МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля»

Институт <u>технологий и инженерной механики</u> Кафедра <u>станки</u>, инструменты и инженерная графика_

УТВЕРЖДАЮ
Директор института технологий и инженерной механики
Могильная Е.П.

«16.» 2023 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ «ТЕОРИЯ АВТОМАТИЗИРОВАННОГО УПРАВЛЕНИЯ»

По направлению подготовки 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств

Профиль: «Металлообрабатывающие станки и комплексы»

Лист согласования РПУД

Рабочая программа учебной дисциплины «Теория автоматизированного управления» по направлению подготовки 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств». -33 с.

Рабочая программа учебной дисциплины «Теория автоматизированного управления» составлена с учетом Федерального государственного образовательного стандарта высшего образования по направлению подготовки 15.03.05 Конструкторскотехнологическое обеспечение машиностроительных производств утвержденного приказом Министерства науки и высшего образования Российской Федерации от 17 августа 2020 года № 1044.

СОСТАВИТЕЛЬ: ст. преп. Конский А.П.

Рабочая программа дисциплины утверждена на заседании кафедры станков, инструментов и инженерной графики «14» 04 20 г., протокол №3
Заведующий кафедрой станков, инструментов и инженерной графики Макухин А.Г.
Переутверждена: «»20г., протокол №
Согласована (для обеспечивающей кафедры): Директор института технологий и инженерной механики Переутверждена: «»20 года, протокол №
Рекомендована на заседании учебно-методической комиссии института $mexicolorius$ « 18 » 04 20 3 г., протокол № 3
Председатель учебно-методической комиссии института Ясуник С.Н.

[©] Конский А.П., 2023 год

[©] ФГБОУ ВО «ЛГУ им. В. Даля», 2023 год

Структура и содержание дисциплины

1. Цели и задачи дисциплины

Цель изучения дисциплины - дать студентам знания в области теоретических основ анализа и синтеза систем автоматического управления и практических навыков их профессионального применения в области управления при проектировании технологического оборудования машиностроения

Задачами изучения дисциплины являются

- изучить теоретические основы, состав, структуру и принципы управления САУ;
 - научиться разрабатывать математические модели подсистем управления;
- получить практические навыки применения методов исследования динамических характеристик объектов управления;
- приобрести навыки анализа и синтеза САУ металлорежущими станками и комплексами.

2. Место дисциплины в структуре ООП ВО.

Дисциплина «**Теория автоматизированного управления**» входит в часть, формируемую участниками образовательных отношений блока Б1.В.

Содержание дисциплины является логическим продолжением содержания дисциплин: математика, физика, теоретическая механика, информатика, компьютерная графика, электротехника и электроника, динамика технологического оборудования, математическое моделирование технологического оборудования

и служит основой для освоения дисциплин: расчет и конструирование станков, технология станкостроения, динамика, надежность и диагностика технологических систем, управление станками и комплексами, исследование и испытание станков и станочных комплексов; выполнения выпускной квалификационной работы бакалавра/

Необходимыми условиями для освоения дисциплины являются:

знания математических методов анализа и синтеза объектов и физических процессов, умения выполнять моделирование и оптимизацию, навыки применения программных продуктов и средств измерительной и вычислительной техники.

3. Требования к результатам освоения содержания дисциплины

•		содержания дисциплины
Код и наименование	Индикаторы достижений	Перечень планируемых ре-
компетенции	компетенции (по реализу-	зультатов
	емой дисциплине)	
ОПК-4 Способен кон-	ОПК-4.1. Способен конт-	Знать: правила техники без-
тролировать и обеспе-	ролировать и обеспечи-	опасности при работе в ком-
чивать производствен-	вать производственную	пьютерном классе
ную и экологическую	безопасность на рабочих	Уметь: контролировать без-
безопасность на рабо-	местах;	опасность работы оборудрва-
чих местах;		ния АРМ
		Владеть: навыками обеспе-
	ОПК-4.2. Обеспечивает	чения экологической без-
	экологическую безопас-	опасность на рабочих ме-
	ные на рабочих местах;	стах;
	,	
ОПК-5 Способен ис-	ОПК-5.1 Использует ос-	Знать: основные закономер-
пользовать основные	новные закономерности,	ности, действующие в про-
закономерности, дей-	действующие в процессе	цессе изготовления машино-
ствующие в процессе	изготовления машино-	строительных изделий
изготовления машино-	строительных изделий	Уметь: эффективно исполь-
строительных изделий		зовать методы и способы по-
требуемого качества,	ПК-5.2 Обеспечивает из-	лучения изделий требуемой
заданного количества	готовления машинострои-	точности и качества
при наименьших затра-	тельных изделий требуе-	Владеть: навыками изготов-
тах общественного	мого качества, заданного	ления изделий заданного ко-
труда;	количества при наимень-	личества при наименьших за-
	ших затратах обществен-	тратах общественно-го
	ного труда;	труда;
ПК-1 Способен обеспе-	ПК-1.1 Разрабатывает	Знать: правила разработки
чивать технологическое	проектную конструктор-	проектной конструкторской
сопровождение разра-	скую документации (КД)	документации (КД) на маши-
ботки проектной кон-	на машиностроительные	ностроительные изделия
структорской докумен-	изделия средней сложно-	средней сложности
тации (КД) на машино-	сти	Уметь: обеспечивать техно-
строительные изделия	ПК-1.2 Обеспечивает	логическое сопровождение
средней сложности	технологическое сопро-	разработки проектной (КД)
	вождение разработки про-	Владеть навыками разработ-
	ектной (КД)	ки проектной (КД) на маши-
	` ` `	ностроительные изделия
		средней сложности
		ереднен сложности

ПК-4 Способен проектировать простую технологическую оснастку для изготовления машиностроительных изделий

ПК-4.1 Способен выбирать и проектировать необходимую оснастку для изготов-ления конкретных изделий

ПК-4.2. Рассчитывает анализирует и выбирает конструктивные параметры технологической оснастки для изготовления заданных машиностроительных изделий

Знать: основные технические требования, характеристики, методику проектирования и программы расчетов параметров простой технологичес- кой оснастки.

Уметь: использовать алгоритмы и программное обеспечение при расчетах параметров, моделировании и конструировании простой технологической оснастки. Владеть: навыками анализа расчётов, моделировании и конструировании простой технологической оснастки для изготовления машиностроительных изделий

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

Day was five it no feet v	Объем часов (зач. ед.)		
Вид учебной работы	Очная форма	Заочная форма	
Общая учебная нагрузка (всего)	144	144	
	(4 зач.ед)	(4 зач.ед)	
Обязательная аудиторная учебная нагрузка	72	6	
(всего)			
в том числе:			
Лекции	36	2	
Семинарские занятия	-		
Практические занятия	18	4	
Лабораторные работы	18		
Курсовая работа (курсовой проект)			
Другие формы и методы организации образова-	-		
тельного процесса (расчетно-графические ра-			
боты, групповые дискуссии, ролевые игры, тре-			
нинг, компьютерные симуляции, интерактивные			
лекции, семинары, анализ деловых ситуаций и			
m.n.)			
Самостоятельная работа студента (всего)	72	138	
Итоговая аттестация	экзамен	экзамен	

4.2. Содержание разделов дисциплины

Семестр 8

Тема 1. Введение. Понятие о автоматическом управлении металлорежущими системами. Блок-схема САУ. Классификация САУ. Функциональная схема САУ.

Тема 2. Математическое описание линейных САУ. Разбиение САУ на звенья. Структурная схема САУ. Узел. Сумматор. Уравнение звеньев системы. Линеаризация. Преобразование Лапласа и его свойства.

- Тема 3. Характеристика САУ. Передаточная функция. Переходной процесс. Определение переходной функции. Частотные характеристики звеньев: амплитудная, фазовая, амплитудно-фазовая, логарифмическая.
- Тема 4. Динамические звенья САУ. Типовые звенья линейных САУ: пропорциональное, инерционное, колебательное, идеальное, интегрирующее и дифференцирующее, с постоянным запаздывание
- Тема 5. Структурные схемы САУ. Передаточная функция цепочки последовательно и параллельно соединенных звеньев. Передаточная функция звена охватываемого обратной связью. Перенос: сумматора через звено, узла через звено, сумматора через узел, узла через сумматор. Формула Мейсона.
- Тема 6. Устойчивость САУ. Понятие об устойчивости. Критерий устойчивости Рауса-Гурвица. Критерий устойчивости и годограф Михайлова. Критерий устойчивости Найквиста. Оценка и область устойчивости САУ. Оценка устойчивости системы с запаздыванием.
- Тема 7. Синтез САУ. Показатели качества переходных процессов. Время переходного процесса, перерегулирование, полоса пропускания. Корневые критерии качества переходных процессов. Диаграмма Вышнеградского. Интегральные критерии качества переходных процессов.
- Тема 8. Коррекция динамических свойств САУ. Назначение и виды коррекции динамических свойств САУ. Законы управления и регуляторы. Коррекция САУ П; ПД; ПИ и ПИД-регуляторами. Использование прикладных программ МАТLAB, среды Simulink и ПЭВМ.
- Тема 9. Нелинейные оптимальные и адаптивные САУ. Особенности нелинейных САУ. Звенья с зоной нечувствительности и с «мертвым» ходом. Двухпозиционное реле идеальное и с зоной нечувствительности. Идеальное трехпозиционное реле. Методы анализа нелинейных САУ. Метод гармонической линеаризации. Коррекция нелинейных систем. Оптимальные и адаптивные САУ.

4.3. Лекции

No	Название темы	Объем	часов
п/п		Очная форма	Заочная форма
1	Введение. Понятие о автоматическом управлении металлорежущими системами. Блок-схема САУ. Классификация САУ. Функциональная схема САУ.	2	
2	Математическое описание линейных САУ. Разбиение САУ на звенья. Структурная схема САУ. Узел. Сумматор. Уравнение звеньев системы. Линеаризация. Преобразование Лапласа и его свойства.	3	
3	Характеристика САУ. Передаточная функция. Переходной процесс. Определение переходной функции. Частотные характеристики звеньев: амплитудная, фазовая, амплитудно-фазовая, логарифмическая.	3	1
4.	Динамические звенья САУ. Типовые звенья линейных САУ: пропорциональное, инерционное, колебательное, идеальное интегрирующее и дифференцирующее, с постоянным запаздыванием	4	

9	и ПИД-регуляторами. Использование прикладных программ MATLAB, среды Simulink и ПЭВМ. Нелинейные оптимальные и адаптивные САУ. Особенности нелинейных САУ. Звенья с зоной нечувствительности и с «мертвым» ходом. Двухпозиционное реле идеальное и с зоной нечувствительности. Идеальное трехпозиционное реле. Методы анализа нелинейных САУ. Метод гармонической линеаризации. Коррекция нелинейных систем. Оптимальные и адаптивные САУ.	5	
9	и ПИД-регуляторами. Использование прикладных программ MATLAB, среды Simulink и ПЭВМ. Нелинейные оптимальные и адаптивные САУ. Особенности нелинейных САУ. Звенья с зоной нечувствительности и с «мертвым» ходом. Двухпозиционное реле идеальное и с зоной нечувствительности.		
	и ПИД-регуляторами. Использование прикладных	3	
8	Коррекция динамических свойств САУ. Назначение и виды коррекции динамических свойств САУ. Законы управления и регуляторы. Коррекция САУ П; ПД; ПИ	5	
7	Синтез САУ. Показатели качества переходных процессов. Время переходного процесса, перерегулирование, полоса пропускания. Корневые критерии качества переходных процессов. Диаграмма Вышнеградского. Интегральные критерии качества переходных процессов.	4	1
6	Устойчивость САУ. Понятие об устойчивости. Критерий устойчивости Рауса-Гурвица. Критерий устойчивости и годограф Михайлова. Критерий устойчивости Найквиста. Оценка и область устойчивости САУ. Оценка устойчивости системы с запаздыванием.	5	
5.	Структурные схемы САУ. Передаточная функция цепочки последовательно и параллельно соединенных звеньев. Передаточная функция звена охватываемого обратной связью. Перенос: сумматора через звено, узла через звено, сумматора через узел, узла через сумматор. Формула Мейсона.	5	

4.4. Практические (семинарские) занятия

№ п/п	Название темы	Объем	и часов
		Очная форма	Заочная форма
1	Математическое описание линейных САУ	2	1
2	Характеристики САУ.	3	1
3	Динамические звенья САУ	3	1
4	Показатели качества переходных процессов	3	1
<i>5</i> . <i>C</i>	Назначение и виды коррекции	5	2
5;6	Системы управление станками	2	
Итого:		18	4

4.5. Лабораторные работы

№ п/п	Название темы	Объем	часов
		Очная форма	Заочная форма
1	Знакомство с программными средами MATLAB, Mathcad, Simulink, CLASSIC 3.01, Maple,	3	
	FANTEK, и возможностями их использования при анализе, расчетах и проектировании САУ		
2	Определение передаточной функции САУ	3	
3	Исследование устойчивости САУ	4	
4	Определение и построение графиков частотных характеристик САУ	4	
5	Исследование влияния корректирующих звеньев на качество САУ.	4	
Итого:		18	

4.6. Самостоятельная работа студентов

No	Название темы	Вид СРС	Объем	часов
п/п	пазвание темы	видете	Очная форма	Заочная форма
1	Преобразование структурных схем		8	15
2	Уравнения звеньев системы. Передаточная функция линейной САУ.		6	15
3	Переходные и частотные характеристики звеньев САУ.	Поиск, анализ, структурирова-	8	15
4	Обеспечение устойчивости и повышение запаса устойчивости САУ.	ние и изучение информации по	6	15
5	Характеристики и свойства типовых динамических цепей.	темам, Подго- товка к практи-	6	15
6	Оценка качества процесса управления по частотным и интегральным критериям.	ческим и лабораторным занятиям, семестро-	12	15
7	Коррекция динамических свойств линейных САУ.	вому (модуль- ному) контролю	12	15
8	Методы анализа и исследования нелинейных САУ.	и экзамену.	8	15
9	Обучающиеся системы		6	18
Ито	го:		72	138

4.7. Курсовые работы/проекты.

Не предусмотрены учебным планом.

5. Образовательные технологии

С целью формирования и развития профессиональных навыков, обучающихся используют инновационные образовательные технологии при реализации различных видов аудиторной работы в сочетании с внеаудиторной. Используемые технологии и методы направлены на повышение качества подготовки путем развития у студентов способностей к самообразованию и нацелены на активацию и реализацию личностного потенциала.

Преподавание ведется с использованием следующих программных продуктов (информационные технологии) при подготовке к лекциям, выполнению лабораторных и практических занятий, самостоятельной работы:

- 1. Пакет прикладных программ среды Mathcad 14.
- 2. Пакет прикладных программ среды МАТLAB.
- 3. Пакет прикладных программ среды Simulink,
- 4. Программа для анализа свойств и характеристик систем управления среды CLASSIC 3.01.

Информационные – использование электронных образовательных ресурсов при подготовке к лекциям, практическим и лабораторным занятиям.

Работа в команде — совместная работа в группе при выполнении лабораторных работ и домашних заданий.

6. Учебно-методическое и программно-информационное обеспечение дисциплины

- а) основная литература:
- 1. **Бесекерский В.А.** Теория систем автоматического управления [Текст]: учебник для вузов / В.А. Бесекерский, Е.П. Попов. СПб.: Профессия, 2003.-752 с.
- 2. **Юревич Е.И.** Теория автоматического управления [Текст]: учеб. для вузов / Е.И. Юревич СПб.: БХВ- Петербург, 2007. 540 с.
- 3. **Ким** Д.П. Теория автоматического управления Т. 1: Линейные системы [Текст]: учеб. пособие для вузов / Д.П. Ким. М.: Физматлит, 2003. 287 с.
- 4. **Петраков Ю.В.** Теория автоматического управления технологическими системами [Текст]: учебное пособие для студентов вузов / Ю.В. Петраков, О.И. Драчев М.: Машиностроение, 2008 336 с. http://www.studentli-brary.ru/book/ISBN9785217033911.html?SSr=5901339ed414 76c7a51355
- 5. **Ерофеев А.А.** Теория автоматического управления [Текст]: учебник для вузов / А.А. Ерофеев. 2-е изд., перераб. и доп. СПб.: Политехника, 2003. 302 с.
- 6. **Брюханов В.Н.** Теория автоматического управления [Текст]: Учеб. для машиностроит спец. вузов / В.Н. Брюханов, М.Г. Косов, С.П. Протопопов и др.; Под ред. Ю.М. Соломенцева. 3-е изд. М.: Высш. шк.; 2000. 268 с.
 - б) дополнительная литература:
- 1. **Ким Д.П.** Теория автоматического управления Т. 2: Многомерные, нелиней-ные, оптимальные и адаптивные системы [Электронный ресурс]. М.: Физматлит, 2007. 312 с.

http://www.studentlibrary.ru/book/ISBN9785217033911.html?SSr=5901339ed414 76c7a513555

- 2. **Клюев А.С.** Автоматическое управление линейными системами. М.: Фирма «Испо-сервис», 2003. 196 с.
- 3. **Подчукаев В.А.** Теория автоматического управления (аналитические методы) [Электронный ресурс]: Учебник для вузов. М.: Физматлит, 2005. 392 с.
- 4. Основы линейной теории автоматического управления в задачах электроэнергетика: Учебное пособие к компьютерным лабораторным практикумам АОС-ТАУ / В.А. Коротков; Иван. гос. энерг. ун-т. Иваново 1, 1994. 392 с.
 - в) методические указания:
- 1. Методичні вказівки до виконання курсової роботи з дисципліни «Теорія автоматичного керування металорізальними верстатами і системами» для студентів, що навчаються за напрямом підготовки «Машинобудування», «Інженерна механіка» / Склав В.І.Соколов— Луганск: Вид-во Східноукр. нац. ун-та ім. В. Даля, 2012. 42 с.
 - г) Информационные ресурсы

Информационный ресурс библиотеки образовательной организации

Научная библиотека имени А. Н. Коняева – http://biblio.dahluniver.ru/ 1. Бакаев В.Н. Теория автоматического управления. Электронное учебное пособие

http://www.zdo.vstu.edu.ru/tau 2004.html

2. Дядык В.Ф. Теория автоматического управления: учебн. пособие. – Томск: Изд-во ТПУ, 2011. - 196 с.

http://portal.tpu.ru/SHARED/d/DYADIK/study/tau/Tab/posobie tau.pdf

3. Лазарева Т. Я., Мартемьянов Ю. Ф. Основы теории автоматического управления: Учебное пособие. – Тамбов: Изд-во Тамб. гос. техн. ун-та, 2004. 352 с.

http://window.edu.ru/resourse/622/21622

4. Артамонов Д.В., Семёнов А. Д. Основы теории линейных систем автоматического управления: Учебн. пособие. — Пенза: Изд-во Пенз. гос. унта, 2003.-145 с.

http://window.edu.ru/resourse/979/36979

- 5. Министерство образования и науки Российской Федерации http://минобрнауки.pф/
- 6. Министерство образования и науки Луганской Народной Республики https://minobr.su

7. Электронно-библиотечная система «Консультант студента» — http://www.studentlibrary.ru/cgi-bin/mb4x Программное обеспечение:

7. Материально-техническое обеспечение дисциплины

В качестве материально-технического обеспечения дисциплины могут быть использованы мультимедийные средства; наборы слайдов или кинофильмов; демонстрационные приборы; при необходимости – средства мониторинга и т.д.

Лекционные занятия: комплект электронных презентаций/слайдов, аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук, ...) и т.п.

Практические занятия: компьютерный класс, пакет ПО.

Лабораторные работы: машзал, натурные образцы оборудования и станков с компьютерным управлением, компьютерный класс.

Прочее: рабочее место преподавателя, оснащенное компьютером с доступом в Интернет, рабочие места студентов, оснащенные компьютерами с доступом в Интернет, предназначенные для работы в электронной образовательной среде, и т.п.

8. Оценочные средства по дисциплине

Паспорт оценочных средств по учебной дисциплине

«Теория автоматизированного управления»

8.1 Перечень компетенций (элементов компетенций), формируемых в результате освоения учебной дисциплины

		<u> </u>	<u> </u>		
<u>№</u>	Код	Формулировка	Индикаторы достижений	Контроли-	Этапы
п/п	контро-	контролируемой	компетенции (по реализуе	руемые	форми-
	лируе-	компетенции	мой дисциплине)	темы	рования
	мой			учебной	(семестр
	Компе-			дисци-	изучения)
	тенции			плины,прак	
				тики	
1	ОПК-4	Способен контро-	ОПК-4.1. Способен кон-	Тема 1	8
		лировать и обеспе-	тролировать и обеспечи-		
		чивать производ-	вать производственную	Тема 2	8
		ственную и эколо-	безопасность на рабочих		
		гическую безопас-	местах;	Тема 3	8
		ность на рабочих	,		
		местах;	ОПК-4.2. Обеспечивает	Тема 4	8
		111001011,	экологическую безопас-		
			ные на рабочих местах;	Тема 5	8
			mile na paso ma meetax,		
		Способен исполь-	ОПК-5.1 Использует ос-	Тема 2	8
2	ОПК-5	зовать основные за-	новные закономерности,		
_	кономерности,	действующие в	Тема 3	8	
		Rollomephoeth,	Zenerby tomine b		

	T	T U	<u> </u>	<i>T</i> T. 4	
		действующие в	процессеизготовления	Тема 4	8
		процессе изготов-	машиностроительных из-	<i>T</i> . 5	0
		ления машиностро-	делий	Тема 5	8
		ительных изделий			
		требуемого каче-	ОПК-5.2 Обеспечивает	Тема 6	8
		ства, заданного ко-	изготовления машино-	1 cinci o	O
		личества при	строительтельных изде-		
		наименьших затра-	лий требуемого качества,	Тема 7	8
		тах общественного	заданного количества		
		труда;	при наименьших затра-		
			тах общественного	Тема 8	8
			труда;		
		Способен обес-		Тема 3	8
			ПК-1.1 Разрабатывает		
		печи-вать техноло-	проектную конструктор-	Тема 4	8
		гичес-кое сопро-	скую документации (КД)		
		вождение разра- ботки проектной ПК-1 конструкторской	на машиностроительные изделия средней сложности	Тема 5	8
3	TTIC 1				
	IIK-I			Тема 6	8
		документации (КД)	ПК-1.2 Обеспечивает		
		на машиност-рои-	технологическое сопро-	Тема 7	8
		тельные изделия	вождение разработки		
		средней сложности	проектной (КД)	Тема 8	8
4	ПК-4	Способен проекти-	ПК-4.1 Способен выби-	Тема3	8
-		ровать простую	рать и проектировать	<i>T</i> . 4	
		технологическую	необходимую оснастку	Тема 4	8
		оснастку для изго-	для изготовления		
		товления машино-	конкретных изделий	Тема 5	8
		строительных изде-			
		лий	ПК-4.2. Рассчитывает	Тема 6	8
			анализирует и выбирает	Тема 7	8
			конструктивные пара-	Тема 8	
			метры технологической	1ема 8	8
			оснастки для изготовле-	T 0	0
			ния заданных машиност-	Тема 9	8
			роительных изделий		
<u> </u>	I .	1	1		

8.2. Показатели и критерии оценивания компетенций, описание шкал оценивания

No	Код конт-	Индикаторы дости-	Перечень пла-	Контролиру-	Наименование
п/п	ролируе- мой ком-	жений компетенции (по реализуемой дис	нируемых ре-	емые темы	оценочного
	петенции	циплине)	зультатов	учебной дис- циплины	средства
1.	ОПК-4	ОПК-4.1. Способен контро-лировать и обеспечивать про-изводственную безопасность на рабочих местах;	Знать: правила техники безопасности при работе в компьютерном классе	Тема 1 Тема 2, Тема 4,	Вопросы для обсуждения обеспечения производственной и экологической безопасности на

		ОПК-4.2. Обеспечивает экологическую безопасные на рабочих местах;	Уметь: контролировать безопасность работы оборудрвания АРМ Владеть: навыками обеспечения экологической безопасность на рабочих местах;	Тема 5, Тема 7, Тема 8, Тема 9,	рабочих местах;(в виде докладов и сообщений), \рефераты, контрольные действия
2	ОПК-5	ОПК-5.1 Использует основные закономерности, действующие в процессе изготов-ления машиностроительных изделий ОПК-5.2 Обеспечивает изготовления машиностроительтельных изделий требуемого качества, заданного количества при наименьших затратах обществен-ного труда;	Знать: основные закономерности, действующие в процессе изготовления машиностроительных изделий Уметь: эффективно использовать методы и способы получения изделий требуемой точности и качества Владеть: навыками изготовления изделий заданного количества при наименьших затратах общественного труда;	Тема 2 Тема 3, Тема 4, Тема 5, Тема 6, Тема 7, Тема 8, Тема 9	Вопросы для обсуждения лекционного материала и самостятельной работы (в виде докладов и сообщений), рефераты, лабораторные и практические занятия, тесты
3.	ПК-1	ПК-1.1 Разрабатывает проектную конструкторскую документации (КД) на машиностроительные изделия средней сложности ПК-1.2 Обеспечивает технологическое сопровождение разработки проектной (КД)	Знать: правила разработки проектной конструкторской документации (КД) на машиностроительные изделия средней сложности Уметь: обеспечивать технологическое сопровождение	Тема 1 Тема 2, Тема 4, Тема 5, Тема 7, Тема 8, Тема 9,	Вопросы для об- суждения лекци- онного матери- ала и самостя- тельной работы (в виде докладов и сообщений), рефераты, лабо- раторные и прак- тические заня- тия, тесты

	1		~		T
			разработки проектной (КД)		
			Владеть:навы-		
			ками разрабо-		
			тки проектной		
			(КД) на маши-		
			ностроитель-		
			ные изделия		
			средней слож-		
			ности		
4.	ПК-4	ПК-4.1 Способен	Знать: основные		Вопросы для об-
		выбирать и проек-	технические тре-		суждения лекци-
		тировать необхо-	бования, харак-	Тема 1	онного матери-
		димую оснастку	теристики, ме-	_	_
		для изготовления	тоди-ку проекти-	Тема 2,	ала и самостя-
		конкретных изде-	рования и про-		тельной работы
		лий	граммы расче-	Тема 3	(в виде докладов
		ПК-4.2. Рассчиты-	тов параметров	T. 4	и сообщений),
		вает анализирует и	простой техно-	Тема 4,	рефераты, лабо-
		- ·	логической	Т	раторные и прак-
		выбирает конст-	оснастки.	Тема 5,	1 1
		руктивные пара-	Уметь: исполь-	Т	тические заня-
		метры технологи-	зовать алго-	Тема 6	тия, тесты
		ческой оснастки	ритмы и про-	T-17	
		для изготовления	граммное обес-	Тема 7,	
			печение при	Torra 9	
		заданных машино-	расчетах пара-	Тема 8,	
		строительных изде-	метров, моде-	Тема 9,	
		лий	лировании и	1 сма 9,	
			конструирова-		
			нии простой		
			технологиче-		
			ской оснастки.		
			Владеть: навы-		
			ками анализа		
			расчётов, моде-		
			лировании и		
			конструирова-		
			1.0 1		
			*		
			технологи-		
			ческой		
			оснастки для		
			изготовления		
			машишино-		
			строительных		
			изделий		

Фонды оценочных средств по дисциплине

«Теория автоматизированного управления»

8.3. Формы контроля освоения дисциплины.

Текущая аттестация студентов производится в дискретные временные интервалы лектором и преподавателем, ведущим лабораторные

работы и практические занятия по дисциплине в следующих формах: тестирования; проверки контрольных и лабораторных работ, практических занятий, рефератов по тематике самостоятельной работе.

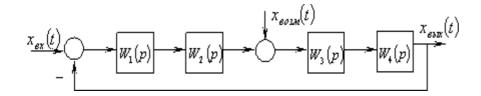
8.4. Перечень практических занятий:

- 1. Математическое описание линейных САУ
 - 1.1. Разбиение САУ на звенья.
 - 1.2. Уравнение звеньев системы.
 - 1.3. Преобразование Лапласа и его свойства.
- 2. Характеристика САУ
 - 2.1.. Передаточная функция
 - 2.2. Определение переходной функции
 - 2.3. Частотные характеристики звеньев
- 3. Динамические звенья САУ
 - 3.1. Типовые звенья линейных САУ
- 3.2. Соединенных звеньев.
- 3.3. Перенос сумматоров и узелов
- 4. Показатели качества переходных процессов
 - 4.1. Корневые критерии качества
 - 4.2. Интегральные критерии качества
 - 4.3. Диаграмма Вышнеградского
- 5. Назначение и виды коррекции
 - 5.1. Законы управления и регуляторы
 - 5.2. Коррекция САУ П; ПД; ПИ и ПИД-регуляторами
 - 5.3. . Особенности нелинейных САУ
 - 5.4. Методы анализа нелинейных САУ
- 6. Системы управление станками
 - 6.1. Программное управление станками
 - 6.2. Система адаптивного управления станочным оборудованием

Критерии и шкала оценивания по оценочному средству промежуточный контроль-практические занятия

Шкала оценивания	Критерий оценивания
(интервал баллов)	
5	Задание выполнено на высоком уровне (студент в полном
	объеме осветил рассматриваемую проблематику, привел
	аргументы в пользу своих суждений, владеет профильным
	понятийным (категориальным) аппаратом и т.п.)
4	Задание выполнено на среднем уровне (студент в целом
	осветил рассматриваемую проблематику, привел аргу-
	менты в пользу своих суждений, допустив некоторые не-
	точности и т.п.)
3	Задание выполнено на низком уровне (студент допустил
	существенные неточности, изложил материал с ошибками,
	не владеет в достаточной степени профильным категори-
	альным аппаратом и т.п.)

2	Задание выполнено на неудовлетворительном уровне или не представлен (студент не готов, не выполнил задание и
	т.п.)


8.5. Перечень лабораторных работ (занятий):

- 1. Знакомство с программными средами и возможностями их использования при анализе, расчетах и проектировании САУ.
 - 1.1. MATLAB и Mathcad.
 - 1.2. Simulink и CLASSIC 3.01.
 - 1.3. Maple и FANTEK.
 - 2. Определение передаточной функции САУ
 - 2.1. Методом структурных преобразований.
 - 2.2. По формуле Мейсона.
 - 2.3. С помощью среды CLASSIC 3/01/
 - 3. Исследование устойчивости САУ.
 - 3.1. С помощью критерия Раусса-Гурвица.
 - 3.2. С помощью критерия Найквиста.
 - 3.3. С помощью критерия Михайлова.
 - 4. Определение и построение графиков частотных характеристик САУ
 - 4.1. Аналитическое определение частотных характеристик
 - 4.2. Построение и анализ частотных характеристик САУ.
 - 5. Исследование влияния корректирующих звеньев на качество САУ
 - 5.1. Структурная схема САУ с ПД-регулятором.
- 5.2. Определение передаточной функции замкнутой САУ и её характеристический полином.
 - 5.3. Определение границ области устойчивости.
- 5.4. Расчёт переходных характеристик для каждой передаточной функции, построение графиков зависимостей h(t) и определение показателей качества регулирования САУ.

8.6. Контрольная работа (заочная форма)

Задание: "Расчет линейной САУ"

Включает в себя расчет и анализ линейной системы автоматического регулирования при заданной структурной схеме САУ и данными таблиц 1 и 2. Вариант задания равен последней цифре номера зачетной книжки, Структурная схема линейной САУ:

Требуется, используя методы теории управления, обеспечить необходимые статические и динамические показатели качества регулирования системы путем введения в нее корректирующих звеньев.

Текст работы должен содержать расчеты и необходимые пояснения к ним, ссылки на использованную литературу, выводы на основании полученных результатов и излагаться в следующей последовательности:

- 1. Рассчитать точность системы по управляющему и возмущающему воздействиям в установившемся режиме.
- 2. Проанализировать устойчивость замкнутой системы.
- 3. Провести синтез последовательного звена. При этом необходимо обеспечить следующие показатели качества процесса регулирования в скорректированной системе:
 - а) перерегулирование $\sigma \le 25 \%$;
 - б) длительность переходного процесса, не превышающую значения t_{pez} , в соответствие с вариантом задания;
- 4. Определить критическое время запаздывания, при котором скорректированная система будет находиться на границе устойчивости

Таблица 1. Варианты задания для расчета линейной САУ

Вариант задания	Варианты <i>W</i> (<i>p</i>	k _i	k_2	k_3	k ₄	T_1	T_2	T_3	T_{4}	ξ	t _p
0	1	10	1	1	5	0,1	0,025	0,002	0,001	-	0,15
1	2	17	1	2	4,5	0,225	0,002	-	0,001	0,8	0,1
2	3	1	2	1	5	-	0,0001	0,5	0,0001	-	0,5
3	4	5	3	3	2	-	0,175	0,001	0,002	0,8	0,1
4	5	4	2	5	1	0,001	0,07	0,001	-	-	0,4
5	6	4	2	1	5	0,007	0,125	-	0,0015	0,8	0,3
6	7	25	2	4	2	-	0,0025	0,05	1,2	0,8	0,3
7	1	4	3	2	9	0,5	0,07	0,003	0,001	-	0,2
8	2	10	2	10	2	1,2	0,0025	-	0,05	0,8	0,3
9	3	2	2,5	2	1	-	0,002	0,2	0,002	-	0,3

Таблица 2. Варианты передаточных функций линейной САУ

Варианты W(p)	$W_1(p)$	$W_2(p)$	$W_3(p)$	$W_4(p)$
	$\frac{k_1}{T_1p+1}$	$\frac{k_2}{T_2p+1}$	$\frac{k_3}{T_3p+1}$	$\frac{k_4}{T_4 p + 1}$

1				
	$\frac{k_1}{T_1p+1}$	$\frac{k_2}{T_2^2 p^2 + 2\xi T_2 p + 1}$		$\frac{k_4}{T_4 p + 1}$
2			k_3	
	$\frac{k_1}{p}$	$\frac{k_2}{T_2p+1}$	$\frac{k_3}{T_3p+1}$	$\frac{k_4}{T_4 p + 1}$
3				
4	l-	$\frac{k_2}{T_2p+1}$	$\frac{k_3}{T_3p+1}$	$\frac{k_4}{T_4^2 p^2 + 2\xi T_4 p + 1}$
	k _i			
	$\frac{k_1}{T_1p+1}$	$\frac{k_2}{T_2p+1}$	$\frac{k_3}{T_3p+1}$	$\frac{k_4}{p}$
5				
	$\frac{k_1}{T_1p+1}$	$\frac{k_2}{T_2p+1}$		$\frac{k_4}{T_4^2 p^2 + 2\xi T_4 p + 1}$
6			k_3	
		$\frac{k_2}{T_2^2 p^2 + 2\xi T_2 p + 1}$	$\frac{k_3}{T_3p+1}$	$\frac{k_4}{T_4 p + 1}$
7	k _i			

Критерии и шкала оценивания по оценочному средству промежуточный контрольная работа

Шкала	оценивания	Критерий оценивания	
(интервал	і баллов)		
5		Задание выполнено на высоком уровне (студент в полном объеме осветил рассматриваемую проблематику, привел аргументы в пользу своих суждений, владеет профильным понятийным (категориальным) аппаратом и т.п.)	
	4	Задание выполнено на среднем уровне (студент в целом осветил рассматриваемую проблематику, привел аргументы в пользу своих суждений, допустив некоторые неточности и т.п.)	
	3	Задание выполнено на низком уровне (студент допустил существенные неточности, изложил материал с ошибками, не владеет в достаточной степени профильным категориальным аппаратом и т.п.)	
	2	Задание выполнено на неудовлетворительном уровне или не представлен (студент не готов, не выполнил задание и т.п.)	

8.7. Темы рефератов

Выдаются преподавателями, ведущими занятия в соответствии с тематикой самостоятельной работы студентов.

Критерии и шкала оценивания по оценочному средству –реферат

Шкала оценива-			
	IC		
ния (интервал	Критерий оценивания		
баллов)			
зачет	Студент глубоко и в полном объёме владеет про-		
	граммным материалом. Грамотно, исчерпывающе и		
	логично его излагает в устной или письменной		
	форме. При этом знает рекомендованную литера-		
	туру, проявляет творческий подход в ответах на во-		
	просы и правильно обосновывает принятые решения,		
	хорошо владеет умениями и навыками при выполне-		
	нии практических задач.		
незачет	Студент не знает значительной части программного		
	материала. При этом допускает принципиальные		
	ошибки в доказательствах, в трактовке понятий и ка-		
	тегорий, проявляет низкую культуру знаний, не вла-		
	деет основными умениями и навыками при выполне-		
	нии практических задач. Студент отказывается от от-		
	ветов на дополнительные вопросы		

8.8. Вопросы для комбинированного контроля усвоения теоретического материала (устно или письменно):

- 1. Классификация систем управления
- 2. Линеаризация дифференциальных уравнений
- 3. Формы записи линеаризованных уравнений. Первая стандартная форма записи
 - 4. Формы записи линеаризованных уравнений. Вторая стандартная форма записи
- 5. Передаточная функция. Отображение передаточной функции на структурных схемах
 - 6. Характеристики линейных звеньев
 - 7. Импульсная или весовая функция звена w(t)
 - 8. Переходная функция звена h(t)
 - 9. Частотные характеристики звеньев
 - 10. Частотная передаточная функция
 - 11. АФЧХ
 - 12. АЧХ и ФЧХ
 - 13. ВЧХ и МЧХ
 - 14. Логарифмические частотные характеристики
 - 15. Перечислите основные типовые динамические звенья
 - 16. Важные комбинации типовых звеньев
 - 17. Структурные схемы. Элементы структурных схем
 - 18. Виды соединений звеньев
 - 19. Построение ЛАЧХ разомкнутой цепи. Основные правила
 - 20. Понятие устойчивости систем с физической и математической точек зрения
 - 21. Какой характер имеет переходной процесс в устойчивой, неустойчивой и нейтральной системах
 - 22. Сформулируйте необходимое условие устойчивости
 - 23. Влияние вида и расположения корней на характер переходного процесса и

устойчивость

- 24. Алгебраические критерии устойчивости. Критерий Гурвица и Рауса.
- 25. Критерий устойчивости Михайлова
- 26. Критерий устойчивости Найквиста
- 27. Запасы устойчивости. Как определяются запасы устойчивости по АФЧХ.
- 28. Определение запасов устойчивости по ЛЧХ
- 29. Понятие качества работы системы управления. Чем оно определяется.
- 30. Как производится оценка точности работы системы управления?
- 31. Показатели качества переходного процесса
- 32. Частотные оценки качества
- 33. Корневые оценки качества
- 34. Интегральные оценки качества
- 35. Перечислите и поясните общие методы повышения точности систем управления.
- 36. Дайте понятие астатических систем управления. Каким образом определяется степень астатизма.
- 37. Линейный стандартный закон управления.
- 38. Какая система является инвариантной к внешним воздействиям
- 39. Комбинированное управление по задающему и возмущающему воздействию
- 40. Улучшение качества процесса управления. Чем достигается.
- 41. Типовые регуляторы. Линейный стандартный закон управления.
- 42. Последовательные корректирующие устройства
- 43. Параллельные корректирующие устройства
- 44. Коррекция местными обратными связями
- 45. Сформулируйте свойства основных корректирующих обратных связей.

Критерии и шкала оценивания по оценочному средству комбинированный контроль усвоения теоретического материала

Шкала	оценивания	Критерий оценивания
(интервал	п баллов)	
	5	Ответ дан на высоком уровне (студент в полном объеме осветил рассматриваемую проблематику, привел аргументы в пользу своих суждений, владеет профильным понятийным
		(категориальным) аппаратом и т.п.)
	4	Ответ дан на среднем уровне (студент в целом осветил рас-
		сматриваемую проблематику, привел аргументы в пользу своих суждений, допустив некоторые неточности и т.п.)
	3	Ответ дан на низком уровне (студент допустил существенные неточности, изложил материал с ошибками, не владеет в достаточной степени профильным категориальным аппаратом и т.п.)
	2	Ответ дан на неудовлетворительном уровне или не представлен (студент не готов, не выполнил задание и т.п.)

8.9. Тестовые задания. Выберите правильный ответ:

1. По виду управляющего сигнала, вырабатываемого автоматическим регулятором АСР бывают

- 1. релейные
- 2. непрерывные
- 3. дискретные

2. Частотные характеристики можно получить из:

- 1. функции Хевисайда
- 2. дельта-функции
- 3. передаточной функции

3. Если объект подчиняется принципу суперпозиции, то он считается:

- 1. стационарным
- 2.линейным
- 3. нелинейным

4. Замкнутая АСР с обратной связью реализует принцип регулирония:

- 1. по возмущению
- 2. по отклонению
- 3. по заданию

5. Целью регулирования является

- 1. поддержание регулируемого параметра на заданном значении
- 2. определение ошибки регулирования
- 3.выработка управляющих воздействий

6. Передаточной функцией системы называется

- 1. отношение выходного сигнала ко входному сигналу
- 2. отношение преобразованного по Лапласу выходного сигнала к преобразованному по Лапласу входному сигналу
- 3. отношение преобразованного по Лапласу входного сигнала к преобразованному по Лапласу выходному сигналу

7. Зависимость выходного параметра объекта от времени при подаче на вход дельта-функции называется:

- 1. статической характеристикой
- 2.импульсной характеристикой
- 3. частотной характеристикой

8. Зависимость выходного параметра объекта от входного называется:

1. статической характеристикой

- 2.импульсной характеристикой
- 3. динамической характеристикой
- 4. частотной характеристикой

9. Целью функционирования следящей АСР является

- 1. поддержание регулируемого параметра на заданном постоянном значении с помощью управляющих воздействий на объект
- 2. изменение регулируемой величины в соответствии с заранее неизвестной

величиной на входе АСР

3. изменение регулируемой величины в соответствии с заранее заданной функцией

10. W(іw) обозначают:

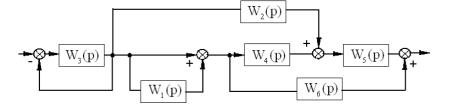
- 1. передаточную функцию
- 2.переходную функцию
- 3.Амплитудно-фазовую характеристику
- 11. ... совокупность воздействий, выработанных на основании полученной информации и направленных на поддержание или улучшение объекта в соответствии с заданием:
 - 1. регулирование
 - 2.объект
 - 3.управление
- 12. Можно ли переносить сумматор через звено?
 - 1. можно
 - 2. нет, так как может возникнуть ошибка
 - 3. нельзя

Критерии и шкала оценивания по оценочному средствутестирование

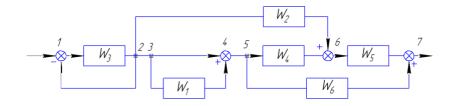
Шкала оценивани	Я Критерий оценивания
,	критерии оценивания
(интервал баллов)	
5	Ответ дан на высоком уровне (студент в полном объеме
	осветил рассматриваемую проблематику, привел аргументы
	в пользу своих суждений, владеет профильным понятийным
	(категориальным) аппаратом и т.п.)
4	Ответ дан на среднем уровне (студент в целом осветил рас-
	сматриваемую проблематику, привел аргументы в пользу
	своих суждений, допустив некоторые неточности и т.п.)
3	Ответ дан на низком уровне (студент допустил существен-
	ные неточности, изложил материал с ошибками, не владеет
	в достаточной степени профильным категориальным аппа-
	ратом и т.п.)
2	Ответ дан на неудовлетворительном уровне или не пред-
	ставлен (студент не готов, не выполнил задание и т.п.)

8.10. Вопросы к экзамену

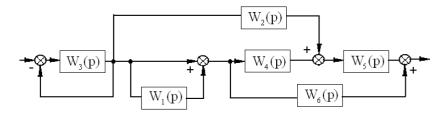
8.10.1. Вопросы к экзамену (теоретическая часть)


1. Содержание понятий система, регулирование, управление, объект управления, управляемая величина, возмущающее воздействие.

- 2. Основные принципы регулирования, принципы действия САУ, блок-схема САУ.
 - 3. Замкнутые и разомкнутые САУ.
- 4. Классификация САУ. Классификация САУ по характеру входного воздействия: системы автоматического регулирования, программного управления, следящие системы, адаптивные системы, статические и астатические системы.
- 5. Классификация САУ по характеру внутренних динамических процессов: линейные и нелинейные, стационарные и нестационарные.
- 6. Математическое описание линейных систем. Понятие о моделировании. Физическое и математическое моделирование.
- 7. Понятие об установившемся процессе. Статические характеристики САУ. Описание связей между входной и выходной величинами параметров (статические характеристики, уравнения статики, передаточные коэффициенты).
 - 8. Виды соединений звеньев.
- 9. Уравнения динамики объектов. Динамические характеристики, сигналы, воздействующие на САУ, переходные характеристики.
 - 10. Методика составления дифференциальных уравнений.
 - 11. Линеаризация уравнений разложением в ряд Тэйлора
- 12. Преобразование Лапласа, передаточная функция, комплексный коэффициент усиления.
- 13. Частотные характеристики звеньев, амплитудно-фазовые характеристики, логарифмические амплитудно-частотные характеристики.
- 14. Динамические звенья и их характеристики: безынерционное звено
 - 15. Инерционное звено
 - 16. Колебательное звено
 - 17. Интегрирующее звено
 - 18. Дифференцирующее звено
 - 19. Интегро-дифференцирующее звено
 - 20. Запаздывающее звено
- 21. Структурные схемы и правила их преобразования: последовательное, параллельное и встречно-параллельное включение звеньев; правило переноса точек отвода обратных связей.
- 22. Передаточные функции одноконтурных и многоконтурных систем, структурные схемы САР и их передаточные функции
 - 23. Функциональные типовые элементы: чувствительные элементы
 - 24. Усилительные элементы
 - 25. Силовые элементы
 - 26. Регулирующие и стабилизирующие элементы
 - 27. Передаточная функция человека в системе управления
- 28. Устойчивость линейных систем. Понятие устойчивости, математический признак устойчивости систем.
 - 29. Алгебраический критерий устойчивости Гурвица.

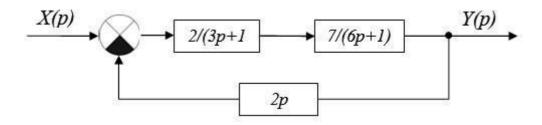

- 30. Критерий Михайлова, его физическая интерпретация.
- 31. Качество процесса управления. Понятие о качестве процесса управления. Основные показатели качества в статике и динамике (статическая ошибка, время регулирования, перерегулирование, колебательность систем).
- 32. Частотные показатели качества. Улучшение качества процесса регулирования
- 33. Синтез систем. Синтез САУ по заданным показателям качества процесса управления.
- 34. Методы повышения точности систем. Коррекция систем введением регуляторов.
 - 35. Синтез САУ по ЛАЧХ
 - 36. Адаптивные системы. Классификация систем адаптивного управления. Структура системы.
 - 37. Методы поиска экстремума. Система адаптивного управления станочным оборудованием
 - 38. Использование ЭВМ в контуре управления. Программное управление станками. ЭВМ в режиме сбора и обработки информации, в режиме прямого цифрового управления.
 - 39. Критерий устойчивости Найквиста.
 - 40. Как определяются запасы устойчивости по АФЧХ и ЛЧХ?
- 41. Понятие качества работы системы управления. Чем оно определяется?
 - 42. Улучшение качества процесса управления. Чем достигается.
- . 43. Комбинированное управление по задающему и возмущающему воздействию.
- 44. Определить передаточную функцию САУ методом структурных преобразований. И по формуле Мейсона.

8.10.2. Вопросы к экзамену (практическая часть)

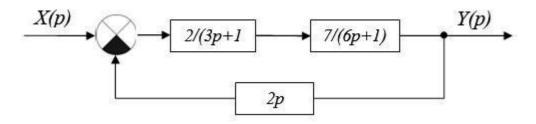

1. Определить передаточную функцию САУ с помощью среды CLASSIC3.01/ Структурная схема системы:

2. Определить передаточную функцию САУ методом структурных преобразований, если структурная схема системы имеет вид:

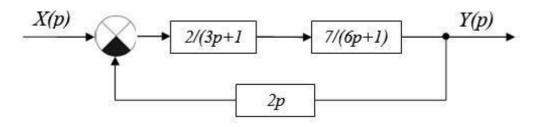
3. Определить передаточную функцию САУ по формуле Мейсона.

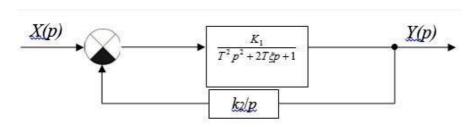

4. Исследовать устойчивость системы с помощью критерия Гурвица. Передаточная функция разомкнутой системы имеет вид:

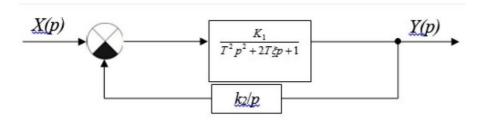
$$W = \frac{2p}{(p+3)(p+7)(p+1)}$$


5. Проверить замкнутую и разомкнутую систему на устойчивость, если передаточная функция разомкнутой системы имеет вид:

$$W = \frac{2p}{(p+3)(p+7)(p+1)}$$

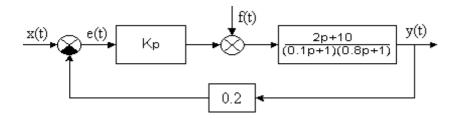

6. Проверить замкнутую и разомкнутую систему на устойчивость


7. Определить устойчивость системы, представленной на рис. с помощью критерия Найквиста

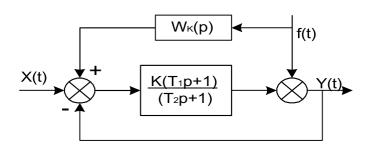

8 Определить устойчивость системы, представленной на рис. с помощью критерия Михайлова

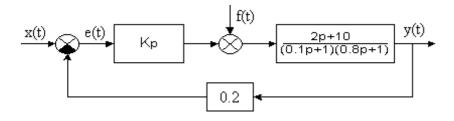
9. Определить устойчивость системы, представленной на рис. с помощью критерия Михайлова

10. Определить устойчивость системы, представленной на рис. с помощью критерия Найквиста



11. Исследовать методом Гурвица устойчивость разомкнутой и замкнутой систем. Передаточная функция разомкнутой системы

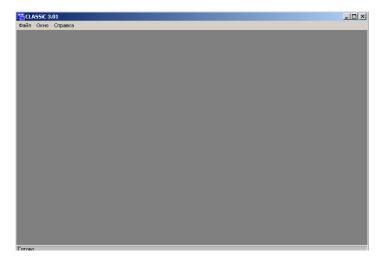

$$W(p) = \frac{1.0}{p^3 + 1.5p^2 + 3p + 1}.$$


12. Какое условие при размещении интегрирующего звена в прямом канале нужно выполнить, чтобы статическая ошибка за счет влияния возмущения была бы равна нулю?

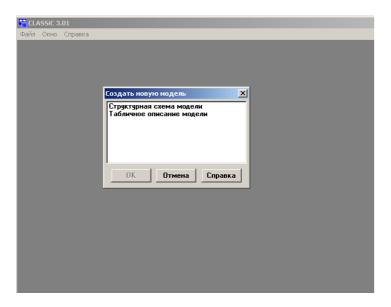
13. Запишите выражение для передаточной функции $W_{\kappa}(\mathbf{p})$ обеспечивающей инвариантность координаты y(t) от f(t).

14. Уменьшится ли величина статической ошибки при увеличении коэффициента передачи регулятора? Поясните ответ решением задачи на примере приведенной системы.

Итоговый контроль по результатам освоения дисциплины проходит в форме письменно-устного **экзамена**, включающего ответы на теоретические вопросы и решение задач. Студентам, выполнившим 75% текущих и контрольных мероприятий на «отлично», а остальные 25 % на «хорошо», имеют право на получение итоговой отличной оценки.

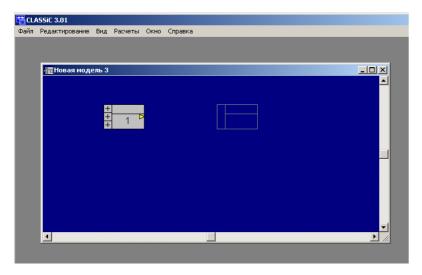

В экзаменационную ведомость и зачетную книжку выставляются оценки по национальной шкале, приведенной в таблице:

Критерии и шкала оценивания по оценочному средству – экзамен

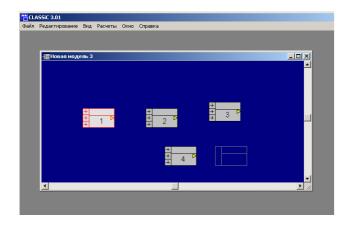

Национальная	Характеристика знания предмета и	Зачеты
шкала	ответов	
отлично (5)	Студент глубоко и в полном	зачтено
	объеме владеет программным ма-	
	териалом. Грамотно, исчерпыва-	
	юще и логично его излагает в уст-	
	ной или письменной форме. При	
	этом знает рекомендуемую литера-	
	туру, проявляет творческий под-	
	ход в ответах на вопросы и пра-	
	вильно обосновывает принятые ре-	
	шения, хорошо владеет умениями	
	и навыками при выполнении прак-	
	тических задач.	
хорошо (4)	Студент знает программный мате-	
	риал, грамотно и по сути излагает	
	его в устной или письменной форме,	
	допуская незначительные неточно-	
	сти в утверждениях, трактовках,	
	определениях и категориях или не-	
	значительное количество ошибок до	
	10%. При этом владеет необходи-	
	мыми умениями и навыками при вы-	
	полнении практических задач.	
удовлетворительно	Студент знает только основной про-	
(3)	граммный материал, допускает не-	
	точности, недостаточно четкие фор-	
	мулировки, непоследовательность в	
	излагаемых ответах в устной или	
	письменной форме. При этом недос-	
	таточно владеет умениями и навы-	
	ками при выполнении практических	
	задач. Допускает до 30% ошибок в	
	излагаемых ответах.	

9. ПРИМЕР. Знакомство со средой CLASSIC 3.01

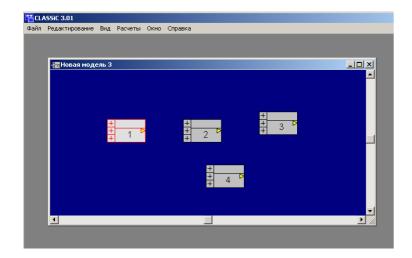
Открываем среду CLASSIC 3.01, для этого на рабочем столе находим ярлык . Появляется диалоговое окно:

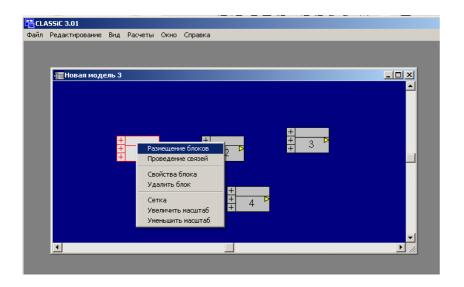


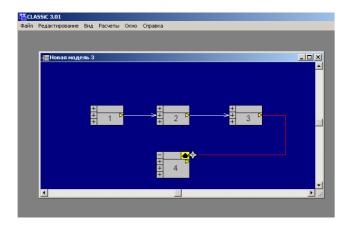
В командной строке открываем команду Файл \rightarrow Новый:

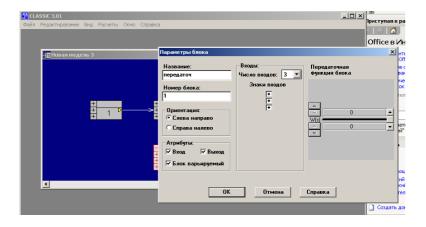


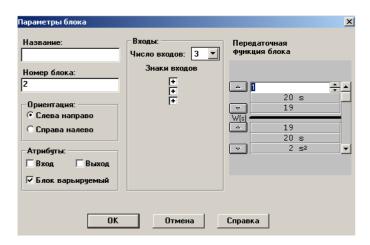
Выбираем команду «Структурная схема модели» нажимаем кнопку «ОК».

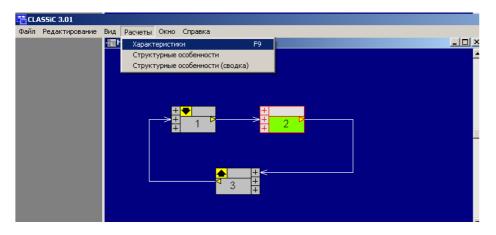

В диалоговом окне появится синий квадрат с крестиком, диалоговое окно примет вид:


С помощью щелчка левой кнопки мыши размещаем блоки в структурной схеме модели:


Когда все необходимые блоки занесены в схему модели, с помощью щелчка правой кнопки мыши мы прекращаем ввод блоков.


Щелчком правой кнопки мыши по блоку в схеме модели откроем свойство блока.


Далее выбираем свойство «Проведение связей» и проводим необходимые связи:


С помощью меню свойства блока заносим все необходимые данные:

После того как передаточная функция каждого блока введена в диалоговое окно «Параметры блока"

Нажимаем последовательно Расчеты — Характеристики

Появляется передаточная функция и её свойства в графическом виде

Лист изменений и дополнений

№ п/п	Виды дополнений и из- менений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)