МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Институт приборостроения и электротехнических систем Кафедра электроэнергетики

УТВЕРЖДАНОВ В Директор института

Тарасенко О.В.

2025 года

Половинка Д.В.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по учебной дисциплине

«Автоматизированные системы коммерческого учёта электроэнергии»

По направлению подготовки 13.04.02 Электроэнергетика и электротехника Магистерская программа: «Оптимизация развивающихся систем электроснабжения»

Заведующий кафедрой

Луганск – 2025 г.

Комплект оценочных материалов по дисциплине «Автоматизированные системы коммерческого учёта электроэнергии»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа

Выберите один правильный ответ

- 1. Какое устройство, входящее в состав периферии AVR-микроконтроллеров, позволяет измерить мгновенное значение тока однофазного потребителя?
- А) таймер/счётчик
- Б) аналогово-цифровой преобразователь
- В) последовательный периферийный интерфейс SPI
- Г) универсальный асинхронный приёмопередатчик USART
- Д) правильный вариант отсутствует

Правильный ответ: Б

Компетенции (индикаторы): ПК-3 (ПК-3.1)

Какое устройство, входящее в состав периферии AVR-микроконтроллеров, позволяет измерить фазовый угол ф однофазного потребителя?

- А) аналоговый компаратор
- Б) аналогово-цифровой преобразователь
- В) последовательный периферийный интерфейс SPI
- Г) универсальный асинхронный приёмопередатчик USART
- Д) правильный вариант отсутствует

Правильный ответ: А

Компетенции (индикаторы): ПК-3 (ПК-3.1)

- 3. Какое устройство, входящее в состав периферии AVR-микроконтроллеров, позволяет измерить значение частоты сети?
- А) таймер/счётчик
- Б) аналогово-цифровой преобразователь
- В) последовательный периферийный интерфейс SPI
- Г) универсальный асинхронный приёмопередатчик USART
- Д) правильный вариант отсутствует

Правильный ответ: А

Компетенции (индикаторы): ПК-3 (ПК-3.1)

- 4. Какое устройство, входящее в состав периферии AVR-микроконтроллеров, позволяет измеренные значения потреблённой электроэнергии отправить на сервер энергопоставляющей компании?
- А) таймер/счётчик
- Б) аналогово-цифровой преобразователь
- В) аналоговый компаратор
- Г) универсальный асинхронный приёмопередатчик USART

Д) правильный вариант отсутствует

Правильный ответ: Г

Компетенции (индикаторы): ПК-3 (ПК-3.1)

Задания закрытого типа на установление соответствия

Установите правильное соответствие.

Каждому элементу левого столбца соответствует только один элемент правого столбца.

1. Установите соответствие между логической топологией сети, применяемой в АСКУЭ, и её описанием.

1) «точка-точка» (point-to-point);

А) каждый узел посылает свои данные всем

остальным узлам сетевой среды, но неизвестно, какие станции функционируют

2) множественного доступа (multi access);

Б) обеспечивает передачу данных от одного узла до другого независимо от промежуточных устройств

между ними

3) широковещательная (broadcast);

В) детерминированный доступ к среде: электронный маркер последовательно передается каждому узлу и

узел, получивший его, может передавать данные в

сеть

4) маркерная (token

passing)

 Γ) доступ к разделяемой общей шине имеют все узлы, но в каждый момент времени передавать данные может только один узел, остальные узлы

могут только «слушать» среду

Правильный ответ:

1	2	3	4	
Б	Γ	A	В	

Компетенции (индикаторы): ПК-3 (ПК-3.1)

2. Установите соответствие между уровней АСКУЭ и устройствами в них входящими.

1) Первый уровень

А) технические средства приема-передачи данных, автоматизированные рабочие места персонала (APM), систему обеспечения единого времени (СОЕВ), программное обеспечение (ПО), серверы АСКУЭ

2) Второй уровень

Б) не существует

3) Третий уровень

В) устройства сбора и передачи данных (УСПД) и

каналообразующая аппаратура

4) Нулевой уровень

Г) многофункциональные счетчики электроэнергии, измерительные трансформаторы тока и напряжения,

вторичные измерительные цепи

Правильный ответ:

۱				4
- 1		')	1 2	/
	1	\angle	\mathcal{J}	4
- 1			_	

	Γ	В	A	Б			
Ко	Компетенции (индикаторы): ПК-3 (ПК-3.1)						
	3. Установите соответствие между элементами счетчика и их функциональным назначением.						
1)	Грансформатор ток	а А) пог	А) понижение величина тока до допустимого				
		значе	RNF				
2)	Грансформатор наг	ряжения Б) обм	иен данными между	у счётчиком и			
		сервер	ром системы сбора	данных и управлен	КИН		
3)	ΑЦП	В) пов	нижение величина в	напряжения до			
		допус	тимого значения				

4) Интерфейс RS485

 Γ) преобразование аналогового сигнала в

цифровой эквивалент

Правильный ответ:

1	2	3	4
A	В	Γ	Б

Компетенции (индикаторы): ПК-3 (ПК-3.1)

Задания закрытого типа на установление правильной последовательности

Установите правильную последовательность.

Запишите правильную последовательность букв слева направо.

- 1. Установите правильную последовательность действий при подключении нового объекта учета (счетчика) к системе АСКУЭ.
- А) Запуск счетчика в работу со стороны системы сбора данных и управления
- Б) Осуществление монтажа счетчика, прокладка линии связи.
- В) Подключение счетчика в электросети потребителя. Настройка параметров счётчика.
- Г) Проверка работы счетчика в автономном режиме.
- Д). Добавление нового устройства (счетчика) в программе системы сбора данных и управления

Правильный ответ: Б, В, Г, Д, А

Компетенции (индикаторы): ПК-3 (ПК-3.2)

- 2. Установите правильную последовательность действий процессора в счётчике при измерении параметров потребляемой мощности.
- А) Запустить соответствующие АЦП на измерение напряжения и тока за половину периода
- Б) Вычислить полную мощность по формуле S=I·U
- В) Запустить таймер/счетчик с использованием аналогового компаратора для измерения фазового угла после перехода синусоиды напряжения через 0.
- Г) Проинтегрировать за половину периода величину тока и величину напряжения.
- Д) Вычислить активную и реактивную мощности по формуле P=S·cos ф и

 $Q=S \cdot \sin \varphi$

Правильный ответ: В, А, Г, Б, Д

Компетенции (индикаторы): ПК-3 (ПК-3.2)

- 3. Установите правильную последовательность формирования кадра при передаче данных через универсальный приёмопередатчик последовательного порта USART микроконтроллера.
- A) 2(1) стоповый бит
- Б) 1 стартовый бит
- В) 8(7) бит данных
- Γ) 1(0) бит четности (нечётности)

Правильный ответ: Б, В, Г, А

Компетенции (индикаторы): ПК-3 (ПК-3.2)

Задания открытого типа

Задания открытого типа на дополнение

Напишите пропущенное слово (словосочетание).

1.	Интегрирующий	ПО	времени	прибор,	измеряющий	активную	И	(или)
pea	активную энергию,	, наз	ывается					
Пр	авильный ответ: С	чет	чик электј	рической	энергии/счетч	НИКОМ		
ЭЛ	ектроэнергии/сче	гчин	ком					
Ко	мпетенции (индик	атор	ы): ПК-3 (ПК-3.1)				

2. Процесс перехода от аналогового сигнала к дискретному сигналу, называется

Правильный ответ: дискретизацией/ дискретизацией сигнала Компетенции (индикаторы): ПК-3 (ПК-3.1)

3. Количество цифровых выходов АЦП, на которых появляется двоичное число, эквивалентное величине аналогового сигнала в данный момент времени, называется

Правильный ответ: Разрядностью

Компетенции (индикаторы): ПК-3 (ПК-3.1)

4. Устройство для объединения (сосредоточения) нескольких интеллектуальных устройств в общий сегмент (сеть), т.е. образующих разделяемую среду, независимо от типа реализуемого протокола, называется

Правильный ответ: Сетевой концентратор/hub/ «хаб»/концентратор/ маршрутизатор

Компетенции (индикаторы): ПК-3 (ПК-3.1)

5. Устройство, предназначенное для соединения нескольких узлов
компьютерной сети в пределах одного или нескольких сегментов сети
называется
Правильный ответ: Сетевой коммутатор/ switch/ коммутатор
Компетенции (индикаторы): ПК-3 (ПК-3.1)
6. Область памяти, в которой коммутатор хранит передаваемые данные называется Правильный ответ: Буфером
Компетенции (индикаторы): ПК-3 (ПК-3.1)
7. Специализированное средство группового учета электроэнергии используемое в АСКУЭ на среднем уровне, называется Правильный ответ: Устройства сбора и передачи данных /УСПД Компетенции (индикаторы): ПК-3 (ПК-3.1)
8. Учет, предназначенный для контроля расхода электроэнергии внутри энергообъекта, для расчёта и анализа потерь электроэнергии в электрических сетях, а также для учёта расхода электроэнергии на производственные нужды называется Правильный ответ: Техническим Компетенции (индикаторы): ПК-3 (ПК-3.1)

Задания открытого типа с кратким свободным ответом

1. Счетчик электроэнергии системы АСКУЭ имеет 10-разрядный АЦП. Измеряемый диапазон электрического тока составляет от I_{min} =0 до I_{max} =45 А. В регистре данных АЦП после измерения хранится код Id=845. Определите величину реального тока. При линейной зависимости между реальным током и его цифровым эквивалентом.

Правильный ответ: $I=(I_{max}-I_{min})Id/1023+I_{min}=(45-0)\cdot 845/1023-0=37,17$ А / 37,17 А / 37,17 А / 37,2 А Компетенции (индикаторы): ПК-3 (ПК-3.2)

2. Счетчик электроэнергии системы АСКУЭ имеет 12-разрядный АЦП. Измеряемый диапазон напряжения составляет от $U_{min}=10$ до $U_{max}=280~B.~B$ регистре данных АЦП после измерения хранится код $U_d=2154$. Определите величину реального напряжения. При линейной зависимости между реальным током и его цифровым эквивалентом.

Правильный ответ: 151,99 / 151,99 В / 152,0 В / 152,0 /152 /152 В / U=(U $_{\rm max}$ -U $_{\rm min}$)·U $_{\rm d}$ /4096+U $_{\rm min}$ =(280-10)·2154/4096+10=151,99 В Компетенции (индикаторы): ПК-3 (ПК-3.2)

3. Счетчик электроэнергии системы АСКУЭ выполняет измерения 12-разрядными АЦП. Определите величину массива в ОЗУ данных для хранения

реальных значений напряжения, тока, активной, полной и реактивной мощностей для всех трёх фаз.

Правильный ответ: 60 / 60 б. / 60 байт/ N=3 · N_U+3 · N_I+3 · N_P+3 · N_S+3 · N_Q=

 $=3\cdot4+3\cdot4+3\cdot4+3\cdot4=60$ байт

Компетенции (индикаторы): ПК-3 (ПК-3.2)

Задания открытого типа с развернутым ответом

1. Счетчик электроэнергии, включенный в систему АСКУЭ, имеет 12-разрядный АЦП. Измеряемый диапазон электрического тока составляет от 0 до 35 А. Определите абсолютное значение погрешности дискретизации и приведенную к диапазону измерения относительную погрешность. Дайте оценку пригодности данного АЦП.

Время выполнения – 35 мин.

Ожидаемый результат:

Определим максимальный цифровой код N_{max} , который может сгенерировать 12-разрядный (k) АЦП:

$$N_{\text{max}} = 2^{k} - 1 = 2^{12} - 1 = 4096 - 1 = 4095$$

Абсолютное значение погрешности дискретизации:

$$\Delta I = (I_{\text{max}} - I_{\text{min}})/(N_{\text{max}}) = 35 - 0/(4095) = 0,00855 \text{ A}.$$

Приведенная к диапазону измерения относительную погрешность:

$$\epsilon \!\!=\!\! (\Delta I/\left(I_{max}\!\!-\!I_{min}\right)) \cdot 100\% \!\!=\!\! (0,\!00855/\!(35\text{-}0)) \cdot 100\% \!\!=\!\! 0,\!0244\%$$

Одними из наиболее точных измерительных приборов являются приборы с классом точности 0,1 (относительная погрешность 0,1%). Относительная погрешность дискретизации АЦП составляет 0,0244%, что значительно меньше погрешности приборов с классом точности 0,1. Данный АЦП пригоден для измерения тока в счётчиках.

Правильный ответ: $0.00855 / 0.00855 \text{ A}/8.55 \cdot 10^{-3} / 8.55 \cdot 10^{-3} \text{ A}/0.0086 / 0.0086 \text{ A}/8.6 \cdot 10^{-3} / 8.6 \cdot 10^{-3} \text{ A}$ и $0.0244\% / 0.0244/24.4 \cdot 10^{-3} / 24.4 \cdot 10^{-3} \%$

Критерии оценивания:

- задание считается выполненным, если определено абсолютное значение погрешности дискретизации и даны пояснения, отвечающие смысловому содержанию в ожидаемом результате.

Компетенции (индикаторы): ПК-3 (ПК-3.1)

2. Счетчик электроэнергии, включенный в систему АСКУЭ, осуществляет измерение фазового угла с помощью 16-разрядного таймера/счетчика. Частота тактирования таймера $f_{TC}=1M\Gamma$ ц. Ha частоте 50Гц ток запаздывает относительно напряжения на $t_0 = 0.0025457$ сек. Определите абсолютное погрешности Дайте пригодности дискретизации. оценку таймера/счётчика для измерения фазового угла.

Время выполнения – 10 мин.

Ожидаемый результат:

Период сетевой частоты равен:

 $T_C=1/f_C=1/50=0,02$ cek.

Период тактирования таймера/счётчика равен:

$$T_{TC}=1/f_{TC}=1/10^6=10^{-6}$$
cek.

Определим содержимое счётного регистра при подсчёте времени запаздывания

$$N = t_{\phi} / T_{TC} = 0.0025457/10^{-6} = 2545.7.$$

Округляем до ближайшего большего: N'=2546.

Таким образом, счетчик измерит время:

$$t_{TC} = N' \cdot T_{TC} = 2546 \cdot 10^{-6} = 0,002546 \text{ cek}$$

Абсолютное значение погрешности дискретизации:

 $\Delta t = t_{TC} - t_{\varphi} = 0.002546 - 0.0025457 = 0.0000003$ cek.

Приведенная к диапазону измерения относительную погрешность:

$$\varepsilon = (\Delta t/T_C) \cdot 100\% = (0,0000003/0,02) \cdot 100\% = 0,0015\%$$

Одними из наиболее точных измерительных приборов являются приборы с классом точности 0,1 (относительная погрешность 0,1%). Относительная погрешность дискретизации таймера/счетчика составляет 0,0015%, что значительно меньше погрешности приборов с классом точности 0,1. Данный АЦП пригоден для измерения тока в счётчиках.

Правильный ответ: 0,0000003 сек./ 0,0000003 / $3 \cdot 10^{-7}$ / $3 \cdot 10^{-7}$ сек./ $0,3 \cdot 10^{-6}$ / $0,3 \cdot 10^{-6}$ сек.

Критерии оценивания:

- задание считается выполненным, если определено абсолютное значение погрешности дискретизации и даны пояснения, отвечающие смысловому содержанию в ожидаемом результате.

Компетенции (индикаторы): ПК-3 (ПК-3.1)

3. Счетчик электроэнергии, включенный в систему АСКУЭ, имеет 14-разрядный АЦП. Измеряемый диапазон электрического напряжения составляет от 0 до 400 В. Определите абсолютное значение погрешности дискретизации и приведенную к диапазону измерения относительную погрешность. Дайте оценку пригодности данного АЦП.

Время выполнения – 10 мин.

Ожидаемый результат:

Определим максимальный цифровой код N_{max} , который может сгенерировать 14-разрядный (k) АЦП:

$$N_{\text{max}} = 2^{k} - 1 = 2^{14} - 1 = 16384 - 1 = 16383$$

Абсолютное значение погрешности дискретизации:

$$\Delta U = (U_{\text{max}} - U_{\text{min}})/N_{\text{max}} = 400 - 0/16383 = 0,0244 \text{ B}.$$

Приведенная к диапазону измерения относительную погрешность:

$$\epsilon \!\!=\!\! (\Delta U / \left(U_{max} \!\!-\! U_{min}\right)) \cdot 100\% \!\!=\!\! (0,\!0244/(400 \!\!-\! 0)) \cdot 100\% \!\!=\!\! 0,\!0061\%$$

Одними из наиболее точных измерительных приборов являются приборы с классом точности 0,1 (относительная погрешность 0,1%). Относительная погрешность дискретизации АЦП составляет 0,0061%, что значительно меньше погрешности приборов с классом точности 0,1. Данный АЦП пригоден для измерения тока в счётчиках.

Критерии оценивания:

- задание считается выполненным, если определено абсолютное значение погрешности дискретизации и даны пояснения, отвечающие смысловому содержанию в ожидаемом результате. Правильный ответ: 0,0244 / 0,00855 B/24,4 · 10^{-3} / 24,4 · 10^{-3} В /0,024 / 0,024 В и

 $0,0061\% / 0,0061/6,1\cdot10^{-3}/6,1\cdot10^{-3}\%$

Компетенции (индикаторы): ПК-3 (ПК-3.1)

Экспертное заключение

Представленный комплект оценочных материалов по дисциплине (практике) «**Автоматизированные системы коммерческого учёта электроэнергии**» соответствует требованиям ФГОС ВО.

Предлагаемые оценочные материалы адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 13.04.02 Электроэнергетика и электротехника, магистерская программа: «Оптимизация развивающихся систем электроснабжения».

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанные и представленные для экспертизы оценочные материалы рекомендуются к использованию в процессе подготовки обучающихся по указанному направлению.

Председатель учебно-методической комиссии института приборостроения и электротехнических систем

Яременко С.П.

Лист изменений и дополнений

№ π/π	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)