МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Наименование структурного подразделения Институт технологий и инженерной механики
Кафедра Станки, инструменты и инженерная графика

(наименование кафедры)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по учебной дисциплине

«Автоматизированный электропривод»

(наименование учебной дисциплины, практике)

15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств»

(код и наименование направления подготовки (специальности))

«Металлообрабатывающие станки и комплексы» (наименование профиля подготовки (специальности, магистерской программы);

Разработчик	(разработчикі	A) :		
доцент	Jean	Величко	Н.И.	
(должность)	(подпись)			
		ФИО		
(должность)	(подпись)			
			федры «Станки, инструм	енты
и инженерная	графика» от «	(11» 03	20 <u>25</u> г., протокол №	7
Заведующий к	кафедрой	facel	Брешев В.Е.	

Луганск 2025 г.

Комплект оценочных материалов по дисциплине «Автоматизированный электропривод»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа

Выберите один правильный ответ.

- 1. Тип двигателя наиболее часто используется в автоматизированных электроприводах станков:
 - А) асинхронный двигатель с фазным ротором;
 - Б) постоянного тока с независимым возбуждением;
 - В) асинхронный двигатель с короткозамкнутым ротором;
 - Г) синхронный двигатель с постоянными магнитами.

Правильный ответ: В.

Компетенции (индикаторы): ОПК-1 (1.1, 1.2, 1.3).

- 2. ЧПУ в контексте автоматизированных электроприводов станков:
- А) система числового программирования;
- Б) система контроля параметров;
- В) система управления положением;
- Г) система автоматического управления.

Правильный ответ: А.

Компетенции (индикаторы): ОПК-1 (1.1, 1.2, 1.3).

- 3. Функция выполняется системой обратной связи в автоматизированном электроприводе станка:
 - А) управление скоростью двигателя;
 - Б) измерение и передача информации о фактическом положении;
 - В) преобразование аналогового сигнала в цифровой;
 - Γ) защита двигателя от перегрузки.

Правильный ответ: Б.

Компетенции (индикаторы): ОПК-1 (1.1, 1.2, 1.3), ПК-4 (4.1, 4.2, 4.3).

Задания закрытого типа на установление соответствия

Установите правильное соответствие.

Каждому элементу левого столбца соответствует только один элемент правого столбца.

1. Установите соответствие между уравнениями и параметрами, характеризующими динамику приводов, и их описаниями.

Уравнения и параметры

Описания

1) $M = J * (d\omega/dt) + Mc$

А) Линейной

2) Коэффициент трения скольжения и Б) Уравнение, которое описывает

момент соп собой завис	_	язаны межд	у ди	намику вращат	гельного движен	ИЯ
3) $F = m * (c$	lv/dt) + Fc) Осевой момо риведенной ма	-	
, 1	иетр Ј в ого движения о	• 1	и Г		авнение динамик пого движения	Ш
Правиль	ный ответ;					
_	1	2		3	4	
	Б	A		Γ	В	
Компете	енции (индикат	оры): ПК-5 (5.1, 5	5.2, 5.3).		
систем управл	овите соответс ения электроприты, параметры	риводами и и		исаниями.	аметрами и зада исания	ЧИ
систем упра	вления электро	оприводами				
1) Основнь управления э	ие компонент лектроприводс			Управление ложению	по скорости	И
2) Основная з	задача системы	управления		абильности	ие точности рабо ^л	И ТЫ
 Дотинен 	обратной связ	II D CHOTANA		ектропривода	ание заданно	TO.
	лектроприводо		3a1		я исполнительно	
4) Типы упробратной свя	авления электр зи	оопривода по	час) Двигатель готы, сист чики		
Прави	льный ответ;		, ,			
	1	2		3	4	
	Γ	В		Б	A	
Комп	етенции (индиг	каторы): ОП	K-1 (1	$1.1, 1.2, 1.3), \Pi$	K-4 (4.1, 4.2, 4.3)	
управления эл Парамет	овите соответо ектроприводов и элементы ния электропри	з и их назнач систем			ементами систем чения	
1) Парам	етры быстр	одействия	A)	Определяет ч	настоту вращен	ия
системы				гродвигателя	и позволяет	eë
электроприн	вода			шровать		

регулировать

- 2) Преобразователь частоты в системах управления электроприводами
- Б) Реализует алгоритмы управления, обработку данных с датчиков, взаимодействие с оператором
- 3) Программное обеспечение в системах управления электроприводами
- В) Реализует частотное регулирование частоты вращения двигателя
- 4) Частота питания обмоток электропривода
- Г) Определяют время регулирования и перерегулирования электропривода

Правильный ответ:

1	2	3	4
Γ	В	Б	A

Компетенции (индикаторы): ОПК-1 (1.1, 1.2, 1.3).

Задания закрытого типа на установление правильной последовательности

Установите правильную последовательность.

Запишите правильную последовательность букв слева направо.

- 1. Установите правильную последовательность общих этапов включения автоматизированного электропривода станка:
- A) Рабочий режим (после достижения заданной скорости или положения;
 - Б) Проверка готовности системы;
 - В) Инициализация системы управления;
 - Г) Плавный пуск двигателя.

Правильный ответ: Б, В, Г, А.

Компетенции (индикаторы): ОПК-1 (1.1, 1.2, 1.3).

- 2. Установите правильную последовательность подготовки металлообрабатывающего станка с числовым программным управлением:
 - А) установка инструмента и заготовки;
 - Б) загрузка программы обработки детали;
 - В) проверка системы ЧПУ;
- Γ) подключение станка к сети питания и включение главных выключателей;
 - Д) проверка нулевой точки (нулевой координаты).

Правильный ответ: Г, В, Б, А, Д.

Компетенции (индикаторы): ОПК-1 (1.1, 1.2, 1.3), ПК-5 (5.1, 5.2, 5.3).

- 3. Установите правильную последовательность подготовки к эксплуатации аддитивного оборудования с автоматизированным управлением:
- А) Калибровка системы позиционирования (осей XYZ), юстировка лазера и проверка точности позиционирования;

В) Подготовка рабочей зоны; Г) Проверка состояния оборудования; Д) Подготовка программного обеспечения. Правильный ответ: Г, Д, В, Б, А. Компетенции (индикаторы): ПК-6 (6.1, 6.2, 6.3). Задания открытого типа Задания открытого типа на дополнение Напишите пропушенное слово (словосочетание). 1. Для обеспечения точности обработки необходимо убедиться, что определяет ЧПУ правильно нулевую точку координатной станка. Правильный ответ: системы. Компетенции (индикаторы): ПК-4 (4.1, 4.2, 4.3). 2. В наиболее автоматизированных электроприводах станков распространены асинхронные двигатели с короткозамкнутым ротором и постоянного тока. Правильный ответ: двигатели. Компетенции (индикаторы): ПК-4 (4.1, 4.2, 4.3). 3. В системе автоматизированного электропривода преобразователь частоты используется для защиты двигателя от _____ Правильный ответ: перегрузок. Компетенции (индикаторы): ПК-5 (5.1, 5.2, 5.3). Задания открытого типа с кратким свободным ответом Напишите пропущенное слово (словосочетание). 1. Для регулирования скорости асинхронного двигателя используется _____, что позволяет изменять частоту напряжения на статоре. Правильный ответ: частотный преобразователь, векторное управление/ пусковой реостат. Компетенции (индикаторы): ПК-5 (5.1, 5.2, 5.3). 2. При использовании автоматизированном электроприводе достигается высокая точность позиционирования двигателя. Правильный ответ: датчика Холла/тахогенератора, Компетенции (индикаторы): ПК-5 (5.1, 5.2, 5.3).

Б) Загрузка материалов;

3. Для защиты электродвигателя от перегрузок применяется , который отключает питание при превышении допустимого тока. Правильный ответ: тепловое реле / автоматический выключатель /

Правильный ответ: тепловое реле / автоматический выключатель / предохранитель.

Компетенции (индикаторы): ПК-4 (4.1, 4.2, 4.3).

Задания открытого типа с развернутым ответом

1. Кратко охарактеризуйте применение асинхронных двигателей в автоматизированных электроприводах

Время выполнения – 8 мин.

Критерии оценивания: полное содержательное соответствие приведенному ниже решению.

Асинхронные двигатели являются универсальным и экономичным решением для многих задач в автоматизированных электроприводах. Их достоинства, такие как надежность, простота и низкая стоимость, делают их выбор предпочтительным в большинстве случаев. Но ряд недостатков (скорость вращения ротора зависит от частоты питающей сети, высокие пусковые токи могут создавать проблемы в сетях с ограниченной мощностью, при длительных перегрузках двигатель может перегреваться, точное позиционирование ротора затруднено) ограничивает область их применения.

Компетенции (индикаторы): ОПК-1 (1.1, 1.2, 1.3), ПК-4 (4.1, 4.2, 4.3).

2. Кратко охарактеризуйте применение синхронных двигателей в автоматизированных электроприводах

Время выполнения – 10 мин.

Критерии оценивания: полное содержательное соответствие приведенному ниже решению.

Синхронные двигатели находят применение в автоматизированных электроприводах. Им присуща высокая точность позиционирования, жесткая механическая характеристика и широкий диапазон регулирования скорости. Конструкция с обмоткой возбуждения требует отдельного источника питания для возбуждения, конструкции с постоянными магнитами сложнее поддаются регулировке.

При номинальной нагрузке синхронные двигатели имеют высокий КПД. Скорость вращения может регулироваться изменением частоты питающего напряжения или изменением тока возбуждения.

Компетенции (индикаторы): ОПК-1 (1.1, 1.2, 1.3), ПК-4 (4.1, 4.2, 4.3).

3. Кратко охарактеризуйте применение двигателей постоянного тока в автоматизированных электроприводах

Время выполнения – 10 мин.

Критерии оценивания: полное содержательное соответствие приведенному ниже решению.

Двигатели постоянного тока широко применяются в автоматизированных электроприводах благодаря своим характеристикам: позволяют плавно и точно изменять скорость вращения в широком диапазоне; регулирование скорости и

момента осуществляется относительно просто изменением напряжения якоря или магнитного потока; обладают высоким пусковым моментом; легко меняют направление вращения. Используются в системах с обратной связью.

Недостатки: наличие щеточного узла требует регулярного обслуживания и снижает надежность, менее энергоэффективны по сравнению с асинхронными двигателями.

Компетенции (индикаторы): ОПК-1 (1.1, 1.2, 1.3), ПК-4 (4.1, 4.2, 4.3).

Экспертное заключение

Представленный фонд оценочных средств (далее – Φ OC) по дисциплине «Автоматизированный электропривод» соответствует требованиям Φ ГОС ВО.

Предлагаемые формы и средства текущего и промежуточного контроля адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств.

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины представлены в полном объеме.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанный и представленный для экспертизы фонд оценочных средств рекомендуется к использованию в процессе подготовки обучающихся по указанному направлению / специальности.

Председатель учебно-методической комиссии института технологий и инженерной механики __

<u>вери—</u> Ясуник С.Н.

Лист изменений и дополнений

No	Виды	Дата и номер протокола	Подпись
Π/Π	дополнений и	заседания кафедры	(с расшифровкой)
	изменений	(кафедр), на котором	заведующего кафедрой
		были рассмотрены и	(заведующих кафедрами)
		одобрены изменения и	
		дополнения	