МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Институт технологий и инженерной механики Кафедра микро- и наноэлектроники

УТВЕРЖДАЮ Директор « <u>04</u> »	Могильная Е.П ———————————————————————————————————
ФОНД ОЦЕНОЧНЫХ СРЕД	CTB
по учебной дисциплине (прак	
Наноэлактроника	
	ки)
11.03.04 Электроника и наноэлект	
(код и наименование направления подготовки (специа.	льности))
<u>Электронные приборы и устрой</u> (наименование профиля подготовки (специальности, магистерской программы):	
Разработчик (разработчики): Савицкий И.В.	
• • • • • • • • • • • • • • • • • • • •	нкро- и наноэлектроники енко В.А.

Луганск 2025 г.

Комплект оценочных материалов по дисциплине «Наноэлектроника»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа

1. Выберите один правильный ответ

Какими размерами определяется нижний критический предел для размера КТ?

- А) Размером, при котором хотя бы один электронный уровень существует
- Б) При котором наблюдается квантование энергии электронных уровней
- В) При котором длина свободного пробега электрона равна параметру кристаллической решетки

Правильный ответ: А

Компетенции (индикаторы): ПК-3 (ПК-3.2)

2. Выберите один правильный ответ

Наблюдение кулоновской блокады возможно при выполнении условий:

- A) $\Delta E >> kT$, G << $1/R_Q$
- Б) $\Delta E > kT$, $G \le 1/R_O$
- B) $\Delta E < kT$, $G \le 1/R_Q$

Правильный ответ: А

Компетенции (индикаторы): ПК-1 (ПК-1.1)

3. Выберите один правильный ответ

Наблюдение кулоновской блокады при Т=300 К возможно при емкости:

- A) $C << 10^{-19} \Phi$
- Б) C<<10-17 Ф
- B) $C << 10^{-15} \Phi$

Правильный ответ: А

Компетенции (индикаторы): ПК-3 (ПК-3.5)

4. Выберите один правильный ответ

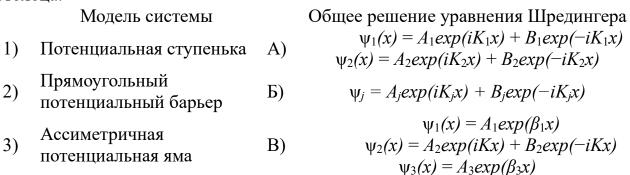
Какую форму имеет зависимость напряжения на квантовой точке от напряжения на затворе при постоянном токе через нее?

- А) синусоидальную
- Б) экспоненциальную
- В) ступенчатую

Правильный ответ: А

Компетенции (индикаторы): ПК-1 (ПК-1.1)

Задания закрытого типа на установление соответствия


2000	-	·m~ =6	TTO
COOTI	ветствует только один элемент правого о		
	Явление в квантовой системе		Условия возникновения
	энергия проходящего через массив		при сотуннелировании
	переходов электрона сохраняется на		
1)	входе и выходе, но его поведение на	A)	
	каждом отдельном переходе		
	неопределенно		
2)	область кулоновской блокады	Б)	при модулировании высоты
	сдвигается	D)	потенциальных барьеров КТ
			при движении электрона в
3)	наблюдается кулоновская лестница	B)	двухпереходной системе с
			несимметричными
	Правильный ответ:		
	1 2		3
	А		В
	Компетенции (индикаторы): ПК-1 (ПК	-1.2)	

1. Установите правильное соответствие. Каждому элементу левого столбца

2. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

Тип структуры			Пространственное обозначение		
	тип структуры		структ	уры	
1)	Компактное вещество	A)	3D		
2)	Квантовая яма	Б)	2D		
3)	Квантовая проволока	B)	1D	•	
4)	Квантовая точка	Γ)	0D		
	Правильный ответ:				
	1	2	3	4	
	A	Б	В	Γ	
	Компетенции (индикаторы): ПК-1 (ПК-1.2)				

3. Установите правильное соответствие между моделью системы пониженной размерности, в которой движется частица, и общим решением уравнения Шредингера, описывающим поведение частицы в этой системе. Каждому элементу левого столбца соответствует только один элемент правого столбца.

Правильный ответ:

1 2 3 A Б В

Компетенции (индикаторы): ПК-1 (ПК-1.1)

Задания закрытого типа на установление правильной последовательности

- 1. Зарождение и формирование нового молекулярного слоя на поверхности подложки применительно к кремнию протекает в следующей последовательности:
- А) на поверхности подложки находится пересыщенный адсорбат атомов кремния;
 - Б) зарождение 2D-центров;
- В) независимый рост центров, в процессе которого пересыщение вокруг центров уменьшается, но они еще не взаимодействуют;
 - Г) коррелированный рост островков.

Правильный ответ: А, Б, В, Г

Компетенции (индикаторы): ПК-1 (ПК-1.2)

- 2. Формирование трехмерных островков в системе Ge–Si (001) проходит следующие стадии:
- А) на поверхности подстилающего слоя напыляемого материала (Ge) имеется пересыщенный адсорбат
- Б) зарождение 3D-hut-кластеров обусловлено релаксацией упругих деформаций
 - B) появляются две выделенные формы: hut и dome
 - Г) происходит переток атомов к более энергетически выгодной форме

Правильный ответ: А, Б, В, Г

Компетенции (индикаторы): ПК-1 (ПК-1.3)

- 3. Процесс газофазной эпитаксии может быть представлен в виде нижеследующей последовательности основных стадий:
- А) перенос исходных компонентов из основного потока к поверхности подложки и дальнейшая адсорбция доставленных компонентов поверхностью;
- Б) поверхностная диффузия адсорбированных компонентов и гетерогенная химическая реакция;
 - В) десорбция газообразных продуктов реакции с поверхности;
- Г) перенос десорбированных продуктов от поверхности в основной поток и удаление продуктов из реакционной зоны

Правильный ответ: A, Б, B, Γ

Компетенции (индикаторы): ПК-1 (ПК-1.1)

Задания открытого типа

Задания открытого типа на дополнение

1. Напишите пропущенное слово (словосочетание).
Кулоновская — это явление отсутствия тока при приложении
папряжения к туннельному переходу из-за невозможности туннелирования
лектронов вследствие их кулоновского отталкивания.
Правильный ответ: блокада
Компетенции (индикаторы): ПК-1 (ПК-1.1)
2. Напишите пропущенное слово (словосочетание). ВАХ двухпереходной системы с несимметричными переходами имеет тупенчатый вид, называемый кулоновской Правильный ответ: лестницей Компетенции (индикаторы): ПК-1 (ПК-1.2)
3. Напишите пропущенное слово (словосочетание). По протекания тока конструкции одноэлектронных приборов делятся на горизонтальные и вертикальные. Правильный ответ: направлению Компетенции (индикаторы): ПК-3 (ПК-3.1)
4. Напишите пропущенное слово (словосочетание). Наблюдение одноэлектронного туннелирования в системе с одним вереходом при современном развитии технологии является проблемой. Для ее вешения предложена конструкция из двух включенных
уннельных переходов.
Правильный ответ: последовательно
Компетенции (индикаторы): ПК-3 (ПК-3.5)

Задания открытого типа с кратким свободным ответом

1. Чем отличаются направления протекания тока в горизонтальных и вертикальных одноэлектронных приборах?

Правильный ответ: В горизонтальных приборах направление протекание тока параллельно плоскости поверхности структуры, в вертикальных — перпендикулярно.

Компетенции (индикаторы): ПК-1 (ПК-1.1)

2. При использовании двух и более переходных систем между двумя электродами находятся малые объекты, которые при определенных условиях можно считать квантовыми точками, в которых энергетический спектр

Правильный ответ: представляет собой набор дискретных уровней / подобен атомной энергетической структуре

Компетенции (индикаторы): ПК-1 (ПК-1.2)

3. Квантовые точки Ge в МДП- и фототранзисторных структурах встраивают в виде .

Встраивают в виде ______. Правильный ответ: транспортного мостика для носителей заряда между истоком и стоком полевого транзистора

Компетенции (индикаторы): ПК-1 (ПК-1.1)

4. Коэффициент прохождения частицы при решении задачи моделирования рассеивания частиц на потенциальной ступеньке находится из соотношения:

$$D = \frac{4}{\sqrt{\frac{\alpha}{\alpha - 1}} + 2 + \sqrt{\frac{\alpha - 1}{\alpha}}}$$

Запишите это выражение в виде строки программного кода в среде MATLAB.

Правильный ответ:

 $D(i) = 4/(\operatorname{sqrt}(\operatorname{alfa}(i)/(\operatorname{alfa}(i)-1)) + 2+\operatorname{sqrt}((\operatorname{alfa}(i)-1)/\operatorname{alfa}(i)));$

Компетенции (индикаторы): ПК-1 (ПК-1.3)

Задания открытого типа с развернутым ответом

1. Дайте развернутый ответ на вопрос.

Опишите метод получения наночастиц путем химического восстановления. Приведите пример процесса химического восстановления.

Время выполнения – 15 мин.

Критерии оценивания: полное содержательное соответствие приведенному ниже пояснению:

Химическое восстановление обычно проводится в жидкой фазе, водных и неводных средах. В качестве соединений металлов и полупроводников обычно используют их соли, а восстановителей — алюмогидриды, борогидриды, гипофосфиты, формальдегид, соли щавелевой и винной кислот. Популярность данного метода объясняется его простотой и доступностью.

Для примера рассмотрим процесс получения частиц золота. Готовятся три раствора:

- 1) золотохлористо-водородной кислоты в воде;
- 2) карбоната натрия в воде;
- 3) гипофосфита в диэтиловом эфире. Затем смесь трех растворов нагревается в течение часа до температуры 70 °C. В результате получаются частицы золота диаметром 2–5 нм.

Недостаток метода — большое количество примесей в получаемой коллоидной системе наночастиц золота, которое можно уменьшить использованием водорода в качестве восстановителя.

Компетенции (индикаторы): ПК-1 (ПК-1.1)

2. Дайте развернутый ответ на вопрос.

Запишите часть алгоритма для расчета волнового вектора в зависимости от энергии частицы E при прохождении потенциальной ступеньки высотой U в системе MATLAB с пояснениями.

Время выполнения – 15 мин.

Критерии оценивания: полное содержательное соответствие приведенному ниже пояснению:

Волновой вектор должен быть рассчитан на двух участках — до потенциальной ступеньки и в области потенциальной ступеньки с высотой U.

Для первой и второй области волновой вектор рассчитывается соответственно из выражений:

$$K_1 = \sqrt{2mE/h}, K_2 = \sqrt{2m(E-U_0)/h}$$

где m — масса частицы.

Алгоритм для расчета волновых векторов в системе MATLAB будет выглядеть следующим образом: расчет коэффициентов прохождения D и отражения R электрона через ступеньку с потенциальным барьером U;

for i = 1:n, % цикл по числу разбиений диапазона энергий электрона

 $E(i) = E \min + step E*i; % расчет текущей энергии электрона$

K1(i) = sqrt(2*m*E(i))/h; %расчет волнового вектора до ступени

K2(i) = sqrt(2*m*(E(i)-U))/h; %расчет волнового вектора за ступенью end

Компетенции (индикаторы): ПК-1 (ПК-1.3)

Экспертное заключение

Представленный фонд оценочных средств (далее – ФОС) по дисциплине «Наноэлектроника» соответствует требованиям ФГОС ВО.

Предлагаемые формы и средства текущего и промежуточного контроля адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки / специальности 11.03.04 Электроника и наноэлектроника.

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины представлены в полном объеме.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанный и представленный для экспертизы фонд оценочных средств рекомендуется к использованию в процессе подготовки обучающихся по указанному направлению / специальности.

Исури Ясуник С.Н.

Председатель учебно-методической комиссии института

9

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)