МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Институт технологий и инженерной механики Кафедра «Технология машиностроения и инженерный консалтинг»

Директор института технологий инженерной механики и инженерной механики механики — Могильная Е.П.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по практике

«Введение в тензорный анализ»

15.03.01 Машиностроение

Технологии прототипирования машиностроительных объектов

Разработчик:
доцент Остапущенко Д.Л.
ФОС рассмотрен и одобрен на заседании кафедры технологии машиностроения и инженерного консалтинга от «25» февраля 2025 г., протокол № 7
Заведующий кафедрой технологии машиностроения и инженерного консалтинга Ясуник С.Н.

Комплект оценочных материалов по дисциплине «Введение в тензорный анализ»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа

1. Выберите один правильный ответ

Укажите тождественно верное равенство:

A)
$$\stackrel{\mathsf{r}}{a} \not b = \stackrel{\mathsf{r}}{|a|} \stackrel{\mathsf{r}}{|b|}$$

Б)
$$\stackrel{\mathbf{r}}{a} \stackrel{\mathbf{l}}{\gg} = |\stackrel{\mathbf{r}}{a}| |\stackrel{\mathbf{l}}{b}| \cos \mathbf{a}$$

B)
$$\stackrel{\mathsf{r}}{a} \not \stackrel{\mathsf{l}}{b} = \stackrel{\mathsf{r}}{a} \stackrel{\mathsf{l}}{b} |\sin \mathsf{a}|$$

$$\Gamma) \stackrel{\mathsf{r}}{a} \stackrel{\mathsf{l}}{\gg} = \left| \stackrel{\mathsf{r}}{a} \right| + \left| \stackrel{\mathsf{l}}{b} \right|$$

Правильный ответ: Б

Компетенции (индикаторы): ОПК-1

2. Выберите один правильный ответ

Укажите тождественно верное равенство:

A)
$$\begin{vmatrix} \mathbf{r} & \mathbf{r} \\ a & b \end{vmatrix} = \begin{vmatrix} \mathbf{r} \\ a \end{vmatrix} \begin{vmatrix} \mathbf{b} \\ b \end{vmatrix}$$

Б)
$$\begin{vmatrix} \mathbf{r} & \mathbf{b} \\ a & b \end{vmatrix} = \begin{vmatrix} \mathbf{r} \\ a \end{vmatrix} \begin{vmatrix} \mathbf{b} \\ b \end{vmatrix} \cos \mathbf{a}$$

B)
$$\begin{vmatrix} \mathbf{r} & \mathbf{l} \\ a & b \end{vmatrix} = \begin{vmatrix} \mathbf{r} \\ a \end{vmatrix} b \sin a$$

$$\Gamma$$
) $\begin{vmatrix} \mathbf{r} & \mathbf{b} \\ a & b \end{vmatrix} = \begin{vmatrix} \mathbf{r} \\ a \end{vmatrix} + \begin{vmatrix} \mathbf{b} \\ b \end{vmatrix}$

Правильный ответ: В

Компетенции (индикаторы): ОПК-1

3. Выберите один правильный ответ

Укажите тождественно верное равенство:

A) divrot
$$\dot{F} = -1$$

Б) div rot
$$\dot{F} = 0$$

B) divrot
$$\dot{F} = 1$$

$$\Gamma$$
) divrot $\dot{F} = 2$

Правильный ответ: Б

Компетенции (индикаторы): ОПК-1

4. Выберите один правильный ответ

Укажите тождественно верное равенство:

A) rot gradj
$$=i$$

Б) rot gradj =
$$\dot{j}$$

B) rotgradj = k

 Γ) rot gradj =0

Правильный ответ:

Компетенции (индикаторы): ОПК-1

Задания закрытого типа на установление соответствия

1. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

• • • • • • • • • • • • • • • • • • • •	Trouble of the state of the sta						
	Первое обозначение		Второе обозначение				
1)	gradj	A)	Ñ×r				
2)	$\operatorname{div} F$	Б)	Ñ×Ñj				
3)	$\operatorname{rot} \overset{1}{F}$	B)	Ñj				
4)	Dj	Γ)	Ñ'Ġ				

Правильный ответ:

r ··			
1	2	3	4
В	A	Γ	Б

Компетенции (индикаторы): ОПК-1

2. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

01001	Tolloga too ibtitiby ti rollbuc ogilii slitikiti iipaboro trolloga.					
	Операция		Наименование			
1)	gradj	A)	Ротор			
2)	$\operatorname{div} \dot{F}$	Б)	Градиент			
3)	$\operatorname{rot} \overset{1}{F}$	B)	Оператор Лапласа			
4)	Dj	Γ)	Дивергенция			

Правильный ответ:

1	2	3	4
Б	Γ	A	В

Компетенции (индикаторы): ОПК-1

3. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Левая часть		Правая часть
1)	ဝဲဝဲဗ ို်vFdV	A)	èà dS
2)	òòtFdS	Б)	$- \partial S ' dS$
3)	òờờtFdV	B)	è Fdl
4)	$ \begin{array}{c} $	Γ)	e d'S

Правильный ответ:

1	2	3	4
Γ	В	Б	A

Компетенции (индикаторы): ОПК-1

4. Установите правильное соответствие. Каждому элементу левого столбиа соответствует только один элемент правого столбиа.

	Операция		Выражение	
1)	gradj	A)	$\frac{\P F_x}{\P x} + \frac{\P F_y}{\P y} + \frac{\P F_z}{\P z}$	
2)	Dj	Б)	$ \stackrel{\text{def}}{\text{figure}} F_z - \frac{\P F_y}{\P z} \stackrel{\text{def}}{\overset{\text{def}}{\text{gen}}} + \stackrel{\text{def}}{\text{e}} \frac{F_x}{\P z} - \frac{\P F_z}{\P x} \stackrel{\text{def}}{\overset{\text{def}}{\text{gen}}} \frac{F_y}{\mathring{g}} + \stackrel{\text{def}}{\text{gen}} \frac{F_y}{\P x} - \frac{\P F_x}{\P y} \stackrel{\text{def}}{\overset{\text{def}}{\text{gen}}} \frac{\mathring{g}}{\mathring{g}} $	
3)	$\operatorname{div} F$	B)	$\frac{\mathbb{I}}{\mathbb{I}x} \overset{r}{i} + \frac{\mathbb{I}}{\mathbb{I}y} \overset{r}{j} + \frac{\mathbb{I}}{\mathbb{I}z} \overset{r}{k}$	
4)	$\operatorname{rot} F$	Γ)	$\frac{\P^{2j}}{\P x^{2}} + \frac{\Pi^{2j}}{\P y^{2}} + \frac{\Pi^{2j}}{\P z^{2}}$	

Правильный ответ.

правильный О	IBCI.		
1	2	3	4
В	Γ	A	Б

Компетенции (индикаторы): ОПК-1

Задания закрытого установление правильной типа на последовательности

1. Установите правильную последовательность. Запишите правильную последовательность букв слева направо

Расположите величины в порядке возрастания:

A)
$$|5i| + 12k$$

$$\mathbf{E}) \left| 3i + 4j \right|$$

Б)
$$|3\vec{i} + 4\vec{j}|$$
В) $|7\vec{j} - 24\vec{k}|$

$$\Gamma$$
) $|15i - 8j|$

Правильный ответ: Б, А, Г, В

Компетенции (индикаторы): ОПК-1

2. Установите правильную последовательность. Запишите правильную последовательность букв слева направо

Расположите значения [grad] | в порядке возрастания:

A) j =
$$3x + 4y$$

Б) j =
$$5x + 12z$$

B) j =
$$7x - 24z$$

$$\Gamma$$
) j =15 y - 8 z

Правильный ответ: А, Б, Г, В

Компетенции (индикаторы): ОПК-1

3. Установите правильную последовательность. Запишите правильную последовательность букв слева направо

Расположите значения $\operatorname{div} \overset{1}{F}$ в порядке возрастания:

A)
$$\vec{F} = x\vec{i} + y\vec{j} - z\vec{k}$$

Б)
$$\dot{F} = 3x\dot{i} - y\dot{j} + 5z\dot{k}$$

B)
$$\vec{F} = 3x\vec{i} + 2y\vec{j} + z\vec{k}$$

$$\Gamma) \dot{F} = 2x\dot{i} + 3y\dot{j} - 2z\dot{k}$$

Правильный ответ: А, Г, В, Б

Компетенции (индикаторы): ОПК-1

4. Установите правильную последовательность. Запишите правильную последовательность букв слева направо

Расположите значения $|\operatorname{rot} F|$ в порядке возрастания:

A)
$$\dot{F} = y\dot{i} - x\dot{j}$$

$$\mathbf{E}(\mathbf{F}) = y \mathbf{i} - 2x \mathbf{j}$$

B)
$$\vec{F} = 2\vec{i} - 3\vec{j} + 5\vec{k}$$

$$\Gamma$$
) $\dot{F} = y \dot{i}$

Правильный ответ: В, Г, А, Б

Компетенции (индикаторы): ОПК-1

Задания открытого типа

Задания открытого типа на дополнение

1. Напишите пропущенное слово (словосочетание)

Вектор градиента характеризует величину и _____ наискорейшего возрастания скалярного поля.

Правильный ответ: направление

Компетенции (индикаторы): ОПК-1

2. Напишите пропущенное слово (словосочетание)

Функция ј такая, что Dj = 0 называется ______.

Правильный ответ: гармонической

Компетенции (индикаторы): ОПК-1

3. Напишите пропущенное слово (словосочетание) Результатом вычисления операции над векторным полем, называемой , является скалярное поле, характеризующее плотность источников исходного векторного поля. Правильный ответ: дивергенцией Компетенции (индикаторы): ОПК-1 4. Напишите пропущенное слово (словосочетание) Результатом вычисления операции над векторным полем, называемой ____, является векторное поле, характеризующее плотность завихрений исходного векторного поля. Правильный ответ: ротором Компетенции (индикаторы): ОПК-1

5. Напишите пропущенное слово (словосочетание)

Теорема _____ связывает между собой значение поверхностного интеграла второго рода и значение криволинейного интеграла второго рода.

Правильный ответ: Стокса

Компетенции (индикаторы): ОПК-1

Задания открытого типа с кратким свободным ответом

1. Напишите результат вычислений

Вычислить grad $x^2 y^3 z$.

Правильный ответ: $2xy^3z^{\frac{1}{i}} + 3x^2y^2z^{\frac{1}{j}} + x^2y^3k^{\frac{1}{i}}$

Компетенции (индикаторы): ОПК-1

2. Напишите результат вычислений Вычислить $\operatorname{div} \left(xy^3z^{\frac{1}{i}} + x^2y^2z^{\frac{1}{j}} - x^2y^3z^{\frac{5}{k}} \right)$.

Правильный ответ: $y^3z + 2x^2yz - 5x^2y^3z^4$

Компетенции (индикаторы): ОПК-1

3. Напишите результат вычислений Вычислить ${\rm rot}(y\,\dot{i}-x\,\dot{j})$.

Правильный ответ: - 2k

Компетенции (индикаторы): ОПК-1

4. Дайте ответ на вопрос

Как называется теорема, которая связывает интеграл по объему от дивергенции векторного поля с потоком этого поля через поверхность, ограничивающую данный объем?

Правильный ответ: Гаусса-Остроградского

Компетенции (индикаторы): ОПК-1

5. Дайте ответ на вопрос

Чему равна валентность тензора R_{ii}^{k} ?

Правильный ответ: 3

Компетенции (индикаторы): ОПК-1

Задания открытого типа с развернутым ответом

1. Напишите результат вычислений

Вычислить ротор поля скоростей абсолютно твердого тела, вращающегося вокруг неподвижной точки с угловой скорость \dot{W} .

Привести расширенное решение.

Время выполнения – 15 мин.

Критерий оценивания: найти u(r), rot u(r)

Ожидаемый результат:

Найдем выражение для поля скоростей в зависимости от положения точки $\stackrel{\mathsf{\Gamma}}{r} = x\, \stackrel{\mathsf{I}}{i} + y\, \stackrel{\mathsf{I}}{j} + z\, \stackrel{\mathsf{I}}{k}$:

$$\begin{vmatrix}
\mathbf{r} \\ \mathbf{r}
\end{vmatrix} = \mathbf{w}_{x} \cdot \mathbf{r} = \begin{vmatrix}
\mathbf{r} \\ i & j & k \\
\mathbf{w}_{x} & \mathbf{w}_{y} & \mathbf{w}_{z} \\
x & y & z
\end{vmatrix} = \begin{vmatrix}
\mathbf{w}_{y} & \mathbf{w}_{z} | \mathbf{r} - |\mathbf{w}_{x} & \mathbf{w}_{z}| \mathbf{r} - |\mathbf{w}_{x} & \mathbf{w}_{z}| \mathbf{r} + |\mathbf{w}_{x} & \mathbf{w}_{y}| \mathbf{k} = \\
\mathbf{w}_{y}z - \mathbf{w}_{z}y | \mathbf{k} + (\mathbf{w}_{z}x - \mathbf{w}_{x}z) | \mathbf{j} + (\mathbf{w}_{x}y - \mathbf{w}_{y}z) | \mathbf{k}
\end{vmatrix}.$$

Вычислим ротор:

$$\operatorname{rot}_{u}^{r}(r) = \begin{vmatrix} \frac{1}{1} & \frac{1}{y} & \frac{1}{1z} \\ \frac{1}{1x} & \frac{1}{1y} & \frac{1}{1z} \\ w_{y}z - w_{z}y & w_{z}x - w_{x}z & w_{x}y - w_{y}z \end{vmatrix} =$$

$$= \underbrace{\operatorname{eff}}_{v} \left(w_{x}y - w_{y}z \right) - \underbrace{\operatorname{ff}}_{v} \left(w_{z}x - w_{x}z \right) \underbrace{\dot{o}}_{\dot{z}\dot{z}}^{r} +$$

$$+ \underbrace{\operatorname{eff}}_{v} \left(w_{y}z - w_{z}x \right) - \underbrace{\operatorname{ff}}_{v} \left(w_{x}y - w_{y}x \right) \underbrace{\dot{o}}_{\dot{z}}^{r} +$$

$$+ \underbrace{\operatorname{eff}}_{v} \left(w_{z}x - w_{x}y \right) - \underbrace{\operatorname{ff}}_{v} \left(w_{y}z - w_{z}y \right) \underbrace{\dot{o}}_{\dot{z}}^{r} +$$

$$+ \underbrace{\operatorname{eff}}_{v} \left(w_{z}x - w_{x}y \right) - \underbrace{\operatorname{ff}}_{v} \left(w_{y}z - w_{z}y \right) \underbrace{\dot{o}}_{\dot{z}}^{r} +$$

$$= \left(w_{x} + w_{x} \right) \underbrace{i}_{i} + \left(w_{y} + w_{y} \right) \underbrace{j}_{j} + \left(w_{z} + w_{z} \right) \underbrace{k}_{z}^{r} = 2 \underbrace{v}_{v}^{r} + \underbrace{v}_{z}^{r} + \underbrace{v$$

Ответ: 2w

Компетенции (индикаторы): ОПК-1

2. Напишите результат вычислений

Точечный заряд q находится в точке r_0 . Вычислить дивергенцию электрического поля этого заряда в пустой части пространства.

Привести расширенное решение.

Время выполнения – 15 мин.

Ожидаемый результат:

Критерий оценивания: решить вышеприведенные уравнения

Решение:

Согласно закону Кулона

$$\begin{vmatrix} \mathbf{r} \\ E \end{vmatrix} = \frac{1}{4\mathsf{pe}_0} \frac{q}{R^2},$$
 где $R = \begin{vmatrix} \mathbf{r} - r_0 \\ \mathbf{r} - \mathbf{r}_0 \end{vmatrix} = \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}$, $\mathbf{r} = x \dot{i} + y \dot{j} + z \dot{k}$ – радиус-вектор точки, в которой рассчитывается поле.

Электрическое поле заряда направленно от точки r_0 в точку r. Единичный вектор этого направления может быть вычислен как

$$\stackrel{\mathsf{r}}{e} = \frac{\stackrel{\mathsf{r}}{r} - \stackrel{\mathsf{r}}{r_0}}{\stackrel{\mathsf{r}}{|r - r_0|}}.$$

Следовательно, закон Кулона можно записать в векторном виде
$$\stackrel{\mathbf{r}}{E} \binom{\mathbf{r}}{r} = \frac{1}{4\mathsf{pe}_0} \frac{q}{R^2} \stackrel{\mathbf{r}}{e} = \frac{q}{4\mathsf{pe}_0} \frac{\stackrel{\mathbf{r}}{r} - \stackrel{\mathbf{r}}{r_0}}{\stackrel{\mathbf{r}}{r} - \stackrel{\mathbf{r}}{r_0}|^3}.$$

Составляющие этого поля имеют вид

$$E_{x}(x,y,z) = \frac{q}{4pe_{0}} \frac{x-x_{0}}{\left[(x-x_{0})^{2}+(y-y_{0})^{2}+(z-z_{0})^{2}\right]^{1/2}};$$

$$E_{y}(x,y,z) = \frac{q}{4pe_{0}} \frac{y-y_{0}}{\left[(x-x_{0})^{2}+(y-y_{0})^{2}+(z-z_{0})^{2}\right]^{1/2}};$$

$$E_{z}(x,y,z) = \frac{q}{4pe_{0}} \frac{z-z_{0}}{\left[(x-x_{0})^{2}+(y-y_{0})^{2}+(z-z_{0})^{2}\right]^{1/2}}.$$

Вычислим частные производные:

$$\frac{\P E_x}{\P x} = \frac{q}{4pe_0} \frac{1}{\left[(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 \right]^{/2}} - \frac{q}{4pe_0} \frac{3(x - x_0)^2}{\left[(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 \right]^{/2}};$$

$$\frac{\P E_y}{\P y} = \frac{q}{4pe_0} \frac{1}{\left[(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 \right]^{/2}} - \frac{q}{4pe_0} \frac{3(y - y_0)^2}{\left[(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 \right]^{/2}};$$

$$\frac{\P E_z}{\P z} = \frac{q}{4 p e_0} \frac{1}{\left[(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 \right]^{/2}} - \frac{q}{4 p e_0} \frac{3(z - z_0)^2}{\left[(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 \right]^{/2}}.$$

Вычислим дивергенцию при $\stackrel{1}{r}$ $\stackrel{1}{r}_0$:

$$\operatorname{div} E = \frac{\P E_x}{\P x} + \frac{\P E_y}{\P y} + \frac{\P E_z}{\P z} =$$

$$= \frac{q}{4 \operatorname{pe}_0} \left[(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 \right]^{/2} -$$

$$- \frac{3q}{4 \operatorname{pe}_0} \left[(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 \right]^{/2} =$$

$$= \frac{q}{4 \operatorname{pe}_0} \left[(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 \right]^{/2} -$$

$$- \frac{q}{4 \operatorname{pe}_0} \left[(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 \right]^{/2} = 0.$$

Ответ: 0 Компетенции (индикаторы): ОПК-1

Экспертное заключение

Представленный фонд оценочных средств (далее – ФОС) «Введение в тензорный анализ» соответствует требованиям ФГОС ВО.

Предлагаемые формы и средства текущего и промежуточного контроля адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 15.03.01 Машиностроение.

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины представлены в полном объеме.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанный и представленный для экспертизы фонд оценочных средств рекомендуется к использованию в процессе подготовки обучающихся по указанному направлению.

Председатель учебно-методической комиссии института технологий и инженерной механики

lly — Ясуник С.Н.

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)