функ	циональ	ьное					
		F.	биект	гивное						
5.	Таблица истинности для операции	A.	x	y	$x \rightarrow y$		B.	x	y	$x \rightarrow y$
	импликации имеет вид		0	0	1			0	0	0
			0	1	1			0	1	0
			1	0	0			1	0	1
			1	1	1			1	1	0

	Задания первого уровня								
			0 0 1 1	y 0 1 0	$ \begin{array}{c c} x \to y \\ 0 \\ 1 \\ 1 \\ 0 \end{array} $		D. x 0 0 1 1	y 0 1 0	$ \begin{array}{c c} x \to y \\ \hline 0 \\ \hline 1 \\ \hline 1 \\ \end{array} $
6.	Какие из приведенных формул алгебры высказываний являются тавтологиями?	-		$(Y \lor \overline{X})$ $(Y \land \overline{X})$			$X \lor Y$ $X \land Y$		
7.	При каких значениях предметной переменной x предикат $P(x) = \langle x - \text{государство в Европе} \rangle$ превращается в истинное высказывание?	A. B. C. D.	x = x	«Индия» «Франци «Португа «Бразили	«R» «RULL				
8.	Если предикат $P(x)$ логически следует из предиката $Q(x)$, то		P^+ P^+	$\subset Q^+$ $= Q^+$		C D	$Q^+ \subset P^+ = 0$	$\overline{Q^+}$	
9.	Порядком графа $G = G(V, E)$ называется	A. B.	G $ V $			C	$ E $ $ V \cup E $		
10.	Расстояние от вершины графа до наиболее удаленной вершины называется	A. B. C. D.	Раді Диа	на дуги иус графа метр грас центриси		іны			

	Задания второго уровня
11.	По таблице истинности функции $f(x, y, z) = (x \to y) \oplus (z \to (x \leftrightarrow \overline{z}))$ постройте СДНФ и задайте ее многочленом Жегалкина. Ответ:
12.	Решите задачу. В группе у 11 студентов имеются водительские права на категорию «А», у 11 студентов – на категорию «В», у 11 студентов – на категорию «С», у двух студентов имеются права на все три категории. Категории «А» и «В» имеют 3 студента, «А» и «С» - 4 студента, «В» и «С» - 5 студентов. Трое студентов вообще не имеют прав на вождение. Сколько всего студентов в группе?
	Ответ:
	Найдите кратчайшие пути от вершины X_3 до остальных вершин графа, используя алгоритм Дейкстры.
13.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Ответ:

Председатель методической комиссии	 С.В. Поперчук
Преподаватель	 В.В. Захаров

колледж

Учебная дисциплина **ЕН.02 Дискретная математика с элементами** математической логики

(шифр и название дисциплины по учебному плану)

Специальность 09.02.07 Информационные системы и программирование

(код и название специальности в соответствии с ФГОС СПО)

Курс <u>II</u>

Форма обучения очная

	Зада	ния первого уровня
2.	Известно, что $M \subset N$ и $N \subset M$. Какие из утверждений являются истинными? Определите симметрическую	A. $M \neq N$ C. $M \subset M$ B. $M = N$ D. $N \subset \emptyset$ A. $A\Delta B = \{1;2;3\}$ C. $A\Delta B = \{4;5\}$ B. $A\Delta B = \{1;2;3;4;5;6;7\}$ D. $A\Delta B = \{1;2;3;6;7\}$
	разность множеств A и B , где $A = \{1;2;3;4;5\}$ и $B = \{x \mid x \in N, 3 < x \le 7\}$	
3.	Бинарное отношение $P \subset M \times M$ задано ориентированным графом. Задайте отношение P матрицей.	$\mathbf{A.} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \qquad \mathbf{B.} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\mathbf{C.} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad \mathbf{D.} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$
4.	Какие из разбиений являются разбиением множества на классы эквиваленитности?	 A. разбиение множества людей по старшинству B. разбиение множества квартир в доме по подъездам С. разбиение множества треугольников по свойствам сторон (разносторонние, равнобедренные, равносторонние) D. разбиение множества треугольников по свойствам углов (остроугольные, прямоугольные, тупоугольные)

	Задания первого уровня					
5.	Таблица истинности для операции штрих Шеффера имеет вид	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
6.	Задана булева функция $f = (1010)$. Представьте функцию f в СДНФ.	A. $\overline{x} \ \overline{y} \lor x \ \overline{y}$ B. $(x \lor \overline{y}) \lor (\overline{x} \lor \overline{y})$ C. $\overline{x} \ y \lor x \ y$ D. $(\overline{x} \lor \overline{y})(x \lor \overline{y})$ E. СДНФ не существует				
7.	Предикат $P(x)$: $x > y$, заданный в предметной области $R \times R$, является	 А. Выполнимым В. Опровержимым С. Тождественно истинным D. Тождественно ложным 				
8.	Постройте отрицание формулы логики предикатов $\forall x (P(x) \land Q(x))$	A. $\forall x (\overline{P(x)} \lor \overline{Q(x)})$ B. $\exists x (\overline{P(x)} \lor \overline{Q(x)})$ C. $\exists x (\overline{P(x)} \land \overline{Q(x)})$ A. $\forall x (\overline{P(x)} \lor \overline{Q(x)})$				
9.	Определите вид графа, изображенного на рисунке x_1 x_2 x_3 x_4	А. Нуль-граф В. Связный граф С. Сильно связный граф D. Слабо связный граф				
10.	Выберите правильное утверждение	 A. Все элементы матрицы смежности полного графа равны 1. B. Все элементы матрицы смежности полного графа равны 1, кроме элементов главной диагонали. C. Все элементы матрицы смежности полного графа равны 0. D. Все элементы матрицы смежности полного графа равны 0, кроме элементов главной диагонали. 				

	Задания второго уровня
11.	Изобразите с помощью диаграмм Эйлера-Венна множество $(A \setminus B) \cap (C\Delta B)$.
11.	Ответ:
	Используя равносильные преобразования, выясните, равносильны ли формулы
1.0	$F_1 = \overline{(x \to y) \lor ((x \to z) \land y)}$ и $F_2 = x \land \overline{y} \land (\overline{y} \to (x \land \overline{z}))$. Результат проверьте по таблицам
12.	истинности.
	Ответ:
13.	Найдите кратчайший путь от вершины S до вершины T графа, используя алгоритм Дейкстры.
	Ответ:

Председатель методической комиссии	 С.В. Поперчук
Преподаватель	 В.В. Захаров

колледж

Учебная дисциплина **ЕН.02 Дискретная математика с элементами** математической логики

(шифр и название дисциплины по учебному плану)

Специальность 09.02.07 Информационные системы и программирование

(код и название специальности в соответствии с ФГОС СПО)

Курс <u>II</u>

Форма обучения очная

	Запа	ния первого уровня		
1.	Задайте множество $A = \{1,3,9,27,81,\}$ с помощью характеристического свойства	A. $A = \{3n \mid n \in N\}$ C. $A = \{3^n \mid n \ge 0\}$ B. $A = \{3^n \mid n = 0, n \in N\}$ D. $A = \{n^3 \mid n \le 5\}$		
2.	Определите дополнение множества A до универсального множества U всех цифр, где $A = \{1;2;4;6;9\}$	A. $A = \{3n \mid n \in N\}$ B. $A = \{3^n \mid n = 0, n \in N\}$ C. $A = \{3^n \mid n \ge 0\}$ D. $A = \{n^3 \mid n \le 5\}$ A. $\overline{A} = \{0;1;2;3;4;5;6;7;8;9\}$ C. $\overline{A} = \{0;3;5;7;8\}$ D. $\overline{A} = \{1;2;4;6;9\}$ D. $\overline{A} = \{1;3;5;7;9\}$		
3.	Пусть $P: A \mapsto B$ — отображение из множества A в множество B. Множество $\{x \in A \exists y \in B: (x; y) \in P\}$ называется	 А. областью определения отображения <i>P</i> В. областью значений отображения <i>P</i> С. областью образов отображения <i>P</i> А. областью прообразов отображения <i>P</i> 		
4.	Укажите свойства отношения $P = \{(a;b) a \perp b\}$ на множестве всех прямых в пространстве.	 A. рефлексивность B. симметричность C. антисимметричность D. транзитивность E. антитранзитивность 		
5.	Таблица истинности для операции эквиваленции имеет вид	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		

	Зада	ния первого уровня
6.	Булева функция f таблицей истинности	A. $x_1 \vee \overline{x}_2$ B. $(x_1 \vee x_2)(x_1 \vee \overline{x}_2)(\overline{x}_1 \vee \overline{x}_2)$ C. $(x_1 \vee x_2)(\overline{x}_1 \vee x_2)(\overline{x}_1 \vee \overline{x}_2)$ D. $x_1x_2 \vee x_1\overline{x}_2 \vee \overline{x}_1\overline{x}_2$ E. CKH Φ не существует
7.	Укажите тождественно истинные предикаты на множестве <i>R</i> действительных чисел	A. $\sin^2 x + \cos^2 x = 1$ B. $x^2 > 0$ C. $\sin^2 x + \cos^2 y = 1$ D. $x^2 + y^2 \ge 0$
8.	Пусть $P(x)$ и $Q(x)$ –предикатные переменные. Какие из равносильностей имеют место в логике предикатов?	A. $\overline{\forall x P(x)} \equiv \exists x \overline{P(x)}$ B. $\overline{\exists x P(x)} \equiv \forall x P(x)$ C. $\exists x [P(x) \land Q(x)] \equiv \exists x P(x) \lor \exists x Q(x)$ D. $\forall x [P(x) \land Q(x)] \equiv \forall x P(x) \land \forall x Q(x)$
9.	Количество ребер (дуг), инцидентных изолированной вершине, равно	A. 0 B. 1 C. ∞ D. Невозможно определить
10.	Укажите матрицу смежности графа, изображенного на рисунке X_1 u_1 u_2 u_3 u_4 u_4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

	Задания второго уровня
	Выясните, образует ли базис система булевых функций $F = \left\{ x_1 \oplus \left(x_2 \downarrow x_3 \right), \left(x_1 \oplus x_2 \right) \lor x_3; x_1 \leftrightarrow \left(x_2 \lor x_3 \right) \right\}$
11.	
	Ответ:
12.	Определите область истинности предиката $(x \ge -1) \lor (x \ge 0)$.
12.	Ответ:
	Постройте матрицу достижимости и матрицу расстояний ориентированного графа,
13.	заданного матрицей инцидентности $B(G) = \begin{pmatrix} -1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$. Определите диаметр, радиус
	и центр графа.
	Ответ:

Председатель методической комиссии	 С.В. Поперчук
Преподаватель	 В.В. Захаров

колледж

Учебная дисциплина **ЕН.02 Дискретная математика с элементами математической логики**

(шифр и название дисциплины по учебному плану)

Специальность 09.02.07 Информационные системы и программирование

(код и название специальности в соответствии с ФГОС СПО)

Курс <u>II</u>

Форма обучения очная

	Задани	я первого уровня
1.	Известно, что $A \subset B$. Какие из утверждений являются истинными?	A. $\forall x \in B \ x \notin A$ B. $\forall x \in A \ x \in B$ C. $B \subset A$ D. A является подмножеством множества B
2.	Даны множества $A = \{-7; -2; -1; 0; 7; 9\}$ и $B = \{$ неположительные действительные числа $\}$. Найдите пересечение множеств A и B .	A. $A \cap B = \{-7; -2; -1\}$ C. $A \cap B = \{-7; -2; -1; 0\}$ B. $A \cap B = \{7; 9\}$ D. $A \cap B = \emptyset$
4.	Бинарное отношение $P \subset M \times M$, где $M = \{\alpha, \beta, \gamma\}$ задано матрицей $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$. Задайте отношение P списком. Отношение P на множестве всех WEB-страниц определим следующим образом: две WEB-страницы находятся в отношении P , если они содержат ссылки на одни и те же Internet-ресурсы. Какими свойствами обладает отношение P ?	А. $P = \{(\alpha; \alpha), (\alpha; \gamma), (\beta; \beta), (\gamma; \alpha), (\gamma; \gamma)\}$ B. $P = \{(\alpha; \alpha), (\beta; \beta), (\gamma; \gamma)\}$ C. $P = \{(\alpha; \beta), (\beta; \alpha), (\beta; \gamma), (\gamma; \beta)\}$ D. $P = \{(\alpha; \beta), (\alpha; \gamma), (\beta; \alpha), (\gamma; \alpha), (\gamma; \beta)\}$ A. рефлексивность B. симметричность C. антисимметричность D. транзитивность E. нетранзитивность
5.	Таблица истинности для операции стрелка Пирса имеет вид	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

	Задания первого уровня			
6.	Выберите набор значений переменных,	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	на котором формула логики высказываний $P \to (P \land \overline{Q})$ принимает значение «ложь»:	P = 0; Q = 1 $P = 1; Q = 0$ $P = 1; Q = 1$		
7.	Какие из переменных x , y , z входят в формулу логики предикатов $\exists y \forall z (P(x,y) \rightarrow P(y,z))$ связно?	 A. x, y, z B. x, z C. y, z D. все переменные в формуле являются свободными 		
8.	Предложение «Для каждого x выполним $P(x)$, но не существует x такой, что выполним $Q(x)$ » может быть записано в виде формулы логики предикатов	A. $\forall x P(x) \lor \exists x \overline{Q(x)}$ D. $\forall x P(x) \land \overline{\exists x Q(x)}$ B. $\forall x P(x) \equiv \overline{\exists x Q(x)}$ E. $\forall x P(x) \rightarrow \overline{\exists x Q(x)}$ C. $\exists x P(x) \land \exists x \overline{Q(x)}$		
9.	Степень висячей вершины равна	A. 0 C. Зависит от графа B. 1 D. Невозможно определить		
10.	По заданной матрице расстояний графа $R = \begin{pmatrix} 0 & 2 & 0 & 0 & 0 \\ 2 & 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 3 & 1 & 0 & 2 \\ 0 & 4 & 1 & 2 & 0 \end{pmatrix}$ определите расстояние между вершинами X_2 и X_5 .	A. 1 B. 2 C. 3 D. 4		

	Задания второго уровня
11	Упростите выражение $((A \cup B) \setminus A) \setminus B$.
11.	Ответ:
12.	В заданном составном высказывании «Если человек при пожаре выпрыгнет из окна, то он рискует получить либо ожоги, либо травмы, либо то и другое» выделите простые высказывания, обозначьте их буквами и запишите составное высказывание в виде формулы. Составьте таблицу истинности полученной формулы. Ответ:
13.	Найдите кратчайшие пути в неорграфе от первой вершины ко всем остальным, используя алгоритм Дейкстры.
	Ответ:

Председатель методической комиссии	 С.В. Поперчук
Преподаватель	 В.В. Захаров

колледж

Учебная дисциплина **ЕН.02 Дискретная математика с элементами** математической логики

(шифр и название дисциплины по учебному плану)

Специальность 09.02.07 Информационные системы и программирование

(код и название специальности в соответствии с ФГОС СПО)

Курс <u>II</u>

Форма обучения очная

	Задания	перв	ого уровня				
1.	Количество элементов, из которых	A.	размерностью)	C.	порядком	
	состоит множество, называется	В.	мощностью		D.	объемом	
2.	По заданной диаграмме Эйлера-Венна	A.	$A \bigcup B = \emptyset$				
	определите, какие из утверждений	B.	$A \cap D = \emptyset$				
	являются верными	C.	$D \cap C = D$				
	2)	D.	$C \subset D$				
	(c)	Е.	$A \bigcup C = B$				
3.	На множестве целых чисел задано	Α.	(0;5)				
J.	бинарное отношение) (
	$P = \{(a;b) a \in Z, b \in Z : a - $ делитель $b\}$.	B.	(2;4)				
	Какие из пар элементов принадлежат	C.	(3;282)				
	заданному отношению?	D.	(10;5)				
4.	Определите свойства отношения	A.	рефлексивно	сть			
	$P = \{(1;1), (1;2), (1;3), (2;1), (2;2), (2;3), \}$	В.	антирефлекс	ивность			
	(3;1),(3;2),(3;3)} на множестве	C.	симметрично	ость			
	$M = \{1, 2, 3\}.$	D.	транзитивно	сть			
	,	Ε.	антитранзити	ивность			
5.	Таблица истинности для операции	A.	$x \mid y$	$x \wedge y$	B.	$x \mid y$	$x \wedge y$
	конъюнкции имеет вид		0 0	1		0 0	0
			0 1	1		0 1	1
			1 0	1		1 0	1
			1 1	0		1 1	1

	Задания первого уровня			
6.	Укажите правильный порядок выполнения логических операций в формуле	С. х у х \ у х \ у 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 1		
7.	Предложение « x и y — родители z » является	импликация, конъюнкция А. нуль-местным предикатом В. одноместным предикатом С. двухместным предикатом D. трехместным предикатом		
8.	Запишите формулу логики предикатов $\forall x P(x, y) \land Q(x)$ в предваренной нормальной форме	A. $\forall x (P(x, y) \land Q(x))$ B. $\forall x P(x, y) \land Q(x)$ C. $\exists x \overline{P(x, y)} \lor \overline{Q(x)}$ D. $\forall u (P(u, y) \land Q(x))$		
9.	Укажите множество ребер графа, матрица смежности которого имеет вид $A(G) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$	A. $\{(X_1, X_1); (X_1, X_3); (X_2, X_2); (X_3, X_3)\}$ B. $\{(X_1, X_2); (X_2, X_3)\}$ C. $\{(X_1, X_1); (X_1, X_3); (X_2, X_2); (X_3, X_1); (X_3, X_3)\}$ D. $\{(X_1, X_1); (X_2, X_2); (X_3, X_3)\}$		
10.	Граф, содержащий изолированные вершины, не может быть	А. ОриентированнымВ. ПолнымС. СвязнымD. Мультиграфом		

	Задания второго уровня
	Опишите множество, изображенное диаграммой Эйлера-Венна
11.	
	Ответ:
	Используя равносильные преобразования, привести формулу $X \lor Y \lor Z \to (X \lor Y) \land Z$ к
12.	ДНФ.
	Ответ:
	Даны предикаты $P(x)$ и $Q(x)$, определенные на некотором множестве M . Запишите
	словами предложенные формулы F_1 и F_2 .
	P(x): x – торговец подержанными автомобилями; $Q(x)$: x – нечестный человек;
13.	М – множество людей;
	$F_1 = \forall x (P(x) \rightarrow Q(x)); \ F_2 = \exists x (Q(x) \land P(x))$
	Ответ:

Председатель методической комиссии	 С.В. Поперчук
Преподаватель	 В.В. Захаров

колледж

Учебная дисциплина **ЕН.02 Дискретная математика с элементами** математической логики

(шифр и название дисциплины по учебному плану)

Специальность 09.02.07 Информационные системы и программирование

(код и название специальности в соответствии с ФГОС СПО)

Курс <u>II</u>

Форма обучения очная

	Задания	первого уровня
1.	Какое из множеств задается порождающей процедурой: $2 \in M$; если $k \in M$, то $(k+3) \in M$, $k \le 14$.	A. $A = \{2;5;8;11;14;17\}$ B. $A = \{2;5;8;11;14\}$ C. $A = \{2;5;8;11\}$ D. $A = \{2;5;8;11;14;17;\}$
2.	По заданной диаграмме Эйлера-Венна определите, какие из утверждений являются верными	A. $A \triangle B = B \setminus A$ B. $A \cap C \neq \emptyset$ C. $A \cup B = A$ D. $A \subset B$
3.	Какие из предложенных пар элементов принадлежат отношению «быть предком» на множестве людей	A. (дочь; мать) B. (дед; внук) C. (отец; сын) D. (мать; отец)
4.	Пусть $P: A \mapsto B$ — отображение на множествах $A = \{1;3;5;7\}$ и $B = \{b;d;e;f;g\}$, заданное списком $(3;e)$, $(5;b)$, $(7;b)$. Укажите область значений отображения.	A. $E(P) = \{b; d; e; f; g\}$ B. $E(P) = \{1; 3; 5; 7\}$ C. $E(P) = \{b; e\}$ D. $E(P) = \{3; 5; 7\}$
5.	Таблица истинности для формулы $F = X \longleftrightarrow \overline{Y} \ \text{имеет вид}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

	Задания первого уровня				
6.	Какие из логических операций не	C. x y F 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 3 1 1 4 1 1 4 1 1 5 1 1 6 1 1 7 1 1 8 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<			
0.	являются допустимыми в нормальных формах формул алгебры высказываний?	A. конъюнкция D. дизъюнкция B. отрицание E. импликация C. эквиваленция			
7.	Выберите множество так, чтобы над ним конъюнкция предикатов $P(x) = \ll x$ — простое число» и $Q(x) = \ll x$ — четное число» была тождественно истинным предикатом	 A. множество натуральных чисел B. множество четных чисел C. множество простых чисел D. M = {2} E. M = {2;3} 			
8.	Формула логики предикатов называется общезначимой, если	 А. Существует предметная область, на которой эта формула выполнима В. Она принимает истинные значения для всех значений переменных, входящих в эту формулу и отнесенных к конкретной предметной области М С. Она тождественно истинная на всякой области D. Она выполнима на всякой области 			
9.	Ребро (дуга), начало и конец которого совпадают, называется	А. ЦепьВ. ПетляС. КонтурD. Цикл			
10.	Определите эксцентриситет вершины X_5 графа X_2 X_3	A. 1 B. 2 C. 3 D. 4			

	Задания второго уровня
11.	Решите задачу. 55% опрошенных ответили, что используют бытовую технику фирмы Phillips, 37% - технику фирмы LG, 50% - технику фирмы Samsung. Опрос также показал, что клиенты пользуются техникой от разных производителей: LG и Samsung - 22%, LG и Phillips - 14%, Samsung и Phillips - 20%. Каков процент пользующихся техникой только от Phillips? Ответ:
12.	Выясните, равносильны ли формулы $(x \to y)\overline{z \to y} \equiv \overline{x}y\overline{z}$.
12.	Ответ:
13.	Установите область определения и область значений соответствия $f:A\mapsto B$ из множества $A=\{1;2;3;4\}$ во множество $B=\{a;b;c;d;e;f\}$, заданного матрицей $\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1\\ 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$ Постройте граф соответствия. Определите тип соответствия.
	Ответ:

Председатель методической комиссии	 С.В. Поперчук
Преподаватель	 В.В. Захаров

колледж

Учебная дисциплина **ЕН.02 Дискретная математика с элементами математической логики**

(шифр и название дисциплины по учебному плану)

Специальность 09.02.07 Информационные системы и программирование

(код и название специальности в соответствии с ФГОС СПО)

Курс <u>II</u>

Форма обучения очная

ВАРИАНТ № <u>17</u>

		и кин		го уровн					
1. 2.	Укажите способы задания множеств Определите, какие из	A. B. C. D. E.	граф хара спис матр	актеристи ском рицей			вом элеме	ентов	
2.	перечисленных множеств являются пустыми	В. С.	$\overline{\overline{A}}$ \bigcup	$\cap B) \setminus A$	гва непус	стые			
3.	На множествах $A = \{1;2;3;4\}$ и $B = \{a,b,c;d\}$ задано отображение $P:A\mapsto B$, $P = \{(1;b),(1;c),(2;a),(3;d)\}$. Укажите матрицу отображения.	A.	$\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ \end{pmatrix}$	1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1			B. $\begin{pmatrix} 1 \\ a \end{pmatrix}$,	
4.	Отображение $P: A \mapsto B$ называется инъективным, если	C.	Каж твето	P)= A кдому пр ствует енный об			В. <i>E</i> (<i>P</i>) D. Кажд соответс единство	цому об _ј ствует	разу грообраз
5.	Таблица истинности для операции ⊕ (сложение по модулю 2) имеет вид		0 0 1	y 0 1 0	$ \begin{array}{c c} x \oplus y \\ \hline 1 \\ 1 \\ 0 \\ 0 \end{array} $		B. x 0 0 1 1	y 0 1 0 1	$ \begin{array}{c c} x \oplus y \\ \hline 1 \\ 0 \\ 0 \\ 1 \end{array} $

	Зада	ния первого уровня
6.	Какая из приведенных формул является совершенной	$ \begin{array}{ c c c c c } \hline \textbf{C.} & x & y & x \oplus y \\ \hline 0 & 0 & 0 & \\ \hline 0 & 1 & 1 & \\ \hline 1 & 0 & 1 & \\ \hline 1 & 1 & 0 & \\ \hline $
	дизъюнктивной нормальной формой?	B. $(x \wedge y) \vee (\overline{x} \wedge y \wedge \overline{z}) \vee (\overline{y} \wedge z)$ C. $(x \wedge y \wedge z) \vee (\overline{x} \wedge y \wedge \overline{z}) \vee (x \wedge \overline{y} \wedge z)$ D. $\overline{x \wedge y \wedge z} \vee (\overline{x} \wedge \overline{y} \wedge z)$
7.	Множеством истинности предиката $P(x)$: $x \ge 5$, заданного на множестве $M = \{1,3,5,7,9\}$, есть множество	A. $P^+ = \{1, 3, 5, 7, 9\}$ B. $P^+ = \{5, 7, 9\}$ C. $P^+ = \{7, 9\}$ D. $P^+ = \{1, 3\}$
8.	Предложение $\exists x \forall y (x + y = 0)$ на множестве действительных чисел является	 A. истинным высказыванием B. ложным высказыванием C. одноместным предикатом D. двуместным предикатом
9.	Если две вершины соединены одним ребром, то они называются этому ребру	A. Смежными B. Инцидентными C. Достижимыми D. Висячими
10.	Неориентированный граф из 7 вершин является связным, если степень каждой его вершины не менее, чем	A. 7 B. 5 C. 3 D. 1

	Задания второго уровня		
13.	Составьте таблицу истинности формулы $R \wedge \overline{P \to \overline{Q} \mid R} \oplus (R \vee Q)$ и представьте ее в совершенной дизъюнктивной нормальной форме. Ответ:		
14.	Пусть U – множество R действительных чисел, $A = [2; 9)$, $B = [-6; 1)$, $C = [-4; 3]$. Выполните операции над множествами: $\bar{A} \cap (C \setminus B)$.		
	Ответ:		
15.	Орграф $G=G(X,V)$ задан матрицей инцидентности $B(G)=\begin{pmatrix} -1 & 0 & 0 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & -1 \end{pmatrix}$. Постройте матрицу достижимости и матрицу расстояний графа. Определите метрические		
	характеристики графа.		
	Ответ:		

Председатель методической комиссии	 С.В. Поперчук
Преподаватель	 В.В. Захаров

колледж

Учебная дисциплина **ЕН.02 Дискретная математика с элементами** математической логики

(шифр и название дисциплины по учебному плану)

Специальность 09.02.07 Информационные системы и программирование

(код и название специальности в соответствии с ФГОС СПО)

Курс <u>II</u>

Форма обучения очная

	Задания первого уровня					
1.	Какие из записей являются верными?	$A. a \subset (a;b]$				
		B. $a \in [a;b]$				
		$\mathbf{C.} \{a;b\} \not\subset (a;b]$				
		D. $\varnothing \in (a;b)$				
2.	Определите объединение множеств А	A. $A \cup B = \{1; 2; 3\}$				
	и В, где	B. $A \cup B = \{1; 2; 3; 4; 5; 6; 7\}$				
	$A = \{1; 2; 3; 4; 5\}$ и	C. $A \cup B = \{4;5\}$				
	$B = \{ x \mid x \in N, 3 < x \le 7 \}$	D. $A \cup B = \{1; 2; 3; 6; 7\}$				
3.	Какие из заданных отношений являются бинарными на	А. «обозначать гласный звук» на множестве букв алфавита				
	указанных множествах	В. «быть равными» на множестве действительных				
		чисел				
		С. «быть столицей» на множестве городов				
		D. «содержать одинаковые ссылки» на множестве				
		WEB-страниц				
4.	Определите свойства отношения	А. рефлексивность				
	$P = \{\!ig(a;big) a$ – делитель $b\}$ на	В. антирефлексивность				
	множестве натуральных чисел.	С. симметричность				
	^ -	D. антисимметричность				
		Е. транзитивность				
5.	Таблица истинности для операции	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
	дизъюнкции имеет вид	0 0 1 0 1				
		1 0 0				

	Задания первого уровня					
6.	Функция $f(x_1, x_2,, x_n)$ с областью значений $E = \{0,1\}$, переменные $x_1, x_2,, x_n$ которой также принимают только эти два значения, называется	C. x y x y 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 1 6 1 1 7 1 1 8 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
7. 8.	Одноместными предикатами являются следующие предложения Найдите отрицание формулы $\exists x \big(P(x) \land Q(x) \big)$	А. число 5 является делителем числа 12 В. $2x - 8 \le x + y$ С. при $x = 2$ выполняется равенство $x^2 - y^2 = 0$ D. однозначное число x меньше числа 10 A. $\exists x(\overline{P(x)} \land \overline{Q(x)})$ B. $\forall x(\overline{P(x)} \lor \overline{Q(x)})$ C. $\forall x(\overline{P(x)} \lor \overline{Q(x)})$ D. $\exists x(\overline{P(x)} \lor \overline{Q(x)})$				
9.	Какие значения могут принимать элементы матрицы инцидентности некоторого графа?	 A1 B. 0 C. 1 D. 2 E. Любые натуральные значения 				
10.	Какие из указанных циклов в графе с вершинами A, B, C, D, E не являются простыми?	 A. ACDA B. ABCDBA C. CBEADB D. BECAB 				

	Задания второго уровня
	Постройте логическую схему, которую реализует булева функция
11.	$f(x_1, x_2, x_3) = ((x_1 \lor x_2 \lor x_3) \to (\overline{x}_1 \overline{x}_2 \overline{x}_3)) \longleftrightarrow x_1.$
	Ответ:
	Определите тип предиката $x + y = 0$ на множестве действительных чисел и область его
12.	истинности. Дайте аргументированный ответ.
	Ответ:
	Постройте граф бинарного отношения $P = $ «иметь одинаковое количество букв» на
13.	множестве слов {март, май, июнь, июль, октябрь, декабрь}. Определите матрицу
	смежности и матрицу инцидентности полученного графа.
	Ответ:

Председатель методической комиссии	 С.В. Поперчук
Преподаватель	 В.В. Захаров

колледж

Учебная дисциплина **ЕН.02 Дискретная математика с элементами** математической логики

(шифр и название дисциплины по учебному плану)

Специальность 09.02.07 Информационные системы и программирование

(код и название специальности в соответствии с ФГОС СПО)

Курс <u>II</u>

Форма обучения очная

	Зада	ния первого уровня
1.	Определите мощность множества всех трехзначных натуральных чисел	A. 100 B. 899 C. 900 D. 999
2.	По заданной диаграмме Эйлера-Венна определите, какие из утверждений являются верными	A. $A \cap B \neq \emptyset$ B. $A \cap C = \emptyset$ C. $B \cup C = B$ D. $C \subset B$ E. $A \cup C = B$
3.	Бинарным отношением на множествах A_1, A_2 называется множество P такое, что	A. $P \subset A_1, P \subset A_2$
4.	На множествах $A = \{1;2;3;4\}$ и $B = \{a,b,c;d\}$ задано отображение $P:A\mapsto B$ $P = \{(1;b),(1;c),(2;a),(3;d)\}$. Укажите вид отображения.	 A. всюду определенное B. частично определенное C. сюръективное D. инъективное E. функциональное F. биективное
5.	Таблица истинности для операции импликации имеет вид	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Задания первого уровня									
		I -	x 0 0 1 1	y 0 1 0 1	$ \begin{array}{c c} x \to y \\ \hline 0 \\ \hline 1 \\ \hline 0 \\ \end{array} $		0 0 1	y 0 1 0 1	$ \begin{array}{c c} x \to y \\ \hline 0 \\ \hline 1 \\ \hline 1 \end{array} $
6.	Какие из приведенных формул алгебры высказываний являются тавтологиями?	A. B.		$(Y \lor \overline{X})$ $(Y \land \overline{X})$		C D	$X \vee Y$ $X \wedge Y$		
7.	При каких значениях предметной переменной x предикат $P(x) = \ll x - $ государство в Азии» превращается в истинное высказывание?	A. B. C. D.	$x = \langle x = $	«Индия» «Франці «Китай» «Бразил	ия» •				
8.	Если предикат $P(x)$ логически следует из предиката $Q(x)$, то		P^{+}	$\subset Q^+$ $= Q^+$		C D	$Q^+ \subset P^+ = 0$	$\overline{Q^+}$	
9.	Порядком графа $G = G(V, E)$ называется	A. B.	G $ V $				$E. E $ $E. V \cup E $	7	
10.	Расстояние от вершины графа до наиболее удаленной вершины называется	A. B. C. D.	Раді Диа	на дуги иус граф метр гра центрис	pa	шины			

Задания второго уровня				
11.	Решите задачу. При создании флага используют три цвета: красный, белый и синий. Известно, что красный цвет используется на 55% всех таких флагов, синий — на 50%, белый — на 35%. Сочетаются синий и красный цвета на 20 % всех флагов, белый и синий — на 15%, белый и красный — на 10%. На скольких процентах флагов используется только один цвет? Ответ:			
Постройте минимальную ДНФ булевой функции $f(x_1, x_2, x_3) = ((x_1 \rightarrow x_2) \leftrightarrow (x_2 \rightarrow x_3))$				
12.	Ответ:			
13.	Найдите кратчайшие пути от вершины X_5 до остальных вершин графа, используя алгоритм Дейкстры.			
	Ответ:			

Председатель методической комиссии	 С.В. Поперчук
Преподаватель	 В.В. Захаров

колледж

Учебная дисциплина **ЕН.02 Дискретная математика с элементами** математической логики

(шифр и название дисциплины по учебному плану)

Специальность 09.02.07 Информационные системы и программирование

(код и название специальности в соответствии с ФГОС СПО)

Курс <u>II</u>

Форма обучения очная

Задания первого уровня						
2.	Известно, что $M \subset N$ и $N \subset M$. Какие из утверждений являются истинными? Определите симметрическую разность множеств A и B , где $A = \{1;2;3;4;5\}$ и $B = \{x \mid x \in N, 3 < x \le 7\}$	A. $M \neq N$ C. $M \subset M$ B. $M = N$ D. $N \subset \emptyset$ A. $A\Delta B = \{1;2;3\}$ C. $A\Delta B = \{4;5\}$ B. $A\Delta B = \{1;2;3;4;5;6;7\}$ D. $A\Delta B = \{1;2;3;6;7\}$				
3.	Бинарное отношение $P \subset M \times M$ задано ориентированным графом. Задайте отношение P матрицей.	$\mathbf{A.} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \qquad \mathbf{B.} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\mathbf{C.} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad \mathbf{D.} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$				
4.	Какие из разбиений являются разбиением множества на классы эквиваленитности?	 A. разбиение множества людей по старшинству B. разбиение множества квартир в доме по подъездам С. разбиение множества треугольников по свойствам сторон (разносторонние, равнобедренные, равносторонние) D. разбиение множества треугольников по свойствам углов (остроугольные, прямоугольные, тупоугольные) 				

	Зада	ния первого уровня
5.	Таблица истинности для операции штрих Шеффера имеет вид	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
6.	Задана булева функция $f = (1010)$. Представьте функцию f в СДНФ.	A. $\overline{x} \ \overline{y} \lor x \ \overline{y}$ B. $(x \lor \overline{y}) \lor (\overline{x} \lor \overline{y})$ C. $\overline{x} \ y \lor x \ y$ D. $(\overline{x} \lor \overline{y})(x \lor \overline{y})$ E. СДНФ не существует
7.	Найдите множество истинности предиката $P(x)$: $x \le 10$, заданного на множестве натуральных чисел	A. $P^+ = (-\infty; 10]$ B. $P^+ = \{; -1; 0;; 9; 10\}$ C. $P^+ = \{1; 2;; 9; 10\}$ D. Предикат является тождественно истинным
8.	Постройте отрицание формулы логики предикатов $\forall x (P(x) \land Q(x))$	A. $\forall x (\overline{P(x)} \lor Q(x))$ C. $\exists x (\overline{P(x)} \land \overline{Q(x)})$ B. $\exists x (\overline{P(x)} \lor \overline{Q(x)})$ D. $\forall x (\overline{P(x)} \lor \overline{Q(x)})$
9.	Определите вид графа, изображенного на рисунке x_1 x_2 x_3 x_4	А. Нуль-граф В. Связный граф С. Сильно связный граф D. Слабо связный граф
10.	Расстояние от вершины X_1 до вершины X_1 равно	 A. 0 B. ∞ C. 1 D. Зависит от графа

Задания второго уровня					
11.	Выясните, является ли заданная функция $f(x_1, x_2, x_3) = (x_2(x_2 \leftrightarrow x_3)) \oplus x_3 \oplus (x_1 \mid x_2)$ линейной.				
	Ответ:				
12.	Изобразите с помощью диаграмм Эйлера-Венна множество $(A \setminus B) \cap (C \Delta B)$.				
12.	Ответ:				
	Постройте матрицу достижимости и матрицу расстояний ориентированного графа,				
13.	заданного матрицей инцидентности $B(G) = \begin{pmatrix} 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix}$.				
	Определите диаметр, радиус и центр графа.				
	Ответ:				

Председатель методической комиссии	 С.В. Поперчук
Преподаватель	 В.В. Захаров