МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля»

Институт технологий и инженерной механики Кафедра микро- и наноэлектроники

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ «РАДИОАВТОМАТИКА»

По направлению подготовки: 11.03.04 Электроника и наноэлектроника Профиль «Электронные приборы и устройства»

Лист согласования РПУД

Рабочая программа учебной дисциплины «Радиоавтоматика» по направлению подготовки 11.03.04 Электроника и наноэлектроника. – 24 с.

Рабочая программа учебной дисциплины «Радиоавтоматика» составлена с учетом Федерального государственного образовательного стандарта высшего образования по направлению подготовки 11.03.04 Электроника и наноэлектроника, утвержденного приказом Министерства образования и науки Российской Федерации от 19.09.2017 года № 927.

СОСТАВИТЕЛИ:
к.т.н., доцент Войтенко В.А.;
к.т.н., доцент Войтенко Г.О.;
Рабочая программа дисциплины утверждена на заседании кафедры микронаноэлектроники « 14» 202 г., протокол № $_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
Заведующий кафедрой микро- и наноэлектроники Войтенко В. А. Переутверждена: «» 202 г., протокол №
Рекомендована на заседании учебно-методической комиссии института технологий и инженерной механики « $\frac{1}{2}$ » 202 $\frac{3}{2}$ г., протокол №3
Председатель учебно-методической комиссии института технологий и инженерной механикиС. Н. Ясуник

[©] Войтенко В.А., Войтенко Г.О., 2023 год © ФГБОУ ВО «ЛГУ им. В. Даля», 2023 год

1. Цели и задачи дисциплины, ее место в учебном процессе

Цель дисциплины – изучение принципов построения современных систем радиоавтоматики, теоретических основ их анализа, синтеза и исследования.

Задачи: познакомить студентов с конкретными аналоговыми и цифровыми системами радиоавтоматики; дать студентам информацию о методах анализа и синтеза линейных и нелинейных систем радиоавтоматики; научить студентов принимать и обосновывать конкретные технические решения при построении новых систем радиоавтоматики.

2. Место дисциплины в структуре ООП ВО. Требования к условиям освоения содержания дисциплины

Дисциплина «Радиоавтоматика» относится к циклу профессиональных дисциплин.

Необходимыми условиями для освоения дисциплины являются: знания основ специальности, физики и химии, технологических основ электроники, материалов и компонентов электроники, электронных и полупроводниковых приборов; умения проводить измерения физических величин и обработку результатов измерений.

Содержание дисциплины основано на знаниях дисциплин «Основы отраслевых знаний», «Технологические основы электроники», «Материалы и компоненты электроники», «Специальные разделы физики (физика электронных и полупроводниковых приборов)», «Квантовая механика и статистическая физика», «Специальные разделы химии (химические основы технологии электронных средств)», «Функциональная электроника» и служит основой для освоения дисциплин «Квантовая и оптическая электроника», «Применение приборов на квантовых эффектах».

3. Требования к результатам освоения содержания дисциплины

Код и наименование	Индикаторы достижений	Перечень планируемых	
компетенции	компетенции (по	результатов	
	реализуемой дисциплине)		
ПК-1. Способен строить	ПК-1.1. Знает	Знать: математическое	
простейшие физические и	математическое описание	описание физических	
математические модели	физических процессов,	процессов, протекающих в	
приборов, схем, устройств и	протекающих в материалах,	материалах, компонентах и	
установок электроники и	компонентах и приборах	приборах радиоавтоматики,	
наноэлектроники	электроники.	структуры и принцип	
различного	ПК-1.2. Умеет строить	действия основных систем	
функционального	физические и	радиоавтоматики, основные	
назначения, а также	математические модели	элементы автоматических	
использовать стандартные	приборов, узлов, блоков.	систем и их описание;	
программные средства их	ПК-1.3. Владеет навыками	методы анализа	
компьютерного	компьютерного	радиотехнических	
моделирования	моделирования.	электронных цепей как	

		DHAMAHTA PARHAARTANATANAN W
		элемента радиоавтоматики и
		синтеза последовательных
		корректирующих устройств;
		Уметь: строить физические
		и математические модели
		приборов, узлов, блоков
		радиоавтоматики;
		применять критерии
		устойчивости, определять
		запасы устойчивости,
		корневые, частотные и
		интегральные показатели
		качества, синтезировать
		корректирующие
		устройства;
		Владеть: навыками
		компьютерного
		моделирования устройств
		радиоавтоматики,
		составления и
		преобразования
		структурных схем систем
		радиоавтоматики; навыком
		использования критериев
		устойчивости и определения
		показателей качества,
		синтеза корректирующих
ПИ 2 Старабах	ПК 2.1. Это от технология	устройств;
ПК-2. Способен	ПК-2.1. Знает методики	Знать: методики проведения
аргументировано выбирать	проведения исследований	исследований параметров и
и реализовывать на	параметров и характеристик	характеристик узлов, блоков
практике эффективную	узлов, блоков.	радиоавтоматики;
методику	ПК-2.2. Умеет проводить	Уметь: проводить
экспериментального	исследования характеристик	исследования характеристик
исследования параметров и	электронных приборов.	электронных приборов и
характеристик приборов,		устройств радиоавтоматики,
схем, устройств и установок		осуществлять контроль
электроники и		соответствия
наноэлектроники		конструкторской,
различного		технологической
функционального		документации нормативам;
назначения		Владеть: навыками контроля
		соответствия нормативной
		документации технических
		проектов электронных
		устройств различного
		функционального
		назначения.

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

Dur yurdura	Объем час	Объем часов (зач. ед.)		
Вид учебной	Очная форма	Заочная форма		
Общая учебная нагрузка (все	ro)	108	108	
		(3 зач. ед)	(3 зач. ед)	
Обязательная аудиторная уч	ебная нагрузка (всего)	68	16	
в том числе:				
Лекции		34	8	
Семинарские занятия		-	-	
Практические занятия		-	-	
Лабораторные работы	34	8		
Курсовая работа (курсовой про	-	-		
Другие формы и методы орган	изации образовательного	-	-	
процесса (расчетно-графичес	кие работы, групповые			
дискуссии, ролевые игры, п	пренинг, компьютерные			
симуляции, интерактивные л				
деловых ситуаций и т.п.)				
Самостоятельная работа студ	цента (всего)	40	92	
Форма аттестации	Семестр 8	зачет	зачет	

4.2. Содержание разделов дисциплины

Семестр 7

Тема 1. Математическое описание, основные характеристики и элементы систем радиоавтоматики.

Основные определения. Обобщенная структурная схема системы радиоавтоматики. Классификация систем радиоавтоматики. Уравнения систем радиоавтоматики. Передаточная функция, переходная и импульсная функции и характеристики. Комплексный коэффициент передачи и частотные характеристики. Типовые звенья. Многоконтурные системы.

Тема 2. Анализ устойчивости и качества работы систем радиоавтоматики.

Постановка задачи устойчивости. Критерий устойчивости Гурвица. Частотные критерии устойчивости. Запасы устойчивости. Показатели качества переходного процесса: частотные, корневые, интегральные показатели качества.

Семестр 8

Тема 3. Синтез систем радиоавтоматики.

Постановка задачи синтеза систем радиоавтоматики. Желаемая передаточная функция разомкнутой системы. Синтез последовательных корректирующих устройств.

Тема 4. Общие сведения о цифровых системах радиоавтоматики.

Структурная схема цифровой системы. Математический аппарат Z-преобразования. Передаточные функции и частотные характеристики. Элементы анализа устойчивости и синтеза цифровых систем.

4.3. Лекции

№	Название темы	Объег	Объем часов	
п/п		Очная форма	Заочная форма	
1	Математическое описание, основные характеристики и элементы систем радиоавтоматики	4	1	
2	Уравнения систем радиоавтоматики	4	1	
3	Передаточная функция, переходная и импульсная функции и характеристики	4	1	
4	Анализ устойчивости и качества работы систем радиоавтоматики	4	1	
5	Показатели качества переходного процесса: частотные, корневые, интегральные показатели качества	4	1	
6	Синтез систем радиоавтоматики	4	1	
7	Синтез последовательных корректирующих устройств	2	1	
8	Общие сведения о цифровых системах радиоавтоматики Математический аппарат Z-преобразования	4	1	
9	Передаточные функции и частотные характеристики	2	_	
10	Элементы анализа устойчивости и синтеза цифровых систем	2		
Итог	TO:	34	8	

4.4. Практические занятия

Не предусмотрены учебным процессом.

4.5. Лабораторные работы

No	Название темы	Объем часов	
п/п		Очная форма	Заочная форма
1	Частотные диапазоны волн.	4	1
2	Расчет напряженности поля.	4	1
3	Построение диаграмм направленности симметричных вибраторов	4	1
4	Построение диаграмм направленности несимметричных вибраторов	4	1
5	Исследование зависимости основных параметров симметричного вибратора от относительной длины.	4	1
6	Распространение радиоволн. Антенно-фидерные устройства. Эксплуатация антенно-фидерных устройств. Основные уравнения электродинамики в теории излучения антенн.	2	1
7	Исследование основных параметров несимметричного вибратора	4	1
8	Расчет основных параметров фидеров		1
9	Выбор типовой антенны для радиосвязи и радиовещания	4	-
10	Радиопередающий центр	4	-

	Излучение радиоволн в свободном неограниченном	4	-
11	пространстве. Вибраторные антенны. Конструкции		
	вибраторных антенн. Апертурные антенны.		
Итого:			8

4.6. Самостоятельная работа студентов

No	Название темы	Вид СРС	Объем часов	
п/п			Очная форма	Заочная форма
1	Математическое описание, основные характеристики и	Подготовка к лабораторным работам	2	6
1	элементы систем радиоавтоматики	Подготовка к тестированию	2	6
2	Уравнения систем	Подготовка к лабораторным работам	2	6
	радиоавтоматики	Подготовка к тестированию	2	6
3	Передаточная функция, переходная и импульсная	Подготовка к лабораторным работам	2	6
	функции и характеристики	Подготовка к тестированию	2	6
		Подготовка к лабораторным работам	2	6
	радиоавтоматики	Подготовка к тестированию	2	6
5 Синтез систем лабора		Подготовка к лабораторным работам	2	6
	радиоавтоматики	Подготовка к тестированию	2	6
6	Синтез последовательных	Подготовка к лабораторным работам	2	6
	корректирующих устройств	Подготовка к тестированию	2	6
7	Общие сведения о цифровых системах радиоавтоматики	Подготовка к лабораторным работам	6	6
	I	Подготовка к тестированию	6	6
8	Математический аппарат Z-	Подготовка к лабораторным работам	4	6
-	преобразования	Подготовка к тестированию	4	2
Ито	го:		40	92

4.7. Курсовые работы/проекты

Не предусмотрены учебным планом.

5. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

традиционные объяснительно-иллюстративные технологии, которые обеспечивают доступность учебного материала для большинства студентов, системность, отработанность организационных форм и привычных методов, относительно малые затраты времени;

технологии проблемного обучения, направленные на развитие познавательной активности, творческой самостоятельности студентов и

предполагающие последовательное и целенаправленное выдвижение перед студентом познавательных задач, разрешение которых позволяет студентам активно усваивать знания (используются поисковые методы; постановка познавательных задач);

технологии развивающего обучения, позволяющие ориентировать учебный процесс на потенциальные возможности студентов, их реализацию и развитие;

технологии концентрированного обучения, суть которых состоит в создании максимально близкой к естественным психологическим особенностям человеческого восприятия структуры учебного процесса и которые дают возможность глубокого и системного изучения содержания учебных дисциплин за счет объединения занятий в тематические блоки;

технологии модульного обучения, дающие возможность обеспечения гибкости процесса обучения, адаптации его к индивидуальным потребностям и особенностям обучающихся (применяются, как правило, при самостоятельном обучении студентов по индивидуальному учебному плану);

технологии дифференцированного обучения, обеспечивающие возможность создания оптимальных условий для развития интересов и способностей студентов, в том числе и студентов с особыми образовательными потребностями, что позволяет реализовать в культурно-образовательном пространстве университета идею создания равных возможностей для получения образования;

технологии активного (контекстного) обучения, с помощью которых осуществляется моделирование предметного, проблемного и социального содержания будущей профессиональной деятельности студентов (используются активные и интерактивные методы обучения) и т.д.

Максимальная эффективность педагогического процесса достигается путем конструирования оптимального комплекса педагогических технологий и (или) их элементов на личностно-ориентированной, деятельностной, диалогической основе и использования необходимых современных средств обучения

6. Формы контроля освоения дисциплины

Текущая аттестация студентов производится в дискретные временные интервалы лектором и преподавателем(ями), ведущими лабораторные работы и практические занятия по дисциплине в следующих формах:

- контрольные вопросы к лекциям;
- вопросы к лабораторным работам;
- тесты;
- вопросы к зачету.

Фонды оценочных средств, включающие контрольные вопросы, вопросы коллоквиумов, тесты и методы контроля, позволяющие оценить результаты текущей и промежуточной аттестации обучающихся по данной дисциплине, помещаются в приложении к рабочей программе в соответствии с «Положением о фонде оценочных средств».

Промежуточная аттестация по результатам освоения дисциплины в 7 семестре обучения проходит в форме устного экзамена (включает в себя ответ на теоретические вопросы), а в 8 семестре обучения – в форме зачета. Студенты,

выполнившие 75% текущих и контрольных мероприятий на «отлично», а остальные 25% на «хорошо», имеют право на получение итоговой отличной оценки.

В 8 семестре обучения в экзаменационную ведомость и зачетную книжку выставляются оценки по национальной шкале, приведенной в таблице.

Характеристика знания предмета и ответов	Зачеты
Обучающийся глубоко и в полном объёме владеет программным	
материалом. Грамотно, исчерпывающе и логично его излагает в	зачтено
устной или письменной форме. При этом знает рекомендованную	
литературу, проявляет творческий подход в ответах на вопросы и	
правильно обосновывает принятые решения, хорошо владеет	
умениями и навыками при выполнении практических задач.	
Обучающийся знает программный материал, грамотно и по сути	
излагает его в устной или письменной форме, допуская	
незначительные неточности в утверждениях, трактовках,	
определениях и категориях или незначительное количество	
ошибок. При этом владеет необходимыми умениями и навыками	
при выполнении практических задач.	
Обучающийся знает только основной программный материал,	
допускает неточности, недостаточно чёткие формулировки,	
непоследовательность в ответах, излагаемых в устной или	
письменной форме. При этом недостаточно владеет умениями и	
навыками при выполнении практических задач. Допускает до 30 %	
ошибок в излагаемых ответах.	
Обучающийся не знает значительной части программного	не зачтено
материала. При этом допускает принципиальные ошибки в	
доказательствах, в трактовке понятий и категорий, проявляет	
низкую культуру знаний, не владеет основными умениями и	
навыками при выполнении практических задач. Обучающийся	
отказывается от ответов на дополнительные вопросы	

7. Учебно-методическое и программно-информационное обеспечение дисциплины

- а) Основная литература:
- 1. Схиртладзе А.Г., Автоматизация технологических процессов и производств: Учебник /А.Г. Схиртладзе, А.В. Федотов, В.Г. Хомченко. М.: Абрис, 2012. 565 с. ISBN 978-5-4372-0073-5 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785437200735.html (дата обращения: 25.01.2020). Режим доступа: по подписке.
- 2. Абдулханова М.Ю., Технологии производства материалов и изделий и автоматизация технологических процессов на предприятиях дорожного строительства: Учебное пособие / Абдулханова М.Ю., Воробьев В.А., Попов В.П. М.: СОЛОН-ПРЕСС, 2014. 564 с. ISBN 978-5-91359-108-1 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL:

http://www.studentlibrary.ru/book/ISBN9785913591081.html (дата обращения: 25.01.2020). - Режим доступа : по подписке.

- б) Дополнительная литература:
- 1. Сомов А.М. Антенно-фидерные устройства [Электронный ресурс]: Учебное пособие / А.М. Сомов, В.В. Старостин, Р.В. Кабетов; Под ред. А.М. Сомова. М.: Гор. линия-Телеком, 2011. 404 с.: ил.; 60х90 1/16. (Специальность). (обложка) ISBN 978-5-9912-0152-0, 500 экз. Режим доступа: http://znanium.com/catalog/product/265578
- 2. Головин О.В. Устройства генерирования, формирования, приема и обработки сигналов [Электронный ресурс]: Учебное пособие для вузов / О.В. Головин. М.: Гор. линия-Телеком, 2012. 783 с.: ил.; 70х100 1/16. (обложка) ISBN 978-5-9912-0196-4 Режим доступа: http://znanium.com/catalog/product/333203
- 3. Семенихин А.И. Проектирование зеркальных антенн с помощью пакета Mathcad [Электронный ресурс]: Учебное пособие / Семенихин А.И., Кошкидько В.Г., Климов А.В. Ростов-на-Дону: Издательство ЮФУ, 2016. 80 с.: ISBN 978-5-9275-1918-7 Текст : электронный. URL: http://znanium.com/catalog/product/989923
- 4. Колосовский Е.А. Устройства приема и обработки сигналов [Электронный ресурс]: Учебное пособие для вузов / Е.А. Колосовский. 2-е изд. М.: Гор. линия-Телеком, 2012. 456 с.: ил.; 60х88 1/16. (Специальность). (обложка) ISBN 978-5-9912-0265-7, 100 экз. Режим доступа: http://znanium.com/catalog/product/364795
 - в) Методические рекомендации/указания:
- 1. Методические указания к практическим занятиям по дисциплине «Радиоавтоматика» для студентов специальности "Электронные приборы и устройства" (электронное издание) / Сост.: В.А. Войтенко, Г.О. Войтенко, В.Н. Куценко. Луганск: Изд-во ЛНУ, 2018. 34 с.
- 2. Методические указания к лабораторным занятиям по дисциплине «Радиоавтоматика» для студентов специальности "Электронные приборы и устройства" (электронное издание) / Сост.: В.А. Войтенко, Г.О. Войтенко, В.Н. Куценко. Луганск: Изд-во ЛНУ, 2018. 35 с.
 - г) Интернет-ресурсы:

Министерство образования и науки Российской Федерации – http://минобрнауки.рф/

Федеральная служба по надзору в сфере образования и науки – http://obrnadzor.gov.ru/

Министерство образования и науки Луганской Народной Республики – https://minobr.su

Народный совет Луганской Народной Республики – https://nslnr.su

Портал Федеральных государственных образовательных стандартов высшего образования – http://fgosvo.ru

Федеральный портал «Российское образование» – http://www.edu.ru/

Информационная система «Единое окно доступа к образовательным ресурсам» – http://window.edu.ru/

Федеральный центр информационно-образовательных ресурсов – http://fcior.edu.ru/

Далевский педагогический портал – http://ped.dahluniver.ru/

Электронные библиотечные системы и ресурсы

Электронно-библиотечная система «Консультант студента» – http://www.studentlibrary.ru/cgi-bin/mb4x

Электронно-библиотечная система «StudMed.ru» –https://www.studmed.ru Университетская библиотека On-line – http://www.biblioclub.ru

Научная электронная библиотека eLIBRARY – http://elibrary.ru

Информационный ресурс библиотеки образовательной организации

Научная библиотека имени А. Н. Коняева – http://biblio.dahluniver.ru/

Научные журналы

"GNU Scientific Library" (GSL - библиотека для научных вычислений проекта GNU): http://www.gnu.org/software/gsl.

Система схемотехнического моделирования LTSpice IV. Краткое руководство: http://zpostbox.ru/ltspice.html.

Электронные компоненты: http://www.elitan.ru/.

Навигатор по профессиональным электронным ресурсам - http://www.spsl.nsc.ru/win/nelbib/nav_ei.htm

8. Материально-техническое обеспечение дисциплины

Лекционные занятия проводятся с использованием комплекта электронных презентаций в аудитории, оснащенной презентационной техникой (проектор, экран, ноутбук).

Лабораторные работы проводятся с использованием некомпьютеризированных и компьютеризированных лабораторных стендов, пакета специализированных компьютерных программ, компьютерной математической среды MatLab.

Рабочие места преподавателя и студентов в учебной лаборатории оснащены компьютерами с доступом в Интернет, предназначенными для работы в указанных специализированных компьютерных программах и средах.

Программное обеспечение:

Функциональное назначение	Бесплатное программное обеспечение	Ссылки
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu

Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx
Браузер	Opera	http://www.opera.com
Почтовый клиент	Mozilla Thunderbird	http://www.mozilla.org/ru/thunderbird
Файл-менеджер	Far Manager	http://www.farmanager.com/download.php
Архиватор	7Zip	http://www.7-zip.org/
Графический редактор	GIMP (GNU Image Manipulation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator
Аудиоплейер	VLC	http://www.videolan.org/vlc/

8. Оценочные средства по дисциплине

Паспорт фонда оценочных средств по учебной дисциплине «Радиоавтоматика»

Перечень компетенций (элементов компетенций), формируемых в результате освоения учебной дисциплины (модуля) или практики

No	Код	Формулировка	Индикаторы	Контролируемы	Этапы
Π/	контролируемо	контролируемой	достижений	e	формировани
П	й	компетенции	компетенци	темы	Я
	компетенции		и (по	учебной	(семестр
			реализуемо	дисциплины,	изучения)
			й	практики	
			дисциплине		
)		
1	ПК-1	Способен строить	ПК-1.1.	Тема 1	1
		простейшие	ПК-1.2.	Математическо	
		физические и	ПК-1.3.	е описание,	
		математические		основные	
		модели приборов,		характеристики	
		схем, устройств и		и элементы	
		установок		систем	

		электроники и		радиоавтоматик	
		наноэлектроники		И	
		различного		Тема 2 Анализ	1
		функционального		устойчивости и	
		назначения, а		качества работы	
		также		систем	
		использовать		радиоавтоматик	
		стандартные		И	
		программные		Тема 3 Синтез	1
		средства их		систем	1
		компьютерного			
		<u>-</u>		радиоавтоматик	
		моделирования		И Т. 4.05	1
				Тема 4 Общие	1
				сведения о	
				цифровых	
				системах	
				радиоавтоматик	
				И	
2.	ПК-2	Способен	ПК-2.1.	Тема 2 Анализ	1
		аргументировано	ПК-2.2.	устойчивости и	
		выбирать и		качества работы	
		реализовывать на		систем	
		практике		радиоавтоматик	
		эффективную		И	
		методику		Тема 3 Синтез	1
		экспериментальног		систем	
		о исследования		радиоавтоматик	
		параметров и		И	
		характеристик		Тема 4 Общие	1
		приборов, схем,		сведения о	1
		устройств и		цифровых	
		установок			
		электроники и		системах	
		<u> </u>		радиоавтоматик	
		наноэлектроники		И	1
		различного		Тема 4 Общие	1
		функционального		сведения о	
		назначения		цифровых	
				системах	
				радиоавтоматик	
				И	

Показатели и критерии оценивания компетенций, описание шкал оценивания

$N_{\underline{0}}$	Код	Индикаторы	Перечень	Контролируемые	Наименовани
Π/	контролируемо	достижений	планируемых	темы учебной	е оценочного
П	й компетенции	компетенци	результатов	дисциплины	средства
		и (по			
		реализуемой			
		дисциплине)			
1.	ПК-1	ПК-1.1.	Знать:	Тема 1,	Контрольные
		ПК-1.2.	математическое	Тема 2,	вопросы к

ПИ 1 2		T-1-2	
ПК-1.3.	описание	Тема 3,	лекциям,
	физических	Тема 4,	вопросы к
	процессов,	Практическое	лабораторны
	протекающих в	/	м работам,
	материалах,	Лабораторная	тесты,
	компонентах и	работа 1	вопросы к
	приборах		экзамену
	радиоавтоматики,		
	структуры и		
	принцип действия		
	основных систем		
	радиоавтоматики,		
	основные		
	элементы		
	автоматических		
	систем и их		
	описание; методы		
	анализа		
	радиотехнически		
	х электронных		
	цепей как		
	элемента		
	радиоавтоматики		
	и синтеза		
	последовательны		
	X		
	корректирующих		
	устройств;		
	Уметь: строить		
	физические и		
	математические		
	модели приборов,		
	узлов, блоков		
	радиоавтоматики;		
	применять		
	критерии		
	устойчивости,		
	определять		
	запасы		
	устойчивости,		
	корневые,		
	частотные и		
	интегральные		
	показатели		
	качества,		
	синтезировать		
	корректирующие		
	устройства;		
	Владеть:		
	навыками		
	компьютерного		
	моделирования		
	устройств		
	радиоавтоматики,		

составления и	
преобразования	
структурных схем	
систем	
радиоавтоматики;	
навыком	
использования	
критериев	
устойчивости и	
определения показателей	
качества, синтеза	
корректирующих	
устройств;	
	рольные
ПК-2.2. проведения Тема 2, вопр	
	иям,
	осы к
	раторны
узлов, блоков Лабораторная м ра	ботам,
радиоавтоматики; работа 2 тест	ы,
Уметь: проводить воправодить	осы к
исследования заче	
характеристик	
электронных	
приборов и	
устройств	
радиоавтоматики,	
осуществлять	
контроль	
соответствия	
конструкторской,	
технологической	
документации	
нормативам;	
Владеть:	
навыками	
контроля	
соответствия	
нормативной	
документации	
технических	
проектов	
электронных	
устройств	
различного	
функционального	

Фонды оценочных средств по дисциплине «Радиоавтоматика»

Контрольные вопросы к лекциям:

- 1. Что такое квантование сигналов?
- 2. Сформулируйте теорему Котельникова-Шеннона.
- 3. Что значит эффект наложения частот?
- 4. Что понимают под операторами прямого и обратного сдвига?
- 5. Математическое описание, основные характеристики и элементы систем радиоавтоматики?
- 6. Уравнения систем радиоавтоматики?
- 7. Передаточная функция, переходная и импульсная функции и характеристики?
- 8. Анализ устойчивости и качества работы систем радиоавтоматики
- 9. Синтез систем радиоавтоматики?
- 10.Синтез последовательных корректирующих устройств?
- 11. Общие сведения о цифровых системах радиоавтоматики?
- 12. Математический аппарат Z-преобразования?
- 13. Что такое дискретный сигнал?
- 14. Что значит единичный дискретный импульс?
- 15. Что такое единичный ступенчатый сигнал?
- 16. Что подразумевают под z-преобразованием? Перечислите его свойства.
- 17. Как происходит восстановление оригинала по *z*-преобразованию?
- 18. Как происходит *z*-преобразование запаздывающего сигнала?
- 19.В чем сущность метода динамического программирования?
- 20. В чем состоит принцип оптимальности Беллмана?
- 21. Что такое корреляционная функция?
- 22. Поясните понятия стационарности, эргодичности.
- 23. Что такое формирующие фильтры?
- 24. Поясните понятие белого шума.
- 25. Как проводят цифровое моделирование непрерывных случайных процессов с заданной спектральной плотностью?
- 26. Сформулируйте задачу оптимальной фильтрации Винера.
- 27. Что такое оптимальный неустойчивый фильтр, оптимальный устойчивый фильтр?
- 28. Каково влияние спектральных свойств помехи и шума на эффективность фильтрации?
- 29. Что такое фильтр Калмана?
- 30. Что понимают под ковариационной матрицей?
- 31. Как проводят синтез оптимальных регуляторов для замкнутой системы при случайных возмущениях?
- 32. Что такое транзисторно-транзисторная логика?
- 33.Для чего используются логические функции?
- 34. Для чего используется кодирование?
- 35. Какие существуют методы кодирования?
- 36. Что такое сложная функция?
- 37. Каковы временные характеристики основных логических операций?
- 38. Что такое двоичное исчисление?
- 39. Как кодируются положительные и отрицательные числа?
- 40. Как реализуется сложение и вычитание двоичных чисел?

- 41. Как осуществляется умножение двоичных чисел?
- 42. Как осуществляется деление двоичных чисел?
- 43. Что такое плавающая запятая?
- 44. Что такое переполнение?
- 45. Для чего используется индикатор полярности?
- 46. Как обозначается символ отрицания?
- 47. Приведите обозначения логических символов.
- 48. Приведите обозначения зависимостей.
- 49. Каково назначение блоков управления?
- 50. Каково назначение выходных блоков?
- 51. Что представляют собой логические схемы?
- 52. Приведите семантику обозначений в логических схемах.

Критерии и шкала оценивания по оценочному средству контрольные вопросы к лекциям

Шкала оценивания	Критерий оценивания
(интервал баллов)	
5	Ответ представлен на высоком уровне (студент в полном объеме осветил рассматриваемый вопрос, привел аргументы в пользу своих суждений, владеет соответствующей научной терминологией)
4	Ответ представлен на среднем уровне (студент в целом осветил рассматриваемый вопрос, привел аргументы в пользу своих суждений, допустив некоторые неточности)
3	Ответ представлен на низком уровне (студент допустил существенные неточности, изложил материал с ошибками, не владеет в достаточной степени соответствующей научной терминологией)
2	Ответ представлен на неудовлетворительном уровне или не представлен (студент не готов отвечать)

Вопросы к лабораторным работам:

- 1. Квантование сигналов. Частота квантования.
- 2. Восстановление сигналов. Теорема Котельникова-Шеннона.
- 3. Эффект наложения частот.
- 4. Операторы прямого и обратного сдвига. Физическая реализуемость.
- 5. Передаточная функция цифрового регулятора.
- 6. Восстановление непрерывных сигналов.
- 7. Экстраполятор нулевого порядка.
- 8. Импульсная модель дискретного сигнала.
- 9. Импульсная характеристика и передаточная функция экстраполятора.
- 10. Экстраполятор первого порядка.
- 11. Линейные дискретные системы.
- 12. Свойства однородности и суперпозиции.
- 13. Стационарные системы.
- 14. Импульсная характеристика и передаточная функция.
- 15. Дискретные сигналы.

- 16. Единичный дискретный импульс.
- 17. Единичный ступенчатый сигнал.
- 18. z-преобразование и его свойства.
- 19.Восстановление оригинала по *z*-преобразованию. *z*-преобразование запаздывающего сигнала.
- 20.Импульсные характеристики и передаточные функции дискретных систем.
- 21.КИХ-фильтры.
- 22.Переход от разностного уравнения к передаточной функции и обратно.
- 23. Нули и полюса передаточных функций.
- 24. Типовые переходные процессы для звена первого порядка.
- 25. Модели дискретных систем в пространстве состояний.
- 26.Согласованность матриц А, В, С, D.
- 27.Переход к передаточной функции и обратно.
- 28. Устойчивость дискретных систем.
- 29. Устойчивость по Ляпунову.
- 30. Асимптотическая устойчивость.
- 31. Устойчивость линейных систем.
- 32. Проверка устойчивости по передаточной функции и модели в пространстве состояний.
- 33.Одноконтурная дискретная система.
- 34. Передаточные функции.
- 35. Характеристический полином.
- 36. Характеристическое уравнение.
- 37. Устойчивость.
- 38. Нестабилизируемые системы.
- 39. Дискретизация импульсных систем.
- 40. Приведённая непрерывная часть.
- 41. Дискретные передаточные функции замкнутой системы.
- 42.Скрытые колебания.
- 43. Устойчивость импульсных систем.
- 44. Анализ устойчивости по дискретной модели.
- 45. Невырожденность интервала квантования.
- 46. Частотные характеристики дискретных систем.
- 47. Частота Найквиста.
- 48. Периодичность частотной характеристики.
- 49.Показатели качества импульсных систем: перерегулирование, время переходного процесса, запасы устойчивости, показатель колебательности.
- 50.Интегральная квадратическая ошибка.
- 51. Статические ошибки в импульсных системах. Астатизм.
- 52. Условие компенсации постоянных возмущений.
- 53. Дискретизация аналоговых регуляторов (методы Эйлера, Тастина, преобразования нулей и полюсов, фиктивного квантования).
- 54. Сохранение устойчивости регуляторов при дискретизации.
- 55. Численная оптимизация цифровых регуляторов (постановка задачи).
- 56. Аппроксимация переходных процессов и частотных характеристик для разомкнутых и замкнутых систем.

- 57. Задача модального управления.
- 58. Модальные ограничения.
- 59. Корневой годограф.
- 60. Метод D-разбиения.
- 61.Синтез регуляторов с помощью диофантовых уравнений.
- 62. Выбор порядка желаемого характеристического полинома.
- 63. Апериодическое управление.
- 64. Задача модального управления.
- 65. Синтез регуляторов с помощью моделей в пространстве состояний.
- 66. Обратная связь по вектору состояния.
- 67. Обратная связь по выходу.
- 68.Переходные процессы минимальной длительности (общий подход к синтезу).
- 69. Линейный квадратичный регулятор на конечном и бесконечном интервале времени (постановка задачи).
- 70. Критерий качества.
- 71. Метод динамического программирования (общий подход).
- 72. Принцип оптимальности Беллмана.
- 73. Модели случайных возмущений в непрерывном времени.
- 74. Корреляционные функции.
- 75. Стационарность.
- 76. Эргодичность.
- 77. Спектральные плотности.
- 78. Формирующие фильтры.
- 79.Белый шум.
- 80. Модели случайных возмущений в дискретном времени.
- 81. Цифровое моделирование непрерывных случайных процессов с заданной спектральной плотностью.
- 82. Задача оптимальной фильтрации Винера.
- 83.Оптимальный неустойчивый фильтр, оптимальный устойчивый фильтр.
- 84.Влияние спектральных свойств помехи и шума на эффективность фильтрации.
- 85. Фильтр Калмана.
- 86. Ковариационная матрица.

Критерии и шкала оценивания по оценочному средству вопросы к лабораторным работам

Шкала оцен	ивания	Критерий оценивания	
(интервал баллов			
5	Ответы п	представлены на высоком уровне (студент в полном	
	объеме ос	светил рассматриваемые вопросы, привел аргументы в	
	пользу с	воих суждений, владеет соответствующей научной	
	терминоло	огией, правильные ответы даны на 90-100% вопросов)	
4	Ответы п	представлены на среднем уровне (студент в целом	
	осветил р	рассматриваемые вопросы, привел аргументы в пользу	
	своих сух	своих суждений, допустив некоторые неточности, правильные	
	ответы даны на 75-89% вопросов)		

3	Ответы представлены на низком уровне (студент допустил	
	существенные неточности, изложил материал с ошибками, не	
	владеет в достаточной степени соответствующей научной	
	терминологией, правильные ответы даны на 50-74% вопросов)	
2	Ответы представлены на неудовлетворительном уровне или не	
	представлены (студент не готов отвечать или правильные ответы	
	даны менее чем на 50% вопросов)	

Тесты:

- 1. Задача системы стабилизации:
- А) сохранять заданное значение входа при действии возмущения.
- Б) сохранять заданное значение возмущения.
- В) сохранять заданное значение выхода при действии возмущения.
- 2. Одной решетчатой функции может соответствовать:
- А) множество аналоговых сигналов.
- Б) один аналоговый сигнал.
- В) два или три аналоговых сигнала.
- 3. При квантовании происходит:
- А) преобразование информации.
- Б) потеря информации.
- В) искажение информации.
- 4. Временная диаграмма логической операции содержит:
- А) таблицу истинности.
- Б) временную шкалу.
- В) описание регистров.
- 5. Для логической схемы время является:
- А) входной переменной.
- Б) выходной переменной.
- В) независимой переменной.
- 6. Для анализа процессов между моментами квантования используют:
- А) модифицированное дискретное преобразование Лапласа.
- Б) модифицированное z-преобразование.
- В) z-преобразование.
- 7. Для вычисления непрерывного сигнала на выходе объекта управления используют:
 - А) модифицированное дискретное преобразование Лапласа.
 - Б) обратное преобразование Лапласа.
 - В) z-преобразование.

Критерии и шкала оценивания по оценочному средству тесты

Шкала оценивания	Критерий оценивания
(интервал баллов)	
5	Тесты выполнены на высоком уровне (правильные ответы даны на 90-100% тестов)
4	Тесты выполнены на среднем уровне (правильные ответы даны на 75-89% тестов)
3	Тесты выполнены на низком уровне (правильные ответы даны на 50-74% тестов)
2	Тесты выполнены на неудовлетворительном уровне (правильные ответы даны менее чем на 50% тестов)

Оценочные средства для промежуточной аттестации (зачет)

- 1. Квантование непрерывных функций.
- 2. Восстановление непрерывных функций.
- 3. Модифицированное z-преобразование.
- 4. Замкнутые формулы.
- 5. Процессы между моментами квантования.
- 6. Дискретизация моделей в пространстве состояний.
- 7. Разомкнутые системы.
- 8. Замкнутые системы.
- 9. Когда система имеет ДПФ.
- 10.Системы, не имеющие ДПФ.
- 11. Параметрическая передаточная функция.
- 12. Понятие устойчивости.
- 13. Устойчивость одноконтурной цифровой системы.
- 14. Стабилизируемость в вырожденных случаях.
- 15.Скрытые колебания.
- 16.Переходные процессы.
- 17. Запасы устойчивости.
- 18.Ошибка в установившемся режиме.
- 19.Интегральные показатели.
- 20. Статистические показатели.
- 21. Робастность.
- 22. Задача переоборудования.
- 23. Численное интегрирование.
- 24. Частотная коррекция.
- 25. Устойчивость.
- 26.Отображение нулей и полюсов.
- 27. Фиктивное квантование.
- 28. Аппроксимация частотной характеристики.
- 29.Оптимальное переоборудование.
- 30. Эквивалентная дискретная система.
- 31. Регуляторы низкого порядка.
- 32. Задача размещения полюсов.

- 33.Полиномиальные уравнения.
- 34. Физическая реализуемость регулятора.
- 35. Размещение полюсов.
- 36. Процессы минимальной длительности.
- 37.Системы с двумя степенями свободы.
- 38.Полиномиальный алгоритм.
- 39. Билинейное преобразование.
- 40.Использование ЛАФЧХ.

Критерии и шкала оценивания по оценочному средству промежуточный контроль (зачет)

V	מ
Характеристика знания предмета и ответов	Зачеты
Обучающийся глубоко и в полном объёме владеет программным	
материалом. Грамотно, исчерпывающе и логично его излагает в	зачтено
устной или письменной форме. При этом знает рекомендованную	
литературу, проявляет творческий подход в ответах на вопросы и	
правильно обосновывает принятые решения, хорошо владеет	
умениями и навыками при выполнении практических задач.	
Обучающийся знает программный материал, грамотно и по сути	
излагает его в устной или письменной форме, допуская	
незначительные неточности в утверждениях, трактовках,	
определениях и категориях или незначительное количество	
ошибок. При этом владеет необходимыми умениями и навыками	
при выполнении практических задач.	
Обучающийся знает только основной программный материал,	
допускает неточности, недостаточно чёткие формулировки,	
непоследовательность в ответах, излагаемых в устной или	
письменной форме. При этом недостаточно владеет умениями и	
навыками при выполнении практических задач. Допускает до 30 %	
ошибок в излагаемых ответах.	
Обучающийся не знает значительной части программного	не зачтено
материала. При этом допускает принципиальные ошибки в	
доказательствах, в трактовке понятий и категорий, проявляет	
низкую культуру знаний, не владеет основными умениями и	
навыками при выполнении практических задач. Обучающийся	
отказывается от ответов на дополнительные вопросы	

Лист изменений и дополнений

No	Виды дополнений и	Дата и номер протокола	Подпись (с
Π/Π	изменений	заседания кафедры	расшифровкой)
		(кафедр), на котором были	заведующего кафедрой
		рассмотрены и одобрены	(заведующих кафедрами)
		изменения и дополнения	