Комплект оценочных материалов по дисциплине «Математика»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа

1. Выберите один правильный ответ Вычислить определитель:

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$

- A) -2
- Б) 0
- B) -5
- Γ) 3

Правильный ответ: А

Компетенции (индикаторы): ОПК-1

2. Выберите один правильный ответ \vec{b} разражения $\vec{c} \cdot \vec{b}$ разражения

Вычислить скалярное произведение $\vec{a} \cdot \vec{b}$ векторов:

$$\vec{a}(1;2;3); \vec{b}(-1;0;0)$$

- A) 3
- Б) 0
- B) -1
- Γ) ± 3

Правильный ответ: В

Компетенции (индикаторы): ОПК-1

3. Выберите один правильный ответ

Вычислить производную функции в точке x = 0:

$$y(x) = \sqrt{1 + x^2}$$

- A) -23
- Б) 0
- (B) -5
- Γ) 3

Правильный ответ: Б

Компетенции (индикаторы): ОПК-1

4. Выберите один правильный ответ Вычислить предел функции:

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n$$

- A) -1
- Б) 0
- B) π
- Γ) *e*

Правильный ответ: Г

Компетенции (индикаторы): ОПК-1

5. Выберите один правильный ответ Неопределенный интеграл $\int x^3 dx$ равен:

- A) $\frac{x^2}{2} + C$
- Б) $3x^3 + C$
- B) $\frac{x^3}{3} + C$
- Γ) $\frac{x^4}{4} + C$

Правильный ответ: Г

Компетенции (индикаторы): ОПК-1

6. Выберите один правильный ответ Неопределенный интеграл $\int 2^x dx$ равен:

- A) $2^x \cdot ln 2 + C$
- Б) $\frac{x^3}{3} + C$
- B) $\frac{2^{x}}{\ln 2} + C$
- Γ) $x \cdot 2^x + C$

Правильный ответ: В

Компетенции (индикаторы): ОПК-1

7. Выберите один правильный ответ

Неопределенный интеграл $\int \frac{dx}{a^2+x^2}$ равен:

- A) $\frac{1}{a} \cdot arctg \frac{a}{x} + C$ B) $\frac{a}{a^2 + x^2} + C$
- B) $\frac{1}{a} \cdot arctg \frac{x}{a} + C$
- Γ) $\frac{1}{a} \cdot tg \frac{x}{a} + C$

Правильный ответ: В

Компетенции (индикаторы): ОПК-1

8. Выберите один правильный ответ

Неопределенный интеграл $\int \frac{dx}{\sqrt{a^2-x^2}}$ равен:

A)
$$\arcsin \frac{x}{a} + C$$

Б) $arccos \frac{a}{x} + C$

$$B) - \frac{1}{\sqrt{a^2 + x_{\perp}^2}} + C$$

$$\Gamma$$
) $\arcsin \frac{a}{x} + C$

Правильный ответ: А

Компетенции (индикаторы): ОПК-1

9. Выберите один правильный ответ

Какой из указанных признаков НЕприменим для исследования на сходимость неотрицательных рядов?

- А) интегральный признак
- Б) признак Коши
- В) признак Даламбера
- Г) признак Лейбница

Правильный ответ: Г

Компетенции (индикаторы): ОПК-1

10. Выберите один правильный ответ

Какой из указанных признаков применяется для исследования на сходимость знакочередующихся рядов?

- А) интегральный признак
- Б) признак Коши
- В) признак Даламбера
- Г) признак Лейбница

Правильный ответ: Г

Компетенции (индикаторы): ОПК-1

11. Выберите один правильный ответ

Какой из рядов является сходящимся?

A)
$$1 + \frac{4}{3} + \frac{16}{9} + \dots + \left(\frac{4}{3}\right)^{n-1} + \dots$$

$$5) 1 - \frac{2}{3} + \frac{4}{9} + \dots + \left(-\frac{2}{3}\right)^{n-1} + \dots$$

B)
$$1 - 1 + 1 - 1 + \dots + (-1)^{n-1} + \dots$$

B)
$$1 - 1 + 1 - 1 + \dots + (-1)^{n-1} + \dots$$

 Γ) $\frac{10}{1001} + \frac{20}{2002} + \dots + \frac{10n}{1000n+1} + \dots$

Правильный ответ: Б

Компетенции (индикаторы): ОПК-1

12. Выберите один правильный ответ

Если радиус сходимости для степенного ряда R > 0, то этот ряд сходится на интервале

- A) (0; R)
- Б) (-R; R)
- B) $(0; \infty)$

 Γ) (-R; 0)

Правильный ответ: Б

Компетенции (индикаторы): ОПК-1

13. Выберите один правильный ответ

Если ряд из абсолютных величин знакочередующегося ряда сходится, то знакочередующийся ряд:

- А) сходится условно
- Б) может как сходиться условно, так и расходиться
- В) сходится абсолютно
- Г) расходится

Правильный ответ: В

Компетенции (индикаторы): ОПК-1

Задания закрытого типа на установление соответствия

1. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Определитель		Значение определителя
1)	$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$	A)	1
2)	$\begin{vmatrix} 3 & 4 \\ 1 & 2 \end{vmatrix}$	Б)	-2
3)	$\begin{vmatrix} 1 & \overline{0} \\ 0 & 1 \end{vmatrix}$	B)	0
4)	$\begin{vmatrix} 1 & \overline{2} \\ 2 & 4 \end{vmatrix}$	Γ)	2

Правильный ответ:

1	2	3	4			
Б	Γ	A	В			

Компетенции (индикаторы): ОПК-1

2. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Матрица		Ранг матрицы
1)	$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$	A)	2
2)	$\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$	Б)	1
3)	$egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$	B)	3
4)	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	Γ)	0

Правильный ответ:

1	2	3	4
Б	A	В	Γ

Компетенции (индикаторы): ОПК-1

3. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

			,
	y(x)		y'(x)
1)	$\frac{y(x)}{\sin(x^2)}$	A)	1
			$-{x^2}$
2)	1	Б)	<u> </u>
	$\frac{\overline{x}}{x}$		$\sqrt{1+x^2}$
3)	$\sqrt{1+x^2}$	B)	0
4)	e^{π}	Γ)	$2 \cdot x \cdot \cos(x^2)$

Правильный ответ:

1	2	3	4
Γ	A	Б	В

Компетенции (индикаторы): ОПК-1

4. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Векторы		$ \vec{a} imes \vec{b} $
1)	$\vec{a}(1;2;3); \ \vec{b}(-1;0;0)$	A)	1
2)	$\vec{a}(1;2;3); \ \vec{b}(1;2;3)$	Б)	$\sqrt{2}$
3)	$\vec{a}(1;0;0); \ \vec{b}(0;1;0)$	B)	0
4)	$\vec{a}(1;0;1); \ \vec{b}(0;1;0)$	Γ)	$\sqrt{13}$

Правильный ответ:

Tipubilibili Olbel.						
1	2	3	4			
Γ	В	Α	Б			

Компетенции (индикаторы): ОПК-1

5. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Неопределенный интеграл		Значение
1)	$\int \frac{dx}{\cos^2 x}$ $\int \frac{e^x}{2} dx$	A)	$\frac{(x-1)^2}{2} + C$
2)	$\int \frac{e^x}{2} dx$	Б)	$\frac{1}{2} \cdot \sin 2x + C$
3)	$\int \cos 2 x dx$	B)	$\frac{e^x}{2} + C$
4)	$\int (x-1)dx$	Γ)	tgx + C

Правильный ответ:

1	2	3	4
Γ	В	Б	A

Компетенции (индикаторы): ОПК-1

6. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Дифференциальное уравнение		Порядок дифференциального уравнения
1)	$1 - y' = x^2 y$	A)	4
2)	$\frac{d^2y}{dx^2} = x^2 + y^2$	Б)	3
3)	y' + y'' + y''' = 0	B)	1
4)	$\frac{dy}{dx} + x\frac{d^4y}{dx^4} = x + y$	Γ)	2

Правильный ответ:

1	2	3	4
В	Γ	Б	A

Компетенции (индикаторы): ОПК-1

7. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

			1.7
	z(x,y)		$z_x'(x,y)$
1)	$x^2 + y^2$	A)	0
2)	<u>x</u>	Б)	1
	\overline{y}		\overline{y}
3)	e^{xy}	B)	2x
4)	$e^{\pi y}$	Γ)	$y \cdot e^{xy}$

Правильный ответ:

	1	2	3	4	
	В	Б	Γ	A	

Компетенции (индикаторы): ОПК-1

8. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Дифференциальное уравнение		Тип дифференциального уравнения
1)	y'' + y = 0	A)	Линейное неоднородное
2)	$y^{\prime\prime} + y^{\prime} + y = 1$	Б)	Линейное однородное
3)	$y' + 2y = y^2x$	B)	Бернулли
4)	$y'=x^2$	Γ)	С разделяющимися переменными

Правильный ответ:

1	2	3	4			
Б	A	В	Γ			

Компетенции (индикаторы): ОПК-1

9. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	beterbyer resibke egini estement npa	2010 01	
1)	$\sum_{i=1}^{\infty} 1$	Δ)	стополной рад
1)	$\underset{\infty}{\overset{1}{\sum}} \overline{n}$	A)	степенной ряд
2)	$\sum_{0}^{\infty} \frac{x^{n}}{n!}$	Б)	гармонический ряд
3)	$\sum_{1}^{\infty} (\sin nx + \cos nx)$	B)	тригонометрический ряд
4)	$\sum_{1}^{\infty} \frac{(-1)^n}{n}$	Γ)	знакочередующийся ряд
	Правильный ответ:		

1	2	3	4
Б	A	В	Γ

Компетенции (индикаторы): ОПК-1

10. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Функция		Разложение в ряд Маклорена
1)	e ^x	A)	$1 + x + x^2 + \dots + x^n + \dots$
2)	cos x	Б)	$\frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{(-1)^{n+1}x^{2n-1}}{(2n-1)!} + \dots$
3)	sin x	B)	$1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$
4)	$\frac{1}{1-x}$	Γ)	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots$

Правильный ответ:

1	2	3	4				
В	Γ	Б	A				

Компетенции (индикаторы): ОПК-1

11. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

1)	rr	A)	$\frac{\pi}{2}-1$
	$\int \int dx dy$		2
	D D		
	$D: \{0 \le x \le 1; 0 \le y \le 1; \}$		

2)	$\iint dx dy$	Б)	0
	$\iint\limits_{D} dx dy$ $D: \{0 \le x \le 1; 0 \le y \le 0; \}$		
3)	$\iint dx dy$	B)	1
	$D: \{x = 1; y = 0; y = x; \}$		
4)	$\iint dx dy$	Γ)	$\frac{1}{2}$
	$ \iint_{D} ax dy $ $ D: \{0 \le x \le 1; y = \arcsin x; \} $		_

Правильный ответ:

1			
1	2	3	4
В	Б	Γ	A

Компетенции (индикаторы): ОПК-1

12. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

1)	$\iiint\limits_{V} dx dy dz$ $V: \{0 \le x \le 1; 0 \le y \le 1; 0 \le z \le 1\}$	A)	$\frac{2}{3}\pi R^3$
2)	$\iiint\limits_{V} dx dy dz$ $V: \left\{ \begin{aligned} -R &\leq x \leq R; \\ -\sqrt{R^2 - x^2} &\leq y \leq \sqrt{R^2 - x^2}; \\ 0 &\leq z \leq \sqrt{R^2 - x^2 - y^2} \end{aligned} \right\}$	Б)	1
3)	$\iiint\limits_V dx dy dz$ $V: \{0 \le z \le 1; x^2 + y^2 = 1\}$	B)	$\frac{1}{6}$
4)	$\iiint\limits_V dx dy dz$ $V: \{-1 \le z \le 1; x^2 + y^2 = R^2\}$	Γ)	$2\pi R^2$

Правильный ответ:

TIP WEITH IEITH C			
1	2	3	4
Б	A	В	Γ

Задания закрытого типа на установление правильной последовательности

1. Расположите определители в порядке возрастания:

Правильный ответ: В, А, Б, Г

Компетенции (индикаторы): ОПК-1

2. Расположите векторы в порядке возрастания их длины:

- A) (1;0;0)
- Б) (1; 1; 1)
- B) (3; 4)
- Γ) (100)

Правильный ответ: Г, В, Б, А

Компетенции (индикаторы): ОПК-1

3. Расположите пределы в порядке убывания их значений:

A)
$$\lim_{x \to \infty} \frac{2x^2 - 4}{x^2 - x - 2}$$

$$\mathbf{E} \lim_{x \to 0} \frac{\sin x}{x}$$

B)
$$\lim_{x \to \infty} \left(\frac{x+1}{x} \right)^x$$

$$\Gamma) \lim_{x \to \infty} \frac{x^5 + x + 1}{10x^4 - x - 2}$$

Правильный ответ: Г, В, А, Б

Компетенции (индикаторы): ОПК-1

4. Расположите объемы параллелепипедов, построенных на векторах $\vec{a}, \vec{b}, \vec{c}$, в порядке возрастания:

A)
$$\vec{a}(1 \ 0 \ 0), \vec{b}(0 \ 1 \ 0), \vec{c}(0 \ 0 \ 1)$$

Б)
$$\vec{a}(1 \ 0 \ 0)$$
, $\vec{b}(3 \ 0 \ 4)$, $\vec{c}(0 \ 6 \ 8)$

B) $\vec{a}(1 \ 0 \ 0), \vec{b}(0 \ 3 \ 4), \vec{c}(6 \ 8 \ 0)$

 Γ) $\vec{a}(1 \ 0 \ 1), \vec{b}(10 \ 0 \ 1), \vec{c}(-10 \ 0 \ 1)$

Правильный ответ: Г, А, Б, В

Компетенции (индикаторы): ОПК-1

5. Расположите определенные интегралы в порядке возрастания:

A)
$$\int_0^1 x^2 dx$$

$$\text{ F) } \int_0^1 \frac{4}{1+x^2} \, dx$$

B)
$$\int_0^1 dx$$

$$\Gamma$$
) $\int_0^1 3e^x dx$

Правильный ответ: А, В, Б, Г

Компетенции (индикаторы): ОПК-1

6. Расположите дифференциальные уравнения в порядке возрастания их порядка:

$$A)\frac{dy}{dx} = x$$

$$\mathrm{E}\left(\frac{d^2y}{dx^2} + \frac{d^5y}{dx^5}\right) = \frac{dy}{dx}$$

B)
$$y'' + y' = 0$$

B)
$$y'' + y' = 0$$

 Γ) $xy''' - y' = y^5$

Правильный ответ: А, В, Г, Б

Компетенции (индикаторы): ОПК-1

7. Расположите $z(x_0 = 1; y_0 = 1)$ в порядке возрастания их значений:

A)
$$z(x; y) = 2x + 3y^2$$

$$Б) z(x; y) = ln(xy) + 2$$

B)
$$z(x; y) = \ln x + \ln y + 1$$

$$\Gamma) z(x; y) = y \cdot \sin(\pi x)$$

Правильный ответ: Г, В, Б, А

Компетенции (индикаторы): ОПК-1

8. Расположите $z_x'(x_0=1;y_0=1)$ в порядке возрастания:

A)
$$z(x; y) = 5x + 3y^2$$

$$\mathrm{E}(x;y) = \sin(\pi xy)$$

B)
$$z(x; y) = 2xy^3$$

$$\Gamma$$
) $z(x; y) = y/x$

Правильный ответ: Б, Г, В, А

Компетенции (индикаторы): ОПК-1

9. Расположите ряды в порядке возрастания их вторых членов:

$$A) \sum_{n=1}^{\infty} (2n+1)$$

Б)
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

$$\Gamma) \sum_{n=1}^{\infty} \frac{5^n}{n+1}$$

Правильный ответ: В, Б, А, Г

Компетенции (индикаторы): ОПК-1

10. Расположите степенные ряды в порядке возрастания их радиусов членов:

A)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

A)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
B)
$$\sum_{n=0}^{\infty} \frac{(x+2)^n}{x \cdot 2^{n-1}}$$
B)
$$\sum_{n=0}^{\infty} x^n$$

$$\sum_{n=0}^{\infty} 5^n x^n$$

B)
$$\sum_{n=0}^{\infty} x^n$$

$$\Gamma$$
) $\sum_{n=0}^{\infty} 5^n x^n$

Правильный ответ: Г, В, Б, А

Компетенции (индикаторы): ОПК-1

11. Расположите интегралы в порядке убывания их значений:

A)
$$\int_0^1 dx \int_0^1 dy$$

B) $\int_0^1 dx \int_0^x dy$

$$\mathbf{E} \int_0^1 dx \int_0^x dy$$

B)
$$\int_{0}^{1} dx \int_{0}^{x^{2}} dy$$

 Γ) $\int_{0}^{1} dx \int_{-1}^{1} dy$

$$\Gamma$$
) $\int_0^1 dx \int_{-1}^1 dy$

Правильный ответ: Г, А, Б, В

Компетенции (индикаторы): ОПК-1

12. Расположите ряды в порядке возрастания их сумм:

A)
$$\sum_{n=0}^{\infty} \frac{1}{2^n}$$

B)
$$\sum_{n=0}^{\infty} \frac{\frac{3}{4}}{5^n}$$

$$\Gamma) \sum_{n=0}^{\infty} \frac{3}{4^n}$$

Правильный ответ: А, Б, Г, В

Компетенции (индикаторы): ОПК-1

Задания открытого типа

Задания открытого типа на дополнение

1. Напишите пропущенное слово (словосочетание).

11

двух ненулевых векторов \vec{a} и \vec{b} – это число, равное
произведению длин этих векторов на косинус угла между ними.
Правильный ответ: скалярное произведение.
Компетенции (индикаторы): ОПК-1
2. Напишите пропущенное слово (словосочетание). — упорядоченный набор векторов в векторном простраметра, токой или простраметра, может быть
пространстве, такой, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из
этого набора.
Правильный ответ: базис.
Компетенции (индикаторы): ОПК-1
3. Напишите пропущенное слово (словосочетание) – это геометрическое место точек, для которых сумма
расстояний до двух фиксированных точек F_1 и F_2 , именуемых фокусами, есть
величина постоянная.
Правильный ответ: эллипс.
Компетенции (индикаторы): ОПК-1
4. Напишите пропущенное слово (словосочетание) – предел отношения приращения функции к
приращению её аргумента при стремлении приращения аргумента к нулю (при
условии, что такой предел существует).
Правильный ответ: производная; производная функции.
Компетенции (индикаторы): ОПК-1
5. Напишите пропущенное слово (словосочетание).
Определитель квадратной матрицы равен сумме произведений элементов
любой строки (столбца) на их
Правильный ответ: алгебраические дополнения.
Компетенции (индикаторы): ОПК-1
6. Напишите пропущенное слово (словосочетание). функции f в точке M_0 – это вектор, координатами
которого являются значения частных производных в этой точке.
Правильный ответ: градиент.
Компетенции (индикаторы): ОПК-1
7. Напишите пропущенное слово (словосочетание) – это предел отношения приращения функции
нескольких переменных по выбранной переменной к приращению этой
переменной, при стремлении этого приращения к нулю. Правильный ответ: частная производная.
1 77

	Компетенции (индикаторы): ОПК-1
	8. Напишите пропущенное слово (словосочетание). для функции $f(x)$ – это такая функция, производная
-	ой равна $f(x)$.
	Правильный ответ: первообразная.
	Компетенции (индикаторы): ОПК-1
	9. Напишите пропущенное слово (словосочетание).
	Интеграл называется, если выполняется по крайней одно из следующих условий: 1) область интегрирования является
	нечной; 2) подынтегральная функция является неограниченной в тности некоторых точек области интегрирования.
	Правильный ответ: несобственным.
	Компетенции (индикаторы): ОПК-1
	10. Напишите пропущенное слово (словосочетание).
	– уравнение, которое помимо функции содержит её
произ	водные.
-	Правильный ответ: дифференциальное уравнение.
	Компетенции (индикаторы): ОПК-1
	11. Напишите пропущенное слово (словосочетание) – это предел последовательности его частичных
сумм,	если этот предел существует.
	Правильный ответ: сумма числового ряда.
	Компетенции (индикаторы): ОПК-1
	12. Напишите пропущенное слово (словосочетание).
	Если числовой ряд сходится, то предел его общего члена равен
	Правильный ответ: нулю.
	Компетенции (индикаторы):
	13. Напишите пропущенное слово (словосочетание). — частный случай ряда Тейлора, где точка разложения
равна	нулю.
-	Правильный ответ: Ряд Маклорена.
	Компетенции (индикаторы): ОПК-1
	14. Напишите пропущенное слово (словосочетание) – это обобщение понятия определённого интеграла для
	ции двух переменных, заданной как $z = f(x, y)$.
	Правильный ответ: двойной интеграл.
	Компетенции (индикаторы): ОПК-1

15. Напишите пропущенное слово (словосочетание).

Геометрический смысл двойного интеграла заключается в том, что величина двойного интеграла от неотрицательной функции равна цилиндрического тела.

Правильный ответ: объёму.

Компетенции (индикаторы): ОПК-1

Задания открытого типа с кратким свободным ответом

1. Производная функция $y(x) = \cos(x^2)$ равна ... (Ответ запишите в виде функции)

Правильный ответ: $-2x \sin x^2$.

Компетенции (индикаторы): ОПК-1

2. Найти промежуток возрастания функции $y(x) = 1 - x^2$ (Ответ запишите в виде интервала)

Правильный ответ: $(-\infty; 0)$.

Компетенции (индикаторы): ОПК-1

3. Найти площадь треугольника, заданного координатами своих вершин A(0;0;0), B(1;0;0), C(0;2;0) (Ответ запишите в виде числа)

Правильный ответ: 1.

Компетенции (индикаторы): ОПК-1

4. Найти наибольшее значение функции $y(x) = x^2 - 2x - 1$ на отрезке [-1;1] (Ответ запишите в виде числа)

Правильный ответ: 2.

Компетенции (индикаторы): ОПК-1

5. Найти сумму абсцисс точек разрыва функции:

$$f(x) = \begin{cases} x^2 + 1, x < 0\\ \cos x, 0 \le x \le 1\\ x^2 - 1, x > 1 \end{cases}$$

(Ответ запишите в виде числа)

Правильный ответ: 1.

Компетенции (индикаторы): ОПК-1

6. С помощью определенного интеграла найти площадь фигуры, ограниченной линиями $\{y=0; y=2x; x=1\}$ (Ответ запишите в виде числа)

Правильный ответ: 1.

Компетенции (индикаторы): ОПК-1

7. С помощью определенного интеграла найти площадь фигуры, ограниченной линиями $\{y=0;y=1/2;x=\pm 1\}$ (Ответ запишите в виде числа)

Правильный ответ: 1.

Компетенции (индикаторы): ОПК-1

8. С помощью определенного интеграла найти площадь фигуры, ограниченной линиями $\{y=3x^2;y=0;x=1\}$ (Ответ запишите в виде числа) Правильный ответ: 1.

Компетенции (индикаторы): ОПК-1

9. Найти общее решение дифференциального уравнения y' = x (Ответ запишите в виде функции)

Правильный ответ: $\frac{x^2}{2} + C$.

Компетенции (индикаторы): ОПК-1

10. Найти общее решение дифференциального уравнения y'' - 3y' + 2y = 0 (Ответ запишите в виде функции)

Правильный ответ: $C_1e^x + C_2e^{2x}$.

Компетенции (индикаторы): ОПК-1

11. С помощью каких достаточных признаков можно определить сходимость знакоположительных числовых рядов (Перечислить наименования признаков)

Правильный ответ: признаки сравнения, интегральный признак Коши, радикальный признак Коши, признак Даламбера.

Компетенции (индикаторы): ОПК-1

12. С помощью какого признака можно определить сходимость знакочередующихся числовых рядов (Указать наименование признака)

Правильный ответ: признак Лейбница.

Компетенции (индикаторы): ОПК-1

13. Разложением какой функции является следующий ряд Маклорена:

$$1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$
 (Ombem запишите в виде $y = f(x)$)

Правильный ответ: $y = e^x$.

Компетенции (индикаторы): ОПК-1

14. Разложением какой функции является следующий ряд Маклорена:

$$\frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{(-1)^{n+1}x^{2n-1}}{(2n-1)!} + \dots \text{ (Omsem 3anuuume 8 виде } y = f(x)\text{)}$$

Правильный ответ: $y = \sin x$.

Компетенции (индикаторы): ОПК-1

15. Разложением какой функции является следующий ряд Маклорена:

$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots$$
 (Ombem sanuuume ε sude $y = f(x)$)

Правильный ответ: $y = \cos x$.

Компетенции (индикаторы): ОПК-1

Задания открытого типа с развернутым ответом

1. Решить задачу, используя методы дифференциального исчисления:

Тело массой $m_0=3000$ кг падает с высоты H=1280 м метров и теряет массу (сгорает) пропорционально времени падения. Коэффициент пропорциональности k=100 кг/с. Считая, что начальная скорость $v_0=0$ м/с, ускорение g=10 м/с², найти время падения, при котором тело будет иметь наибольшую кинетическую энергию.

Привести расширенное решение.

Время выполнения – 30 мин.

Ожидаемый результат:

1. Примем, что тело является материальной точкой. Тогда кинетическая энергия материальной точки будет вычисляться по такой формуле:

$$E = \frac{m \cdot v^2}{2}$$

Учитывая, что масса тела при движении переменна, определим зависимость массы падающего тела от времени. Так как тело сгорает пропорционально времени падения, его масса уменьшается, и функция примет такой вид:

$$m(t) = m_0 - k \cdot t$$

Функция скорость тела от времени падения:

$$v(t) = v_0 + g \cdot t$$

Получаем функцию кинетической энергии тела от времени падения:

$$E(t) = \frac{1}{2}(m_0 - k \cdot t)(v_0 + g \cdot t)^2$$

$$E(t) = \frac{1}{2}(3000 - 100 \cdot t)(0 + 10 \cdot t)^2 = 5000(30 \cdot t^2 - t^3)$$

2. Определяем время $t_{m=0}$ падения тела до того момента, как его масса станет равна нулю:

$$m(t) = m_0 - k \cdot t = 3000 - 100 \cdot t = 0 \Longrightarrow t_{m=0} = 30$$
 сек

3. Определяем время $t_{\text{столкн}}$ падения тела до столкновения с землей:

$$H = v_0 \cdot t + \frac{g \cdot t^2}{2} \Longrightarrow 1280 = 5 \cdot t^2 \Longrightarrow t_{\text{столкн}} = 16 \text{ сек}$$

4. Находим время падения, при котором тело будет иметь наибольшую кинетическую энергию, как наибольшее значение функции $E(t) = 5000(30 \cdot t^2 - t^3)$ на отрезке $t \in [0; 16]$

Находим внутренние критические точки:

$$E'(t) = 5000(60 \cdot t - 3t^2) = 0 \Longrightarrow$$
$$\Longrightarrow \begin{bmatrix} t = 0 \\ t = 20 \notin [0; 16] \end{bmatrix}$$

Находим наибольшее значение функции на границах отрезка и во внутренних критических точках:

t	0	16
E(t)	0	$5000(30 \cdot 16^2 - 16^3)$

Ответ: время падения, при котором тело будет иметь наибольшую кинетическую энергию t = 16 сек.

Критерии оценивания:

- построение функции E(t) кинетической энергии тела от времени падения;
- определение времени падения тела до того момента, как его масса станет равна нулю;
 - определение времени падения тела до столкновения с землей;
- нахождение наибольшего значения функции E(t)отрезке, определенном временем падения дела до столкновения с землей

Компетенции (индикаторы): ОПК-1

2. Решить задачу, используя методы дифференциального исчисления:

При подготовке к экзамену студент за t дней изучает $\left(\frac{t}{t+1}\right)$ -ю часть курса и забывает $(1/36 \cdot t)$ -ю часть. Сколько дней нужно потратить на подготовку, чтобы была изучена максимальная часть курса?

Привести расширенное решение.

Время выполнения – 30 мин.

Ожидаемый результат:

1. Составим функцию V(t), которая отражает объем изученного студентом учебного материала в ходе прохождения курса:

$$V(t) = \left(\frac{t}{t+1}\right) - \left(\frac{1}{36} \cdot t\right)$$

2. Находим экстремум функции
$$V(t)$$
 учитывая, что $t>0$:
$$V'(t) = \left(\frac{t}{t+1}\right)' - \left(\frac{1}{36} \cdot t\right)' = \frac{1}{(t+1)^2} - \frac{1}{36}$$
$$V'(t) = 0 \Longrightarrow t_{\rm K} = 5 \ {\rm дней}$$

3. Убедимся, что $t_{\rm K}=5$ дней — точка максимума функции V(t):

$$V''(t)=rac{-2}{(t+1)^3}$$
 $V''(t_{ ext{K}}=5)=rac{-2}{(6)^3}<0\Longrightarrow t_{ ext{K}}=5$ дней — т. max

Ответ: максимальная часть курса будет изучена через 5 дней. Критерии оценивания:

- построение функции V(t), отражающей объем изученного студентом учебного материала в ходе прохождения курса;
 - нахождение экстремума функции V(t);
 - доказательство того, что найденный экстремум есть максимум.

Компетенции (индикаторы): ОПК-1

3. Решить задачу, используя методы интегрального исчисления:

Цилиндрический резервуар с высотой 6 м и диаметром основания 4 м наполнен водой. За какое время вода вытечет из него через круглое отверстие радиуса 1/12 м, сделанное в дне резервуара?

(Справочная информация: скорость истечения жидкости по закону Бернулли выражается формулой $V = \sigma \sqrt{2gx}$, причем для воды $\sigma \approx 0.6$)

Привести расширенное решение.

Время выполнения – 30 мин.

Ожидаемый результат:

- 1. Пусть через t сек после истечения воды уровень оставшейся воды в резервуаре был равен x м, а за время dt сек понизился на dx м. вычислим объем воды, вытекающий за этот бесконечно малый промежуток времени dt, двумя способами:
- 1 сп.) Объем dW равен объему цилиндрического слоя высотой dx и радиусом основания r=2 м.

$$dW = \pi r^2 dx$$

2 сп.) Объем dW равен объему цилиндра, основанием которого служит отверстие в дне резервуара $\rho=1/12$ м, а высота равна Vdt, где V — скорость течения воды:

$$dW = \pi \rho^2 V dt = 0.6\pi \rho^2 \sqrt{2gx} dt$$

Приравниваем полученные выражения

$$\pi r^2 dx = 0.6\pi \rho^2 \sqrt{2gx} dt$$

Получаем

$$dt = \frac{r^2 dx}{0.6\rho^2 \sqrt{2gx}}$$
, где $x \in [0; 6]$

2. Интегрируем уравнение, получаем время истечения воды

$$t = \int_{0}^{6} \frac{r^{2} dx}{0.6\rho^{2} \sqrt{2gx}} = \frac{r^{2} dx}{0.6\rho^{2} \sqrt{2g}} \int_{0}^{6} \frac{dx}{\sqrt{x}} = \frac{r^{2} dx}{0.6\rho^{2} \sqrt{2g}} \cdot 2\sqrt{x} \Big|_{0}^{6} = \frac{10}{\sqrt{3g}} \cdot \frac{r^{2}}{\rho^{2}}$$

3. Подставляем исходные данные, получаем

$$t \approx 1062 \text{ сек} = 17.7 \text{ мин}$$

Ответ: вода вытечет из резервуара через $t \approx 1062~{\rm ce\kappa} = 17$,7 мин.

Критерии оценивания:

- построение математической модели процесса истечения воды из резервуара;
 - интегрирование полученного уравнения;

нахождение времени вытекания воды из резервуара через круглое отверстие, сделанное в дне резервуара

Компетенции (индикаторы): ОПК-1

4. Решить задачу, используя методы дифференциального исчисления:

Найти выражение для объема реализованной продукции y = y(t), если известно, что кривая спроса p(y) задается уравнением p(y) = 2 - y, норма акселерации 1/l = 2, норма инвестиций m = 0.5, y(0) = 0.5.

(Справочная информация: модель роста в условиях конкурентного рынка принимает вид y' = mlp(y)y)

Привести расширенное решение.

Время выполнения – 30 мин.

Ожидаемый результат:

Используем модель роста в условиях конкурентного рынка при заданных условий:

$$y' = (2 - y)y$$

$$\frac{dy}{(2 - y)y} = dt$$

$$\int \frac{dy}{(2 - y)y} = \int dt$$

$$\ln \left| \frac{y - 2}{y} \right| = -2t + C_1$$

$$\frac{y - 2}{y} = Ce^{-2t}$$

$$y(0) = 0.5 \Rightarrow C = 3$$

Окончательное решение принимает вид

$$y = \frac{2}{1 + 3e^{-2t}}$$

Ответ: объем реализованной продукции определяется функцией $y = \frac{2}{1+3e^{-2t}}$

Критерии оценивания:

- адаптировать модель роста в условиях конкурентного рынка для решаемой задачи;
 - найти общее решение полученного дифференциального уравнения;
- выделить частное решение, соответствующее заданным начальным условиям
 - найти функцию объема реализованной продукции.

Компетенции (индикаторы): ОПК-1

5. Решить задачу, используя методы интегрального исчисления:

Найти вероятность попадания оси шкива в кольцо $r_1^2 \le x^2 + y^2 \le r_2^2$, если ускорение оси ведомого вала редуктора распределено по нормальному закону с

плотностью вероятности. $f(x,y) = \frac{1}{\sigma^2 2\pi} \cdot e^{-\frac{x^2 + y^2}{2\sigma^2}}$

Привести расширенное решение.

Время выполнения – 20 мин.

Критерии оценивания:

- формализация технического процесса;
- интегрирование полученного уравнения;
- нахождение вероятности попадания оси шкива в колесо.

Ожидаемый результат:

$$P = \iint_{r_1 < \rho < r_2} f(x, y) dx dy = \frac{1}{\sigma^2 2\pi} \iint_D e^{-\rho^2/2\sigma^2} \rho d\rho d\phi =$$

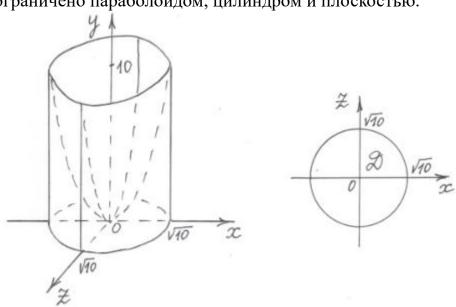
$$= \frac{2\pi}{\sigma^2 2\pi} \int_{r_1}^{r_2} e^{-\rho^2/2\sigma^2} d(\rho^2/r) = -e^{-\rho^2/2\sigma^2} \Big|_{r_1}^{r_2} =$$

$$= e^{-r_1^2/2\sigma^2} - e^{-r_2^2/2\sigma^2}$$

 $= e^{-r_1/2}$ Otbet: $P = e^{-r_1^2/2\sigma^2} - e^{-r_2^2/2\sigma^2}$.

Компетенции (индикаторы): ОПК-1

6. Решить задачу, используя методы интегрального исчисления:


Найти координаты центра тяжести однородного тела V, если $V = \{y = x^2 + z^2, x^2 + z^2 = 10, y = 0\}.$

Привести расширенное решение.

Время выполнения – 30 мин.

Ожидаемый результат:

1. Тело ограничено параболоидом, цилиндром и плоскостью.

2. Тело однородно и симметрично относительно оси Oy, следовательно центр тяжести принадлежит оси $Oy \Longrightarrow \{x_0 = 0, z_0 = 0\}$.

Находим y_0 :

В силу однородности тела примем C — плотность тела.

$$y_{0} = \frac{M_{xOz}}{m} = \frac{\iiint_{V} Cy \, dx \, dy \, dz}{\iiint_{V} C \, dx \, dy \, dz} = \frac{\iiint_{V} y \, dx \, dy \, dz}{\iiint_{V} dx \, dy \, dz}$$

$$\iiint_{V} dx \, dy \, dz = \begin{cases} x = r \cos \phi, y = y, z = r \sin \phi \\ dx \, dy \, dz = r \, dr \, d\phi \, dy \\ 0 \le y \le x^{2} + z^{2} \to 0 \le y \le r^{2} \\ 0 \le r \le \sqrt{10}, 0 \le \phi \le 2\pi \end{cases} = \iiint_{V} r \, dr \, d\phi \, dy = \int_{0}^{2\pi} d\phi \int_{0}^{10} r \, dr \int_{0}^{2\pi} dy = 2\pi \int_{0}^{10} r^{3} \, dr = \int_{0}^{2\pi} d\phi \int_{0}^{10} r \, dr \int_{0}^{10} dy = 50\pi.$$

$$\iiint_{V} y \, dx \, dy \, dz = \int_{0}^{2\pi} d\phi \int_{0}^{\sqrt{10}} r \, dr \int_{0}^{r^{2}} y \, dy = \pi \int_{0}^{\sqrt{10}} r^{5} \, dr = \int_{0}^{\pi} \frac{r^{6}}{6} \int_{0}^{\sqrt{10}} dy = \frac{500\pi}{3}.$$

3.

$$y_0 = \frac{\frac{500\pi}{3}}{50\pi} = \frac{10}{3}$$

Ответ: координаты центра тяжести однородного тела $V: \left(0; \frac{10}{3}; 0\right)$.

Критерии оценивания:

- сделать эскиз тела V;
- привести аналитические выражения для нахождения центра тяжести однородного тела V;
 - найти координаты центра тяжести однородного тела V. Компетенции (индикаторы): ОПК-1

Экспертное заключение

Представленный комплект оценочных материалов по дисциплине «Математика» соответствует требованиям $\Phi\Gamma$ OC BO.

Предлагаемые оценочные материалы адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 15.03.01 Машиностроение.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанные и представленные для экспертизы оценочные материалы рекомендуются к использованию в процессе подготовки обучающихся по указанному направлению.

Председатель учебно-методической комиссии института компьютерных систем и информационных технологий

of

Ветрова Н. Н.

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)
	Дополнен комплектом	Протокол заседания	
1.	оценочных материалов	кафедры прикладной	5
-	•	математики № <u>\$</u> от <u>24.02.2025</u>	В.В. Малый
			В.В. Малыи
	* .	3	
		, di	
			¥