МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Институт технологий и инженерной механики Кафедра «Станки, инструменты и инженерная графика»

института технологий и Техноло

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по учебной дисциплине

«Методы проектирования»

15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств

Металлообрабатывающие станки и комплексы,

Разработчи	к (разработчик	и).			
профессор	1/2 many	1	Брешев Е	3.E.	
(должность)	(пудпись)	ФИО			
(должность)	(подпись)				
	отрен и одобрег ая графика» от		ании кас	федры «Станки _20 <u>_25</u> г., прот	
Заведующий	і́ кафедрой	Ass.	- of	Брешев В.Е.	

Комплект оценочных материалов по дисциплине «Методы проектирования»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа

Выберите один правильный ответ.

- 1. Анализ затрат на обеспечение деятельности предприятий и проектных организаций показал:
- А) снижение затрат времени на проектирование и изготовление изделий при использовании САПР;
- Б) снижение затрат, времени, повышение производительности и качества при внедрении систем автоматизированного проектирования изделий машиностроения и технологических процессов;
- В) снижение стоимости проектных работ и производства изделий при внедрении средств автоматизации;
- Г) снижения всех видов затрат при использовании искусственного интеллекта.

Правильный ответ: Б.

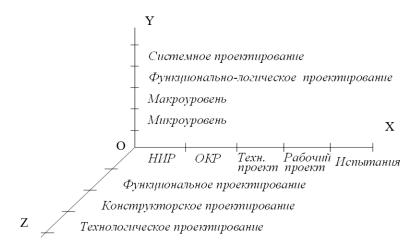
Компетенции (индикаторы): ОПК-2 (2.1, 2.2).

- 2. Целью анализа затрат деятельности предприятий и проектных организаций является:
- А) определение фактических затрат на производственную и проектную деятельность;
- Б) определение фактических затрат по категориям, их динамики и путей, методов, средств их снижения;
 - В) определение способов оптимизации затрат;
- Г) определение уровня обновления оборудования и программного обеспечения.

Правильный ответ: Б.

Компетенции (индикаторы): ОПК-2 (2.1, 2.2).

Выберите два правильных ответа

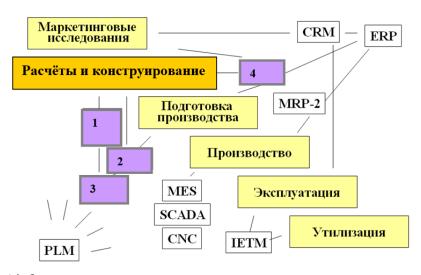

- 3. Под проектированием технического объекта мы понимаем:
- А) выполнение расчётов и конструирование изделия или объекта;
- Б) создание, преобразование и представление в принятой форме (в виде проекта) образа ещё не существующего объекта;
- В) процесс создания проекта на изделие через выполнение исследовательских, расчётных и конструкторских работ;

Г) последовательное выполнение операций анализа и синтеза изделия.

Правильные ответы: Б, В.

Компетенции (индикаторы): ПК-1 (1.1, 1.2).

4. Уровни проектирования в САПР показаны по оси:



- A) 0Z;
- Б) *0Y*;
- B) 0X;
- Γ) $\partial Z u \partial Y$.

Правильный ответ: Б.

Компетенции (индикаторы): ОПК-2 (2.1, 2.2).

5. Укажите место (номер прямоугольника) для САМ систем в соответствии с их предназначением в жизненном цикле изделия:

- A) 3;
- Б) 2;
- B) 1;
- Γ) 4.

Правильный ответ: Б.

Компетенции (индикаторы): ПК-1 (1.1, 1.2).

6. В представленной схеме методов проектирования в неподписанном прямоугольнике должно быть указано:

- А) традиционное проектирование;
- Б) типовое проектирование;
- В) конструкторско-технологическое проектирование;
- Г) гибридное проектирование.

Правильный ответ: Б.

Компетенции (индикаторы): ПК-1 (1.1, 1.2).

Задания закрытого типа на установление соответствия

Установите правильное соответствие.

Каждому элементу левого столбца соответствует только один элемент правого столбца.

1. Установите соответствие между состоянием эскиза сечения в САПР SolidWORKS и его цветом.

Состояние эскиза сечения	Цвет эскиза сечения
1) Эскиз полностью определён	А) Жёлтый
2) Эскиз не полностью определён	Б) Чёрный
3) В эскизе недопустимое решение	В) Синий

Правильный ответ:

_			
	1	2	3
	Б	В	A

Компетенции (индикаторы): ПК-1 (1.1, 1.2).

2. Установите соответствие между назначением программ (подсистем САПР) и принятой для них англоязычной аббревиатурой.

Назначение программ	Обозначение программ
---------------------	----------------------

1) Программы (подсистемы) проектирования	A) CAD
технологических процессов изготовления	
2) Программы (подсистемы) компьютерного	Б) САМ
геометрического моделирования	
3) Программы (подсистемы)	B) CAE
функционального проектирования или	
инженерного анализа	

Правильный ответ:

1	2	3
Б	A	В

Компетенции (индикаторы): ПК-1 (1.1, 1.2).

3. Установите соответствие между названием машиностроительной САПР и уровнем её функциональности.

Название машиностроительной САПР	Уровень функциональности
1) CATIA	А) Нижний уровень
2) КОМПАС	Б) Верхний уровень
3) APM WinMachine	В) Средний уровень

Правильный ответ:

1	2	3
Б	В	A

Компетенции (индикаторы): ОПК-2 (2.1, 2.2).

4. Установите соответствие между назначением расчётного модуля САПР APM WinMachine и его названием.

Назначение расчётного модуля	Название расчётного модуля
1) Модуль проектирования передач	A) APM WinBear
вращения, предназначенный для расчёта	
всех типов зубчатых передач	
2) Модуль расчёта неидеальных	Б) APM WinTrans
подшипников качения, комплексного	
анализа опор качения всех известных типов	
3) Модуль расчёта, анализа и	B) APM WinCam
проектирования валов и осей	
4) Модуль расчёта и проектирования	Γ) APM WinShaft
кулачковых механизмов с автоматическим	
генератором чертежей	

Правильный ответ:

1	2	3	4
Б	A	Γ	В

5. Установите соответствие между содержанием процесса моделирования и видом.

Содержание процесса моделирования	Вид моделирования
1) Описание информации об объекте с	А) Физическое моделирование
помощью формализованных и	
неформализованных языков, образно-	
иллюстративных материалов	
2) Разработка и конструирование натурных,	Б) Информационное
физических, аналоговых или масштабных	(концептуальное)
моделей объектов. Исследование свойств и	моделирование
картины поведения объекта и реальных	
явлений на этих моделях	
3) Разработка математических моделей,	В) Компьютерное
описывающих аналитическими	моделирование
выражениями объекты и процессы	
4) Создание виртуальных компьютерных	Г) Математическое
моделей объектов для их исследования,	(аналитическое)
проектирования и производства	моделирование

Правильный ответ:

1	2	3	4
Б	A	Γ	В

Компетенции (индикаторы): ОПК-2 (2.1, 2.2).

6. Установите соответствие между содержанием процесса проектирования и его названием.

Содержание процесса проектирования	Название	
1) Разработка принципов и порядка	А) Концептуальное	
функционирования изделия, исследование	проектирование	
процессов при функционировании,		
структуры и компоновочной схемы им		
соответствующих		
2) Разработка идеи создания нового изделия	Б) Функциональное	
и её технико-экономическое обоснование	проектирование	
3) Разработка конструкции деталей, узлов и	В) Технологическое	
всего изделия и конструкторской	проектирование	
документации		
4) Разработка технологии изготовления и	Г) Конструкторское	
технологических процессов	проектирование	

Правильный ответ:

1	2	3	4
Б	A	Γ	В

Компетенции (индикаторы): ОПК-2 (2.1, 2.2).

Задания закрытого типа на установление правильной последовательности

Установите правильную последовательность.

Запишите правильную последовательность букв слева направо.

- 1. Установите правильную последовательность твердотельного моделирования эвольвентной цилиндрической зубчатой передачи в машиностроительной САПР:
- А) Выбор из встроенной библиотеки элементов параметрической модели шестерни, установка для неё параметров (модуль, число и наклон зубьев, ширина зубчатого венца и др.) и генерация модели, а затем аналогичная генерация модели зубчатого колеса;
- Б) Определение параметров, моделируемых шестерни, колеса и зубчатой передачи;
- В) Установка сопряжений для фиксации взаимного положения осей вращения (параллельность и межосевое расстояние), совпадения торцевых поверхностей колёс и обеспечения контакта пар зубьев в зацеплении;
- Г) Создание документа сборки зубчатой передачи, добавление в неё моделей шестерни и колеса, при необходимости валов и подшипников для обеспечения подвижности модели зубчатой передачи.

Правильный ответ: Б, A, Γ , B.

Компетенции (индикаторы): ПК-1 (1.1, 1.2).

- 2. Установите правильную последовательность твердотельного моделирования зубчатой передачи в машиностроительной САПР с использованием внешней программы для расчёта и моделирования деталей трансмиссий GearTrax:
- A) Расчёт параметров зубчатой передачи и визуализация её зубчатого зацепления в GearTrax, сохранение файлов шестерни, колеса и передачи;
- Б) Установка во внешней программе типа моделируемой зубчатой передачи, параметров шестерни, колеса и зубчатой передачи;
- В) Сохранение твердотельных моделей в машиностроительной САПР и контроль качества сборки зубчатой передачи по взаимному положению колёс, зацеплению пар зубьев, отсутствию интерференции;
- Г) Открытие файлов GearTrax для шестерни, колеса и сборки зубчатой передачи в машиностроительной САПР с автоматической генерацией их твердотельных моделей.

Правильный ответ: Б, А, Г, В.

Компетенции (индикаторы): ОПК-2 (2.1, 2.2).

- 3. Установите правильную последовательность стадий проектирования нового изделия машиностроения:
 - А) Опытно-конструкторские работы;
 - Б) Научно-исследовательские работы;
 - В) Создание рабочего проекта;
 - Г) Создание эскизного проекта.

Правильный ответ: Б, А, Г, В.

Компетенции (индикаторы): ПК-1 (1.1, 1.2).

- 4. Установите правильную последовательность работы с САМ системой при подготовке к механической обработке на станке с ЧПУ:
- А) Препроцессор САМ-системы производит расчёты траекторий перемещения инструмента;
- Б) Электронный чертёж или 3D-модель детали импортируется в САМсистему, технолог-оператор определяет поверхности и геометрические элементы, которые необходимо обработать, выбирает стратегию обработки, режущий инструмент и назначает режимы резания;
- В) САМ-система генерирует при помощи постпроцессора код управляющей программы механической обработки, которая формируется под требования конкретного станка ЧПУ;
- Г) В САМ-системе производится верификация (визуальная проверка) созданных траекторий, если на этом этапе обнаруживаются какие-либо ошибки, то оператор может легко их исправить, вернувшись к предыдущему этапу.

Правильный ответ: F, F, F, F.

Компетенции (индикаторы): ПК-1 (1.1, 1.2).

- 5. Установите правильную последовательность создания проекта нового изделия:
- А) Разработка технического предложения и технического задания по созданию нового изделия;
- Б) Формирование концепции (идеи) создания нового изделия и её обоснование;
 - В) Создание рабочего проекта нового изделия;
 - Г) Создание эскизного и технического проектов.

Правильный ответ: Б, А, Г, В.

Компетенции (индикаторы): ОПК-2 (2.1, 2.2).

- 6. Установите правильную последовательность реализуемых уровней проектирования сложного по структуре и функционированию изделия:
 - А) Макроуровень;
 - Б) Микроуровень;

В) Системное проектирование; Г) Функционально-логическое проектирование. Правильный ответ: Б, А, Г, В. Компетенции (индикаторы): ОПК-2 (2.1, 2.2). Задания открытого типа Задания открытого типа на дополнение Напишите пропущенное слово (словосочетание). 1. Встроенная в САПР библиотека проектирования предназначена для информационного обеспечения процесса улучшения проектирования, облегчения поиска элементов и стандартных изделий, для повышения производительности при создании трёхмерных _____ деталей и сборок, разработке их чертежей. Правильный ответ: моделей. Компетенции (индикаторы): ОПК-2 (2.1, 2.2)... 2. Итерационный характер проектирования характеризуется последовательным _____ разрабатываемой системы или изделия к требованиям технического задания за счёт вносимых изменений и повторения процедур анализа и синтеза. Правильный ответ: приближением. Компетенции (индикаторы): ОПК-2 (2.1, 2.2). 3. Проектирование изделия имеет целью создания проекта – комплекта документов, достаточного для ______, эксплуатации и утилизации данного изделия. Правильный ответ: изготовления. Компетенции (индикаторы): ПК-1 (1.1, 1.2). 4. Методы проектирования подразделяются по степени адаптивности проектных решений, по степени использования типовых проектных решений Правильный ответ: автоматизации. Компетенции (индикаторы): ПК-1 (1.1, 1.2). 5. Документ, который разрабатывается перед началом проектирования технических объектов и содержит общее их описание, основные параметры и характеристики является техническим _____ на проектируемые

Правильный ответ: заданием.

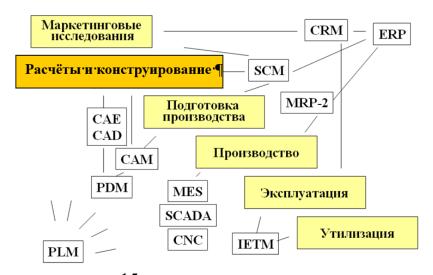
объекты.

Компетенции (индикаторы): ОПК-2 (2.1, 2.2).

6. Переход в проектировании изделия от этапа технического проекта к этапу определяется изготовлением и началом испытаний экспериментальных образцов или установочной опытной партии изделий для устранения выявленных недостатков и подготовки к производству. Правильный ответ: рабочего проекта. Компетенции (индикаторы): ПК-1 (1.1, 1.2).				
Задания открытого типа с кратким свободным ответом				
Напишите пропущенное слово (словосочетание).				
1. Основными требованиями к методам проектирования и промышленному производству в условиях современной рыночной экономики являются: сокращение срока выхода новой продукции на рынок, снижение изделий и повышение их качества. Правильный ответ: себестоимости/цены/затрат на изготовление. Компетенции (индикаторы): ОПК-2 (2.1, 2.2).				
2. Задачами САПР является глобальная автоматизация процесса проектирования – охват всех проектных процедур и операций, повышение проектирования, а также сопровождение изделия в				
процессе производства и на протяжении всего жизненного цикла с целью совершенствования изделий и САПР. Правильный ответ: уровня/эффективности/качества и эффективности/качества. Компетенции (индикаторы): ПК-1 (1.1, 1.2).				
3. Проектным решением является окончательный или промежуточный проектирования, заключающийся в разрешении проектной задачи или проблемы. Правильный ответ: результат/итог. Компетенции (индикаторы): ПК-1 (1.1, 1.2).				
4. Системный подход — это подход к исследованию сложных систем, основанный на декомпозиции (разделении) системы и анализе с учётом их взаимосвязей и взаимодействия с другими частями.				
Правильный ответ: частей системы/частей/составных частей/ компонентов. Компетенции (индикаторы): ОПК-2 (2.1, 2.2).				
5 В случае, когда на «входе» и на «выходе» компьютерной системы используется графическая информация, а именно так работают конструкторы в САПР, то такое программирование является, а область его применения – компьютерной графикой.				

Правильный ответ: графическим/интерактивным/интерактивным графическим.

Компетенции (индикаторы): ПК-1 (1.1, 1.2).


6 Современные машиностроительные САПР обеспечивают разработку, хранение и работу с проектной документацией всех видов в ______виде.

Правильный ответ: электронном/цифровом/файловом.

Компетенции (индикаторы): ОПК-2 (2.1, 2.2).

Задания открытого типа с развернутым ответом

1. Охарактеризуйте понятие жизненного цикла изделия. Какие этапы, показанные на рисунке, в него входят? Как называется технология информационного сопровождения жизненного цикла изделия? Какой из программных комплексов (показаны не закрашенными прямоугольниками) обеспечивает технологию информационное сопровождение жизненного цикла изделия.

Время выполнения – 15 мин.

Критерии оценивания: полное содержательное соответствие приведенному ниже решению.

К жизненному циклу изделия относятся все этапы фактического существования изделия или технического объекта. К ним относятся расчёт и конструирование (проектирование), подготовка производства, производство, эксплуатация, утилизация. Информационное сопровождение всего жизненного цикла называется CALS-технологией. Данная технология связывает все этапы жизненного цикла изделия и все программные комплексы, которые объединяет программный комплекс PLM. Он обеспечивает информационное сопровождение жизненного цикла изделия и реализует CALS-технологию.

Компетенции (индикаторы): ПК-1 (1.1, 1.2).

2. Охарактеризуйте показанную на рисунке сетевую (серверную) модель вычислительной системы, её преимущества перед вычислительной системой на основе суперкомпьютера (мейнфрейма).

Время выполнения – 15 мин.

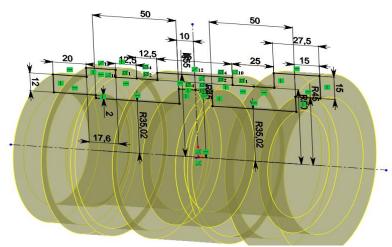
Критерии оценивания: полное содержательное соответствие приведенному ниже решению.

- 1) Инженерные станции с проектировщиками объединены в локальную сеть для взаимодействия.
- 2) Каждая инженерная станция обладает своими независимыми вычислительными ресурсами.
- Преимущества перед вычислительной системой на основе суперкомпьютера (мейнфрейма) заключаются В меньшей стоимости, постепенного возможности наращивания вычислительных мощностей, выполнении ремонта или обслуживания без остановки всей вычислительной системы.

Компетенции (индикаторы): ПК-1 (1.1, 1.2).

3. Перечислите основные недостатки показанной на рисунке модели вычислительной системы на основе суперкомпьютера – мейнфрейма.

Время выполнения – 10 мин.


Критерии оценивания: полное содержательное соответствие приведенному ниже решению.

- 1) Значительные материальные затраты на создание и запуск в эксплуатацию вычислительной системы.
- 2) Невозможность непрерывного или поэтапного наращивания вычислительных мощностей системы.

3) Необходимость останавливать всю вычислительную систему на ремонт или замену суперкомпьютера.

Компетенции (индикаторы): ПК-1 (1.1, 1.2).

4. Опишите последовательность и применяемые инструменты при твердотельном моделировании детали, показанной на рисунке.

Время выполнения – 15 мин.

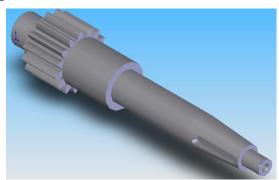
Критерии оценивания: полное содержательное соответствие приведенному ниже решению.

Моделирование начинается с создания эскиза сечения. При построении эскиза используются инструменты «отрезок» и «прямая», оси строятся как справочная геометрия. Эскиз полностью определён — для него заданы линейные размеры и радиусы до оси вращения, определено положение всех элементов, поэтому он окрашен в чёрный цвет. Затем тело детали образуется вращением эскиза сечения вокруг горизонтальной оси симметрии. Инструмент для вращения сечения в САПР КОМПАС называется «Элемент вращения», в SolidWORKS — «Повёрнутая бобышка». Вращение выполняется на полный оборот.

Компетенции (индикаторы): ОПК-2 (2.1, 2.2).

5. Перечислите преимущества применения функции прозрачности моделей при проектировании машин и механизмов в САПР на примере трёхмерной модели редуктора.

Время выполнения – 15 мин.



Критерии оценивания: полное содержательное соответствие приведенному ниже решению.

Применение функции прозрачности позволяет видеть внутреннее строение механизма редуктора, контролировать взаимное положение деталей, вносимые в конструкцию изменения без применения виртуальной разборки редуктора или его разреза. При моделировании работы редуктора прозрачность позволяет наблюдать вращение зубчатых колёс и валов, передачу движения от входного вала к выходному последовательным зацеплением зубьев шестерён и колёс зубчатых передач.

Компетенции (индикаторы): ОПК-2 (2.1, 2.2).

6. Перечислите основные этапы твердотельного моделирования валашестерни в машиностроительной САПР.

Время выполнения – 15 мин.

Критерии оценивания: полное содержательное соответствие приведенному ниже решению.

- 1) Моделирование зубчатой шестерни, используя встроенную библиотеку проектирования САПР или внешнюю программу для расчёта и моделирования деталей трансмиссий, в том числе зубчатых колёс.
- 2) Достраивание тела вала-шестерни от торцовых поверхностей шестерни последовательным вытягиванием круглых сечений заданных диаметров.
- 3) Моделирование шпоночного паза вырезом по эскизу и центрального отверстия, создание фасок и скруглений.

Компетенции (индикаторы): ОПК-2 (2.1, 2.2).

Экспертное заключение

Представленный фонд оценочных средств (далее – Φ OC) по дисциплине «Методы проектирования» соответствует требованиям Φ ГОС ВО.

Предлагаемые формы и средства текущего и промежуточного контроля адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств.

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины представлены в полном объеме.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанный и представленный для экспертизы фонд оценочных средств рекомендуется к использованию в процессе подготовки обучающихся по указанному направлению / специальности.

Председатель учебно-методической комиссии института технологий и инженерной механики _____

<u>Меум</u> Ясуник С.Н.

Лист изменений и дополнений

No	Виды дополнений	Дата и номер протокола	Подпись
Π/Π	и изменений	заседания кафедры	(с расшифровкой)
		(кафедр), на котором	заведующего кафедрой
		были рассмотрены и	(заведующих
		одобрены изменения и	кафедрами)
		дополнения	