Комплект оценочных материалов по дисциплине «Математический анализ»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа

1. Выберите один правильный ответ

Вычислить $|1 - \sqrt{2}| + |\sqrt{2} - 3| + 4$.

- A) 2
- Б) $2\sqrt{2}$
- B) 6
- Γ) $-2\sqrt{2}$

Правильный ответ: В

Компетенции (индикаторы): УК-1, УК-6, ОПК-1

2. Выберите один правильный ответ

Для функции $f(x) = 3x^2 - 2x - 1$ найти f(-1) + f'(1).

- A) 8
- Б) 4
- B) 0
- Γ) 1

Правильный ответ: A

Компетенции (индикаторы): УК-1, ОПК-1

3. Выберите один правильный ответ

Найти предел числовой последовательности $\lim_{n \to \infty} \frac{6n^2 + 5}{3n^2 - 3n + 7}$

- A) ∞
- Б) 0
- B) 2
- Γ) $\frac{5}{7}$

Правильный ответ: В

Компетенции (индикаторы): УК-1, УК-6, ОПК-1

4. Выберите один правильный ответ

Даны функции $f(x) = \sin x$, $g(x) = \sqrt{x}$. Найти значение их композиции:

$$g\left(f\left(\frac{\pi}{2}\right)\right)$$

A)
$$\sqrt{\frac{\pi}{2}}$$

$$(5) 1 + \sqrt{\frac{\pi}{2}}$$

B) 0

Γ) 1

Правильный ответ: Г

Компетенции (индикаторы): УК-1, УК-6, ОПК-1

5. Выберите один правильный ответ

Какой из неопределенных интегралов дает в результате 2 arctg x + C?

Rakon H3
$$A) \int \frac{2 dx}{2x-1}$$

$$B) \int \frac{x dx}{x^2-1}$$

$$B) \int \frac{dx}{x^2-1}$$

$$\Gamma) \int \frac{2 dx}{x^2+1}$$

$$\mathsf{E} \int \frac{x \, dx}{x^2 - 1}$$

B)
$$\int \frac{dx}{x^2-1}$$

$$\Gamma$$
) $\int \frac{2 dx}{x^2+1}$

Правильный ответ: Г

Компетенции (индикаторы): УК-1, ОПК-1

6. Выберите один правильный ответ

Неопределенный интеграл $\int x^3 dx$ равен:

$$A)\frac{x^2}{2} + C$$

Б)
$$3x^2 + C$$

$$B)\frac{x^3}{3} + C$$

$$\Gamma \frac{x^4}{4} + C$$

Правильный ответ: Г

Компетенции (индикаторы): УК-1, ОПК-1

7. Выберите один правильный ответ

Неопределенный интеграл $\int 5^x dx$ равен:

A)
$$5^{x} \cdot ln 5 + C$$

$$\mathrm{E})\,\frac{x^5}{5}+\mathcal{C}$$

B)
$$\frac{5^x}{\ln 5} + C$$

$$\Gamma$$
) $x \cdot 5^x + C$

Правильный ответ: В

Компетенции (индикаторы): УК-1, УК-6, ОПК-1

8. Выберите один правильный ответ

Неопределенный интеграл $\int \frac{dx}{\sqrt{a^2-x^2}}$ равен:

A)
$$\arcsin \frac{x}{a} + C$$

A)
$$arcsin \frac{x}{a} + C$$

B) $arccos \frac{a}{x} + C$

$$\mathrm{B}) - \frac{1}{\sqrt{a^2 + x^2}} + C$$

$$\Gamma$$
) $\arcsin \frac{a}{x} + C$

Правильный ответ: А

Компетенции (индикаторы): УК-1, ОПК-1

9. Выберите один правильный ответ

Для функции y = cos 2x найти все первообразные.

A)
$$\frac{1}{2} \sin 2x$$

$$\mathrm{E}(x) = \frac{1}{2}\sin 2x + C$$

$$B) \frac{1}{2} \sin x + C$$

$$\Gamma$$
) $\frac{1}{2}$ sin 2x + C

Правильный ответ: Г

Компетенции (индикаторы): УК-1, ОПК-1

10. Выберите один правильный ответ

Найти частные производные первого порядка для функции от двух переменных $z=y^x$.

A)
$$\frac{\partial z}{\partial x} = x \cdot y^{x-1}$$
, $\frac{\partial z}{\partial y} = y^x \cdot \ln y$

$$\mathbf{E} \frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} = x \cdot y^{x-1}$$

B)
$$\frac{\partial z}{\partial x} = y^x \cdot \ln y$$
, $\frac{\partial z}{\partial y} = x \cdot y^{x-1}$

$$\Gamma)\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} = y^x \cdot \ln y$$

Правильный ответ: В

Компетенции (индикаторы): УК-1, ОПК-1

11. Выберите один правильный ответ

Установить тип дифференциального уравнения первого порядка:

$$(xy^2 + x)dx + (y - x^2y)dy = 0$$

- А) линейное дифференциальное уравнение;
- Б) однородное дифференциальное уравнение;
- В) уравнение Бернулли;
- Г) уравнение с разделяющимися переменными.

Правильный ответ: Г

Компетенции (индикаторы): УК-1, ОПК-1

12. Выберите один правильный ответ

Найти градиент $grad\ z$ функции $z = x^2 + y^3$ в точке $M(1;\ 3)$.

- A) (2; 27)
- Б) (3; 27)
- B) (1; 9)

$$\Gamma$$
) (2; 9)

Правильный ответ: А

Компетенции (индикаторы): УК-1, ОПК-1

13. Выберите один правильный ответ

Решить дифференциальное уравнение первого порядка:

$$y' = \sin\frac{2+5x}{\sqrt{2}}$$

A)
$$y = -\frac{2}{5} \cos \frac{2+5x}{\sqrt{2}} + C$$

Б)
$$y = -\frac{\sqrt{2}}{5} \cos \frac{2+5x}{\sqrt{2}} + C$$

B)
$$y = -\cos\frac{2+5x}{\sqrt{2}} + C$$

$$\Gamma) y = \frac{\sqrt{2}}{5} \cos \frac{2+5x}{\sqrt{2}} + C$$

Правильный ответ: Б

Компетенции (индикаторы): УК-1, ОПК-1

Задания закрытого типа на выбор нескольких правильных ответов

1. Выберите все правильные варианты ответов

Какие из данных пределов равны 1?

A)
$$\lim_{x\to\infty} \frac{15x+1}{15x-6}$$

$$\text{B) }\lim_{x\to 1}\frac{x^2-1}{x-1}$$

B)
$$\lim_{x\to 0} \frac{tgx}{\sin x}$$

$$\Gamma$$
) $\lim_{x\to 0} \frac{tgx}{\sin 3x}$

Д)
$$\lim_{x\to 0} \frac{x}{\sin x}$$

Правильный ответ: А, В, Д

Компетенции (индикаторы): УК-1, УК-6, ОПК-1

2. Выберите все правильные варианты ответов

Какие из следующих функций имеют область определения, равную:

$$D_y = (-\infty, 6)?$$

$$A) y = ln(6 - x)$$

$$\mathbf{E}(y) = \frac{1}{6-x}$$

$$B) y = \frac{1}{\sqrt{6-x}}$$

$$\Gamma) y = \sqrt[3]{6 - x}$$

Д)
$$y = \frac{6-x}{2}$$

Правильный ответ: А, В

Компетенции (индикаторы): УК-1, ОПК-1

3. Выберите все правильные варианты ответов Какие из определенных интегралов равны 2?

A)
$$\int_{\frac{1}{2}}^{e} \frac{2}{x} dx$$

$$\mathrm{E}\int_{1}^{3} x^{2} dx$$

$$B) \int_0^1 4x \ dx$$

$$\Gamma) \int_0^{\pi} \cos \frac{x}{2} \ dx$$

Правильный ответ: А, В, Г

Компетенции (индикаторы): УК-1, ОПК-1

4. Выберите все правильные варианты ответов Какие из данных числовых рядов являются расходящимися?

A)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$$

$$\mathbf{E}) \sum_{n=1}^{\infty} \frac{1}{n+1}$$

B)
$$\sum_{n=1}^{\infty} \frac{1}{2n-1}$$

$$\Gamma$$
) $\sum_{n=1}^{\infty} \frac{1}{n \cdot (n+3)}$

Правильный ответ: А, Б, В

Компетенции (индикаторы): УК-1, УК-6, ОПК-1

Задания закрытого типа на установление соответствия

1. Установите правильное соответствие. Каждому элементу столбца соответствует только один элемент правого столбца.

B)

Функция
$$y(x)$$

$$y = 2arctg x$$

$$y = -\frac{1+4x^2}{1+4x^2}$$

$$y = arcctg \ 2x$$

$$y' = \frac{2}{\sqrt{1 - 4x^2}}$$

$$y = arcsin(-2x)$$

Производная
$$y'(x)$$

$$y' = -\frac{2}{1+4x^2}$$

$$y' = \frac{2}{\sqrt{1-4x^2}}$$

$$y' = -\frac{2}{\sqrt{1-4x^2}}$$

$$y' = \frac{2}{1+x^2}$$

$$y = \arccos(-2x)$$

$$\Gamma) \qquad \qquad y' = \frac{2}{1 + x^2}$$

Правильный ответ:

Tipubilibili orber.				
	1	2	3	4
	Γ	A	В	Б

Компетенции (индикаторы): УК-1, УК-6, ОПК-1

2. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

Установить соответствие между эквивалентными бесконечно малыми функциями при $x \to 0$:

Бесконечно малая функция Эквивалентная бесконечно при $x \to 0$ малая функция при $x \to 0$ 1) $1 - \cos x$ A) 2x2) Б) \sqrt{x} sin 2x x^2 3) $ln(1 + x^2)$ B) $x^{2}/2$ $ta \sqrt{x}$ 4) Γ)

Правильный ответ:

1	2	3	4
Γ	A	В	Б

Компетенции (индикаторы): УК-1, ОПК-1

3. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

Простейшее неравенство Способы решения с модулем $x \ge 5$ 1) |x| < 5A) $1x \le -5$ $(x \ge -5)$ 2) |x| > 5Б) $\begin{cases} x \leq 5 \end{cases}$ x > 5 $|x| \leq 5$ 3) B) lx < -5(x > -5)4) $|x| \geq 5$ Γ) 0×10^{-5}

Правильный ответ:

TPublikibilibili 01be1.				
	1	2	3	4
	Γ	В	Б	A

Компетенции (индикаторы): УК-1, УК-6, ОПК-1

4. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

Даны множества A = (0; 2), B = [1; 3].

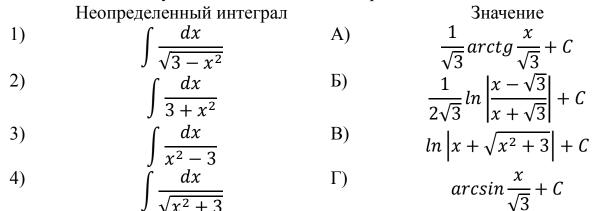
Операции над множествами Результат АиВ 1) $A \cup B$ A) [2; 3] (0; 3]2) $A \cap B$ Б) 3) $A \backslash B$ B) (0; 1)4) $B \setminus A$ Γ) [1; 2)

Правильный ответ:

1	2	3	4
Б	Γ	В	A

Компетенции (индикаторы): УК-1, УК-6, ОПК-1

5. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.



Правильный ответ:

110 421412111 01241.			
1	2	3	4
Γ	A	Б	В

Компетенции (индикаторы): УК-1, ОПК-1

6. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Свойства определенного интеграла		Формулы
1)	Теорема о среднем значении определенного интеграла	A)	$\int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx$
2)	Аддитивность определенного интеграла	Б)	$\int_{a}^{b} \left(f(x) \pm g(x) \right) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$
3)	Однородность определенного интеграла	B)	$\int_{a}^{b} f(x) dx = f(C)(b-a)$
4)	Формула Ньютона-Лейбница	Γ)	$\int_{a}^{b} f(x) dx = F(b) - F(a)$

Правильный ответ:

1	2	3	4
В	Б	A	Γ

Компетенции (индикаторы): УК-1, ОПК-1

7. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

Тригонометрические

Применение

подстановки при нахождении

интеграла вида

$$\int R(\sin x, \cos x) dx$$

1)
$$t = tg\frac{x}{2}$$
 A) имеется нечетность по $\sin x$

$$t = \cos x$$
 Б) имеется нечетность по $\cos x$

3)
$$t = \sin x$$
 В) одинаковая четность по $\sin x$ и $\cos x$

4)
$$t = tg x (или t = ctg x)$$
 Г) подходит всегда

Правильный ответ

1	2	3	4
Γ	A	Б	В

Компетенции (индикаторы): УК-1, ОПК-1

8. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

Определенный интеграл

Значение

1)
$$\int_{-\infty}^{e} \frac{dx}{x}$$
 A)

$$\int_{0}^{2} 4 dx$$
 b)
$$e - 1$$

$$\int_{0}^{1} e^{x} dx$$
 B)

4)
$$\int_{0}^{\pi/4} \frac{2 dx}{\cos^2 x}$$
 Γ)

Правильный ответ:

Tipublikibili	OIDUI.		
1	2	3	4
A	В	Б	Γ

Компетенции (индикаторы): УК-1, ОПК-1

9. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

$$\sum_{n=0}^{\infty} \frac{1}{n}$$
 Название 1)

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 Б) гармонический ряд

$$\sum_{1}^{\infty} (\sin nx + \cos nx)$$
 В) тригонометрический ряд

$$\sum_{1}^{\infty} \frac{(-1)^n}{n}$$
 Г) знакочередующийся ряд

Правильный ответ:

1	2	3	4
Б	A	В	Γ

Компетенции (индикаторы): УК-1, ОПК-1

10. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

Функция Разложение в ряд Маклорена e^{x} 1)

A) $1 + x + x^{2} + \dots + x^{n} + \dots$ B) $\frac{x}{1!} - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + \frac{(-1)^{n+1}x^{2n-1}}{(2n-1)!} + \dots$ 2) $\cos x$

 $1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$ B) 3) $\sin x$

 Γ) $1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots$ 4)

Правильный ответ:

I			
1	2	3	4
В	Γ	Б	A

Компетенции (индикаторы): УК-1, УК-6, ОПК-1

11. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

Двойной интеграл по области *D* Значение

1) A) $\iint dx \, dy$ 2

 $D: \{0 \le x \le 1; 0 \le y \le 1\}$ 2) Б) $\iint dx \, dy$

0 $D: \{0 \le x \le 1; 0 \le y \le 0\}$

3) B) $\iint dx \, dy$ 1 $D: \{x = 1; y = 0; y = x\}$

4)
$$\iint\limits_{D} dx \, dy \qquad \qquad \frac{1}{2}$$

$$D: \{0 \le x \le 1; \ 0 \le y \le 2\}$$

Правильный ответ:

l			
1	2	3	4
В	Б	Γ	A

Компетенции (индикаторы): УК-1, ОПК-1

12. Установите правильное соответствие. Каждому элементу левого столбца соответствует только один элемент правого столбца.

столбца соответствует только один элемент правого столбца. Тройной интеграл по V Значение 1) $\iint\limits_V dx\,dy\,dz \qquad \qquad \frac{2}{3}\pi R^3$ $V:\{0\leq x\leq 1;0\leq y\leq 1;0\leq z\leq 1\}$ Б) $\iint\limits_V dx\,dy\,dz \qquad \qquad 1$ $V:\{-R\leq x\leq R; \\ V:\{-\sqrt{R^2-x^2}\leq y\leq \sqrt{R^2-x^2};\} \\ 0\leq z\leq \sqrt{R^2-x^2-y^2}\}$ B) $\iint\limits_V dx\,dy\,dz \qquad \qquad \frac{1}{6}$ $V:\{0\leq z\leq 1;x^2+y^2=1\}$

4) $\iint_{V} dx \, dy \, dz$ Γ $V: \{-1 \le z \le 1; x^2 + y^2 = R^2\}$

Правильный ответ:

<u>r</u>			
1	2	3	4
Б	A	В	Γ

Компетенции (индикаторы): УК-1, ОПК-1

Задания закрытого типа на установление правильной последовательности

1. Расположить значения $y'(x_0)$ производных функций в точке x_0 в порядке возрастания их величин:

A)
$$y = 4 + \ln x$$
, $x_0 = \frac{1}{2}$
B) $y = 10 - 3x - 2x^2$, $x_0 = -1$

Б)
$$y = 10 - 3x - 2x^2$$
, $x_0 = -1$

B)
$$y = (x + 3) \cdot tgx$$
, $x_0 = 0$

$$\Gamma$$
) y = $\sqrt{1 + x}$, $x_0 = 0$

Правильный ответ: Г, Б, А, В

Компетенции (индикаторы): УК-1, УК-6, ОПК-1

2. Расположите пределы в порядке убывания их значений:

A)
$$\lim_{x\to\infty} \frac{2x^2-4}{x^2-x-2}$$
B) $\lim_{x\to0} \frac{\sin x}{x}$

$$\text{B) } \lim_{x\to 0} \frac{\sin x}{x}$$

B)
$$\lim_{x\to\infty} \left(\frac{x+1}{x}\right)^x$$

 Γ) $\lim_{x\to\infty} \frac{x^5+x+1}{10x^4-x-2}$

$$\Gamma) \lim_{x \to \infty} \frac{x^5 + x + 1}{10x^4 - x - 2}$$

Правильный ответ: Г, В, А, Б

Компетенции (индикаторы): УК-1, ОПК-1

3. Расположите определенные интегралы в порядке возрастания их значений:

A)
$$\int_0^1 x^2 dx$$

$$\text{ F) } \int_0^1 \frac{4}{1+x^2} \, dx$$

B)
$$\int_0^1 dx$$

B)
$$\int_0^1 dx$$

 Γ) $\int_0^1 3e^x dx$

Правильный ответ: А, В, Б, Г

Компетенции (индикаторы): УК-1, УК-6, ОПК-1

Расположить простые дроби в рациональные правильной последовательности, соответствующей их названиям.

A)
$$\frac{Mx+N}{x^2+px+q}$$

E)
$$\frac{A}{(x-a)^k}$$
, $k=2,3,...$

B)
$$\frac{A}{x-a}$$

Б)
$$\frac{A}{(x-a)^k}$$
, $k = 2, 3, ...$
В) $\frac{A}{x-a}$
 Γ) $\frac{Mx+N}{(x^2+px+q)^m}$, $m = 2, 3, ...$

Правильный ответ: В, Б, А, Г

Компетенции (индикаторы): УК-1, ОПК-1

5. Расположите дифференциальные уравнения в порядке возрастания их порядка:

$$A) \frac{dy}{dx} = x$$

Б)
$$\frac{d^2y}{dx^2} + \frac{d^5y}{dx^5} = \frac{dy}{dx}$$

В) $y'' + y' = 0$

B)
$$y'' + y' = 0$$

$$\Gamma) xy''' - y' = y^5$$

Правильный ответ: А, В, Г, Б

Компетенции (индикаторы): УК-1, УК-6, ОПК-1

6. Расположите значения функции $z(x_0 = 1; y_0 = 1)$ в порядке убывания:

A)
$$z(x; y) = 2x + 3y^2$$

$$\mathrm{E}(x;y) = \ln(xy) + 2$$

$$B) z(x; y) = \ln x + \ln y + 1$$

$$\Gamma) z(x; y) = y \cdot \sin(\pi x)$$

Правильный ответ: А, Б, В, Г

Компетенции (индикаторы): УК-1, ОПК-1

7. Расположите интегралы в порядке убывания их значений:

$$A) \int_0^1 dx \int_0^1 dy$$

$$\text{E} \int_0^1 dx \int_0^x dy$$

B)
$$\int_{0}^{1} dx \int_{0}^{x^{2}} dy$$

 Γ) $\int_{0}^{1} dx \int_{-1}^{1} dy$

$$\Gamma$$
) $\int_0^1 dx \int_{-1}^1 dy$

Правильный ответ: Г, А, Б, В

Компетенции (индикаторы): УК-1, ОПК-1

Задания открытого типа

Задания открытого типа на дополнение

1. Напишите пропущенное слово (словосочетание).

Закончить формулировку определения. Ответ дать в именительном падеже.

Пусть x_0 – точка разрыва для функции f, определенной в окрестности $U^*(x_0)$, тогда если существуют конечные левый и правый пределы $f(x_0)$, функции $f(x_0 +)$ ДЛЯ f при $x \to x_0$, точка TO называется

Правильный ответ: точка разрыва первого рода.

Компетенции (индикаторы): УК-1, УК-6, ОПК-1

2. Напишите пропущенное слово (словосочетание).

Закончить формулировку определения.

Решить задачу Коши для дифференциального уравнения F(x, y, y') = 0первого порядка – это значит, найти _____, удовлетворяющее начальному

условию.
Правильный ответ: частное решение.
Компетенции (индикаторы): УК-1, ОПК-1
3. Напишите пропущенное слово (словосочетание). ———————————————————————————————————
является множество натуральных чисел $D_f = N$.
Правильный ответ: числовая последовательность. Компетенции (индикаторы): УК-1, ОПК-1
4. Напишите пропущенное слово (словосочетание) – предел отношения приращения функции в
приращению её аргумента при стремлении приращения аргумента к нулю (при
условии, что такой предел существует).
Правильный ответ: производная; производная функции. Компетенции (индикаторы): УК-1, УК-6, ОПК-1
5. Напишите пропущенное слово (словосочетание) для функции $f(x)$ — это такая функция, производная которой равна $f(x)$. Правильный ответ: первообразная. Компетенции (индикаторы): УК-1, УК-6, ОПК-1
6. Напишите пропущенное слово (словосочетание). Интеграл называется
7. Напишите пропущенное слово (словосочетание). Плоская фигура, ограниченная сверху графиком неотрицательной функции $y = f(x)$, снизу — прямой $y = 0$, слева и справа — соответственно прямыми $x = a$ и $x = b$, — это Правильный ответ: криволинейная трапеция. Компетенции (индикаторы): УК-1, ОПК-1
8. Напишите пропущенное слово (словосочетание). Геометрический смысл двойного интеграла заключается в том, что величина двойного интеграла от неотрицательной функции равна цилиндрического тела. Правильный ответ: объёму.
Компетенции (индикаторы): УК-1, ОПК-1

9. Напишите пропущенное слово (словосочетание). Закончить формулировку теоремы Лейбница. Если модуль общего члена знакочередующегося числового ряда стремится к нулю, убывая, то этот ряд_____ Правильный ответ: сходится. Компетенции (индикаторы): УК-1, ОПК-1 10. Напишите пропущенное слово (словосочетание). функции f в точке M_0 – это вектор, координатами которого являются значения частных производных в этой точке. Правильный ответ: градиент. Компетенции (индикаторы): УК-1, ОПК-1 11. Напишите пропущенное слово (словосочетание). Если числовой ряд сходится, то предел его общего члена равен . Правильный ответ: нулю. Компетенции (индикаторы): УК-1, ОПК-1 12. Напишите пропущенное слово (словосочетание). _____ – частный случай ряда Тейлора, где точка разложения

Правильный ответ: Ряд Маклорена.

равна нулю.

Компетенции (индикаторы): УК-1, ОПК-1

Задания открытого типа с кратким свободным ответом

1. Производная функция $y(x) = \cos(x^2)$ равна ... (Ответ запишите в виде функции)

Правильный ответ: $-2x \sin x^2$.

Компетенции (индикаторы): УК-1, ОПК-1

2. Найти промежуток возрастания функции $y(x) = 1 - x^2$ (Ответ запишите в виде интервала)

Правильный ответ: $(-\infty; 0)$.

Компетенции (индикаторы): УК-1 УК-6,, ОПК-1

3. Точка движется прямолинейно по закону $s=\frac{4}{3}\,t^3-t+5\,$ (м). Найти скорость материальной точки в момент времени $t=2\,$ (с). (Ответ запишите в виде числа)

Правильный ответ: 15.

Компетенции (индикаторы): УК-1, ОПК-1

4. Найти наибольшее значение функции $y(x) = x^2 - 2x - 1$ на отрезке [-1; 1] (Ответ запишите в виде числа)

Правильный ответ: 2.

Компетенции (индикаторы): УК-1, УК-6, ОПК-1

5. Найти сумму абсцисс точек разрыва функции:

$$f(x) = \begin{cases} x^2 + 1, x < 0\\ \cos x, 0 \le x \le 1\\ x^2 - 1, x > 1 \end{cases}$$

(Ответ запишите в виде числа)

Правильный ответ: 1.

Компетенции (индикаторы): УК-1, ОПК-1

6. Найти промежуток, на котором график функции $y = 3x^2 - x^3$ выпуклый вниз? (Ответ запишите в виде промежутка)

Правильный ответ: $(-\infty; 1)$.

Компетенции (индикаторы): УК-1, ОПК-1

7. Найти площадь фигуры, ограниченной линиями y = 0; y = 2x; x = 1 (Ответ запишите в виде числа)

Правильный ответ: 1.

Компетенции (индикаторы): УК-1, ОПК-1

8. Скорость тела определяется формулой $v(t) = \sqrt{1+t}$ (м/с). Найти путь, пройденный телом за промежуток времени от $t_1 = 0$ (c) до $t_2 = 8$ (c). (Ответ запишите в виде рационального числа)

Правильный ответ: $\frac{52}{3}$

Компетенции (индикаторы): УК-1, ОПК-1

9. Найти объем тела, образованного вращением вокруг оси OX фигуры, ограниченной линиями $y=2\sqrt{x},\ 0\leq x\leq 2,\ y>0.$ (Ответ запишите в виде числа)

Правильный ответ: 8π .

Компетенции (индикаторы): УК-1, УК-6, ОПК-1

10. Установить сходимость или расходимость несобственного интеграла первого рода $\int_{1}^{\infty} \frac{dx}{x^2}$ (Ответ записать одним словом)

Правильный ответ: сходится.

Компетенции (индикаторы): УК-1, ОПК-1

11. Установить сходимость или расходимость несобственного интеграла второго рода $\int_0^2 \frac{dx}{x\sqrt{x}}$? (Ответ записать одним словом)

Правильный ответ: расходится.

Компетенции (индикаторы): УК-1, ОПК-1

12. Вычислить определенный интеграл $\int_0^1 arccos\ x\ dx$. (Ответ запишите в виде числа)

Правильный ответ: 1.

Компетенции (индикаторы): УК-1, ОПК-1

13. Найти область сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 5^n}$. (Ответ запишите в виде промежутка)

Правильный ответ: [-5; 5]

Компетенции (индикаторы): УК-1, ОПК-1

14. Найти общее решение дифференциального уравнения y' = x (Ответ запишите в виде функции)

Правильный ответ: $\frac{x^2}{2} + C$.

Компетенции (индикаторы): УК-1, ОПК-1

15. Найти общее решение дифференциального уравнения y'' - 3y' + 2y = 0 (Ответ запишите в виде функции)

Правильный ответ: $C_1e^x + C_2e^{2x}$.

Компетенции (индикаторы): УК-1, ОПК-1

16. Для функции $z = ln(e^x + e^y)$ от двух переменных найти $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}$.

Правильный ответ: 1

Компетенции (индикаторы): УК-1, ОПК-1

17. Найти двойной интеграл $\iint_D xy \ dx \ dy$, если область D ограничена линиями: x=0, x=1, y=0, y=2.

Правильный ответ: 1.

Компетенции (индикаторы): УК-1, ОПК-1

18. Разложением какой функции является следующий ряд Маклорена: r^2 r^4 $(-1)^n r^{2n}$

$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots$$
 (Ombem запишите в виде $y = f(x)$)

Правильный ответ: $y = \cos x$.

Компетенции (индикаторы): УК-1, ОПК-1

Задания открытого типа с развернутым ответом

1. Решить задачу, используя методы дифференциального исчисления:

Каковы должны быть размеры консервной банки цилиндрической формы, чтобы на её изготовление пошло наименьшее количество материала, если объем банки 2000 см³?

Привести расширенное решение.

Время выполнения – 30 мин.

Ожидаемый результат:

1. По условию объем цилиндра $V = \pi R^2 H = 2000$.

Принимая радиус основания цилиндра R=x, получаем высоту цилиндра $H=\frac{2000}{\pi\,x^2}.$

Функция площади полной поверхности цилиндра:

$$S(x) = 2\pi R^2 + 2\pi RH$$

$$S(x) = 2\pi \left(x^2 + \frac{2000}{\pi x}\right)$$

2. Находим критические точки:

$$S'(x) = 2\pi \left(x^2 + \frac{2000}{\pi x}\right)' = 2\pi \cdot \frac{2\pi x^3 - 2000}{\pi x^2}$$

S'(x)=0 тогда и только тогда, когда $2\pi x^3-2000=0$, откуда $x^3=\frac{1000}{\pi}$.

Имеем критическую точку: $x = \sqrt[3]{\frac{1000}{\pi}} = \frac{10}{\sqrt[3]{\pi}}$.

3. Достаточное условие экстремума выполняется, так как $S''\left(\frac{10}{\sqrt[3]{\pi}}\right) > 0$, значит в найденной точке функция достигает минимального значения, что соответствует условию.

4. Тогда высота оптимальной банки:
$$H = \frac{2000}{\pi x^2} = \frac{2000}{\pi \left(\frac{10}{3\sqrt{\pi}}\right)^2} = \frac{20}{3\sqrt{\pi}}$$

Ответ: оптимальные параметры цилиндрической консервной банки:

$$R = \frac{10}{\sqrt[3]{\pi}}, \ H = \frac{20}{\sqrt[3]{\pi}}$$

Критерии оценивания:

- корректное построение функции площади полной поверхности объемного тела;
- использование аппарата дифференциального исчисления для нахождения экстремальных параметров объемного тела;
 - проверка достаточного условия существования экстремума;
 - определение экстремальных параметров цилиндра.

Компетенции (индикаторы): УК-1, УК-6, ОПК-1

2. Решить задачу, используя методы дифференциального исчисления:

При подготовке к экзамену студент за t дней изучает $\left(\frac{t}{t+1}\right)$ -ю часть курса и забывает $(1/36 \cdot t)$ -ю часть. Сколько дней нужно потратить на подготовку, чтобы была изучена максимальная часть курса?

Привести расширенное решение.

Время выполнения – 30 мин.

Ожидаемый результат:

1. Составим функцию V(t), которая отражает объем изученного студентом учебного материала в ходе прохождения курса:

$$V(t) = \left(\frac{t}{t+1}\right) - \left(\frac{1}{36} \cdot t\right)$$

2. Находим экстремум функции V(t) учитывая, что t > 0:

$$V'(t) = \left(rac{t}{t+1}
ight)' - \left(rac{1}{36} \cdot t
ight)' = rac{1}{(t+1)^2} - rac{1}{36}$$
 $V'(t) = 0 \Longrightarrow t_{ ext{\tiny K}} = 5$ дней

3. Убедимся, что $t_{\rm K}=5$ дней — точка максимума функции V(t):

$$V''(t)=rac{-2}{(t+1)^3}$$
 $V''(t_{ ext{\tiny K}}=5)=rac{-2}{(6)^3}<0\Longrightarrow t_{ ext{\tiny K}}=5$ дней – т. max

Ответ: максимальная часть курса будет изучена через 5 дней.

Критерии оценивания:

- построение функции V(t), отражающей объем изученного студентом учебного материала в ходе прохождения курса;
 - нахождение экстремума функции V(t);
 - доказательство того, что найденный экстремум есть максимум.

Компетенции (индикаторы): УК-1, ОПК-1

3. Решить задачу, используя прикладные аспекты интегрального исчисления:

Найти площадь фигуры, ограниченной эллипсом $\begin{cases} x = a \cos t, \\ y = b \sin t, \end{cases}$ где a,b=const,t – параметр.

Привести расширенное решение.

Время выполнения – 30 мин.

Ожидаемый результат:

1. Анализ формы и расположения эллипса.

Запишем уравнение эллипса, заданного параметрически, в декартовых координатах:

$$\begin{cases} x = a \cos t, \\ y = b \sin t, \end{cases} \begin{cases} \frac{x}{a} = \cos t, \\ \frac{y}{b} = \sin t. \end{cases}$$

Возводим в квадрат и суммируем уравнения последней системы:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \cos^2 t + \sin^2 t$$
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Таким образом, имеем эллипс с полуосями a, b и центром — в начале координат.

2. Нахождение части искомой площади.

Исходя из симметрии эллипса при таком его расположении, удобно найти площадь его четверти, т.к. $S_{\text{элл}} = 4 \cdot S_{1/4}.$

Площадь $S_{1/4}$ находим по формуле для параметрически заданной кривой:

$$\begin{cases} x = \varphi(t), \\ y = \psi(t), \end{cases} t_1 \le t \le t_2$$

$$S = \int_{t_1}^{t_2} \psi(t) \varphi'(t) dt$$

Имеем по условию: $\varphi(t)=a\cos t$, $\psi(t)=b\sin t$. Тогда $\varphi'(t)=-a\sin t$, пределы интегрирования $0\leq t\leq \frac{\pi}{2}$.

3. Нахожденье площади целой фигуры.

Тогда искомая площадь:

$$S_{\mathfrak{I},\pi} = 4 \cdot S_{1/4} = 4 \int_{\pi/2}^{0} b \sin t \cdot a \sin t \, dt = 4 ab \int_{0}^{\pi/2} \sin^{2}t \, dt =$$

$$= 4 ab \int_{0}^{\pi/2} \frac{1 - \cos 2t}{2} \, dt = \frac{4 ab}{2} \left(t - \frac{1}{2} \sin 2t \right) \Big|_{0}^{\pi/2} = 2ab \left(\frac{\pi}{2} - \frac{1}{2} \sin \pi \right) = \pi ab$$

Таким образом, искомая площадь $S=\pi \ ab$ (кв. ед)

Ответ: площадь фигуры, ограниченной эллипсом, равна π *аb*.

Критерии оценивания:

- анализ формы и расположения эллипса;
- переход к декартовым координатам;
- использование формулы площади плоской фигуры при параметрическом ее задании;
- применение свойств определенного интеграла и стандартных методов интегрирования.

Компетенции (индикаторы): УК-1, УК-6, ОПК-1

4. Решить задачу, используя методы интегрального исчисления:

Цилиндрический резервуар с высотой 6 м и диаметром основания 4 м наполнен водой. За какое время вода вытечет из него через круглое отверстие радиуса 1/12 м, сделанное в дне резервуара?

(Справочная информация: скорость истечения жидкости по закону Бернулли выражается формулой $V = \sigma \sqrt{2gx}$, причем для воды $\sigma \approx 0.6$).

Привести расширенное решение.

Время выполнения – 30 мин.

Ожидаемый результат:

- 1. Пусть через t сек после истечения воды уровень оставшейся воды в резервуаре был равен x м, а за время dt сек понизился на dx м. вычислим объем воды, вытекающий за этот бесконечно малый промежуток времени dt, двумя способами:
- 1 сп.) Объем dW равен объему цилиндрического слоя высотой dx и радиусом основания r=2 м.

$$dW = \pi r^2 dx$$

2 сп.) Объем dW равен объему цилиндра, основанием которого служит отверстие в дне резервуара $\rho=1/12$ м, а высота равна Vdt, где V — скорость течения воды:

$$dW = \pi \rho^2 V dt = 0.6\pi \rho^2 \sqrt{2gx} dt$$

Приравниваем полученные выражения:

$$\pi r^2 dx = 0.6\pi \rho^2 \sqrt{2gx} dt$$

Получаем:

$$dt = \frac{r^2 dx}{0.6\rho^2 \sqrt{2gx}}, \qquad \text{где } x \in [0; 6]$$

2. Интегрируем уравнение, получаем время истечения воды:

$$t = \int_{0}^{6} \frac{r^{2} dx}{0.6\rho^{2} \sqrt{2gx}} = \frac{r^{2} dx}{0.6\rho^{2} \sqrt{2g}} \int_{0}^{6} \frac{dx}{\sqrt{x}} = \frac{r^{2} dx}{0.6\rho^{2} \sqrt{2g}} \cdot \left. 2\sqrt{x} \right|_{0}^{6} = \frac{10}{\sqrt{3g}} \cdot \frac{r^{2}}{\rho^{2}}$$

3. Подставляем исходные данные, получаем:

$$t \approx 1062 \text{ сек} = 17,7 \text{ мин}$$

Ответ: вода вытечет из резервуара через $t \approx 1062 \text{ сек} = 17,7 \text{ мин.}$

Критерии оценивания:

- построение математической модели процесса истечения воды из резервуара;
 - интегрирование полученного уравнения;
- нахождение времени вытекания воды из резервуара через круглое отверстие, сделанное в дне резервуара.

Компетенции (индикаторы): УК-1, ОПК-1

5. Решить задачу, используя методы интегрального исчисления: Найти массу m пластины, которая ограничена кривыми:

$$x = 2, y = 0, y^2 = \frac{\hat{x}}{2}, \quad (y \ge 0)$$

и имеет поверхностную плотность, определяемую функцией $\rho(x,y) = \frac{7}{2}x^2 + 6y$.

Привести расширенное решение.

Время выполнения – 30 мин.

Ожидаемый результат:

Задача может быть решена с использованием двойного интеграла, а именно:

$$m = \iint\limits_{D} \rho(x, y) \, dx dy$$

Область D (плоская пластина) — это фигура, ограниченная прямыми x=2,y=0 и параболой $y^2=\frac{x}{2},y\geq 0$. Тогда масса m равна:

$$m = \iint\limits_{D} \rho(x, y) \, dx dy = \iint\limits_{D} \left(\frac{7}{2}x^2 + 6y\right) \, dx dy$$

Переходя к повторному интегрированию, внешнее интегрирование проведем по переменной y. Тогда $0 \le y \le 1$, $2y^2 \le x \le 2$.

$$m = \int_{0}^{1} dy \int_{2y^{2}}^{2} \left(\frac{7}{2}x^{2} + 6y\right) dx = \int_{0}^{1} \left(\frac{7}{2} \cdot \frac{x^{3}}{3} + 6y \cdot x\right)^{2} dy =$$

$$= \int_{0}^{1} \left(\frac{28}{3} - \frac{28}{3}y^{6} + 12y - 12y^{3}\right) dy = \frac{28}{3} - \frac{4}{3} + 6 - 3 = 11 \text{ (ед. массы)}$$

Ответ: масса пластины равна 11 (ед. массы).

Критерии оценивания:

- использование прикладных возможностей двойного интеграла;
- вычисление двойного интеграла повторным интегрированием (возможен чертеж области интегрирования);
 - нахождение величины массы.

Компетенции (индикаторы): УК-1, ОПК-1

6. Решить задачу, используя методы дифференциального исчисления:

Найти выражение для объема реализованной продукции y = y(t), если известно, что кривая спроса p(y) задается уравнением p(y) = 2 - y, норма акселерации 1/l = 2, норма инвестиций m = 0.5, y(0) = 0.5.

(Справочная информация: модель роста в условиях конкурентного рынка принимает вид y' = mlp(y)y).

Привести расширенное решение.

Время выполнения – 30 мин.

Ожидаемый результат:

Используем модель роста в условиях конкурентного рынка при заданных условий:

$$y' = (2 - y)y$$

$$\frac{dy}{(2 - y)y} = dt$$

$$\int \frac{dy}{(2 - y)y} = \int dt$$

$$\ln\left|\frac{y-2}{y}\right| = -2t + C_1$$

$$\frac{y-2}{y} = Ce^{-2t}$$

$$y(0) = 0.5 \Rightarrow C = 3$$

Окончательное решение принимает вид:

$$y = \frac{2}{1 + 3e^{-2t}}$$

Ответ: объем реализованной продукции определяется функцией: $y = \frac{2}{1 + 3e^{-2t}}$

$$y = \frac{2}{1 + 3e^{-2t}}$$

Критерии оценивания:

- адаптировать модель роста в условиях конкурентного рынка для решаемой задачи;
 - найти общее решение полученного дифференциального уравнения;
- выделить частное решение, соответствующее заданным начальным условиям;
 - найти функцию объема реализованной продукции. Компетенции (индикаторы): УК-1, ОПК-1

Экспертное заключение

Представленный комплект оценочных материалов по дисциплине «Математический анализ» соответствует требованиям ФГОС ВО.

Предлагаемые оценочные материалы адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 15.03.04 Автоматизация технологических процессов и производств.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанные и представленные для экспертизы оценочные материалы рекомендуются к использованию в процессе подготовки обучающихся по указанному направлению.

Председатель учебно-методической комиссии института компьютерных систем и информационных технологий

1 fr

Ветрова Н. Н.

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)
1.	Дополнен комплектом оценочных материалов	протокол заседания кафедры прикладной математики № 8 от 24. Ос. 2025	В.В. Малый