МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Факультет компьютерных систем и информационных технологий

Кафедра информационных и управляющих систем

УТВЕРЖДАЮ
Декан факультет компьютерных систем и информационных факультет техногоги и информационных информационных кочевский А.А.

« 19 » 2023 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по учебной дисциплине

«Современные методы вычислительной математики в решении задач мехатроники и робототехники»

15.04.06 Мехатроника и робототехника

«Мехатронные и робототехнические системы»

Разработчик: старший преподаватель Синепольский Д.О.
ФОС рассмотрен и одобрен на заседании кафедры информационных и управляющих систем от «18» апреля 2023 г., протокол № 15
Заведующий кафедрой информационных и управляющих систем Горбунов А.И.

Луганск 2023 г.

Паспорт

фонда оценочных средств по учебной дисциплине «Современные методы вычислительной математики в решении задач мехатроники и робототехники»

Перечень компетенций (элементов компетенций), формируемых в результате освоения учебной дисциплины

№ п/п	Код контролируемой компетенции	Формулировка контролируемой компетенции	Контролируемые темы учебной дисциплины	Этапы формирования (семестр изучения)
1	ОПК-11.1	Знать основные подходы, алгоритмы, методы расчетов и проектирования отдельных устройств и подсистем мехатронных и робототехнических систем с использованием стандартных исполнительных и управляющих устройств, средств автоматики, измерительной и вычислительной техники в соответствии с техническим заданием, разрабатывать цифровые алгоритмы и программы управления робототехнических систем.	Тема 1. Математическое и компьютерное моделирование	начальный (2)
2	ОПК-11.2	Уметь разрабатывать цифровые алгоритмы и программы управления робототехническими системами.	Тема 2. Численные методы решения нелинейных уравнений Тема 5. Численные методы интегрирования	начальный (2)
3	ОПК-11.3	Владеть навыками организации разработки и применения	Тема 3. Моделирование линейных многомерных систем	начальный (2)

№ п/п	Код контролируемой компетенции	Формулировка контролируемой компетенции	Контролируемые темы учебной дисциплины	Этапы формирования (семестр изучения)
		алгоритмов, современных цифровых программных методов расчета и проектирования отдельных устройств и подсистем мехатронных и робототехнических систем с использованием стандартных исполнительных и управляющих устройств, средств автоматики, измерительной и вычислительной техники в соответствии с техническим	Тема 4. Моделирование многомерных нелинейных систем	
4	ОПК-13.1	заданием. Знать основные положения, законы и методы естественных наук и математики при формировании моделей и методов исследования мехатронных и робототехнических систем.	Тема 6. Численные методы решения дифференциальных уравнений первого порядка Тема 7. Решение дифференциальных уравнений высоких порядков	начальный (2)
5	ОПК-13.2	Уметь формировать модели и методы исследования мехатронных и робототехнических систем с учетом законов естественных наук и математики.	Тема 6. Численные методы решения дифференциальных уравнений первого порядка Тема 7. Решение дифференциальных уравнений высоких порядков	начальный (2)
6	ОПК-13.3	Владеть навыками использования основных положений, законов и методов естественных наук и	Тема 6. Численные методы решения дифференциальных уравнений первого порядка Тема 7. Решение	начальный (2)

<u>№</u> п/п	Код контролируемой компетенции	Формулировка контролируемой компетенции математики при	Контролируемые темы учебной дисциплины дифференциальных	Этапы формирования (семестр изучения)
		формировании моделей и методов исследования мехатронных и робототехнических систем.	уравнений высоких порядков	
7	ПК-2.2	Уметь составлять математические модели объектов мехатроники, робототехники и комплексной автоматизации производственных процессов, проводить вычислительные эксперименты с использованием стандартных программных пакетов и программного обеспечения.	Тема 1. Математическое и компьютерное моделирование	начальный (2)
8	ПК-2.3	Владеть навыками физического, математического и цифрового моделирования, вычислительного эксперимента, анализа и обработки результатов эксперимента, организации научно-исследовательской деятельности в области создания объектов робототехники и автоматизированных систем машиностроительног о производства.	Тема 8. Интерполирование функций Тема 9. Аппроксимация опытных данных	начальный (2)

Показатели и критерии оценивания компетенций, описание шкал оценивания

	I/	описание шкал оцен		Harrisana
No	Код	Показатель оценивания	Контролируемые	Наименование
п/п	контролируемой	(знания, умения, навыки)	темы учебной	оценочного
	компетенции	, , ,	дисциплины	средства
1	ОПК-11.1	Знать:	Тема 1.	Лабораторные
		- численные методы		работы,
		решения уравнений с		контрольные
		помощью ЭВМ;		работы, зачет
		- методы численного		,
		интегрирования,		
		дифференцирования и		
		решения		
		дифференциальных		
		уравнений с помощью		
		ЭВМ;		
		Уметь:		
		- для реального объекта		
		или процесса построить		
		его математическую		
		модель;		
		- использовать		
		численные методы при		
		реализации		
		математической модели		
		на ЭВМ;		
		Владеть:		
		- навыками построения		
		_		
		математических		
		моделей, описываемых		
		линейными,		
		нелинейными,		
		дифференциальными		
		уравнениями и		
		системами уравнений;		
2	ОПК-11.2	Знать:	Тема 2.	Лабораторные
		- численные методы	Тема 5.	работы,
		решения уравнений с		контрольные
		помощью ЭВМ;		работы, зачет
		Уметь:		
		- обрабатывать		
		результаты натурного		
		эксперимента с		
		помощью ЭВМ;		
3	ОПК-11.3	Уметь:	Тема 3.	Лабораторные
1		- для реального объекта	Тема 4.	работы,
		или процесса построить		контрольные
		его математическую		работы, зачет
				paudidi, sagei
		модель;		
		Владеть:		
		- навыками построения		

№ π/π	Код контролируемой компетенции	Показатель оценивания (знания, умения, навыки)	Контролируемые темы учебной дисциплины	Наименование оценочного средства
		математических моделей, описываемых линейными, нелинейными, дифференциальными уравнениями и системами уравнений;		
4	ОПК-13.1	Знать: - методы численного интегрирования, дифференцирования и решения дифференциальных уравнений с помощью ЭВМ;	Тема 6. Тема 7.	Лабораторные работы, контрольные работы, зачет
5	ОПК-13.2	Уметь: - использовать численные методы при реализации математической модели на ЭВМ; Владеть: - навыками построения математических моделей, описываемых линейными, нелинейными, дифференциальными уравнениями и системами уравнений;	Тема 6. Тема 7.	Лабораторные работы, контрольные работы, зачет
6	ОПК-13.3	Уметь: - для реального объекта или процесса построить его математическую модель; Владеть: - навыками построения математических моделей, описываемых линейными, нелинейными, дифференциальными уравнениями и системами уравнений;	Тема 6. Тема 7.	Лабораторные работы, контрольные работы, зачет

№ п/п	Код контролируемой	Показатель оценивания (знания, умения, навыки)	Контролируемые темы учебной	Наименование оценочного
7	Компетенции ПК-2.2	Знать: Уметь: - для реального объекта или процесса построить его математическую модель; Владеть: - навыками построения математических моделей, описываемых линейными, нелинейными, дифференциальными уравнениями и	дисциплины Тема 1.	средства Лабораторные работы, контрольные работы, зачет
8	ПК-2.3	знать: - методы обработки результата натурных экспериментов с помощью ЭВМ; Уметь: - обрабатывать результаты натурного эксперимента с помощью ЭВМ; Владеть: - навыками планирования, проведения вычислительного эксперимента и анализа его результатов.	Тема 8. Интерполирован ие функций Тема 9. Аппроксимация опытных данных	Лабораторные работы, контрольные работы, зачет

Фонды оценочных средств по дисциплине «Современные методы вычислительной математики в решении задач мехатроники и робототехники»

Вопросы для защиты лабораторных работ

Лабораторная работа № 1. Вычисление суммы ряда

Цель работы: Научиться вычислять значение функций через разложение в ряд.

Вопросы для защиты

- 1. В каких случаях прибегают к вычислению функций на ЭВМ путем разложения в ряд?
- 2. Какие методы вычисления элементарных функций на ЭВМ, помимо разложения в ряд Тейлора вы знаете?
- 3. Назовите достоинства и недостатки вычисления путем разложения в ряд.
- 4. Каким образом связаны точность и количество итераций?
- 5. При каких условиях ряд является сходящимся? Как это можно учесть при вычислении суммы ряда?
- 6. Как можно ускорить вычисление факториалов?

Лабораторная работа № 2.

Численные методы решения нелинейных уравнений

Цель работы: закрепление теоретического материала, составление алгоритмов и программ для решения нелинейных уравнений f(x)=0 с использованием численных методов

Вопросы для защиты

- 1. Объясните понятия «интервала изоляции» и «уточнение корня».
- 2. Какие требования к интервалу изоляции выдвигает метод дихотомии?
- 3. На каком преобразовании (замене) уравнения основывается метод простых итераций? При каком условии решение по данному методу сходится?
- 4. Опишите метод Ньютона и его модификацию.
- 5. Опишите метод хорд.

Лабораторная работа № 3.

Решение системы линейных уравнений методом Гаусса

Цель работы: закрепление теоретического материала, составление алгоритмов и программ для решения систем линейных уравнений вида

$$\underset{N\times N}{A}\cdot \overset{\rightarrow}{\underset{N\times 1}{X}}=\overset{\rightarrow}{\underset{N\times 1}{B}}$$

Вопросы для защиты

1. Какие точные методы решения систем линейных уравнений на ЭВМ вам известны?

- 2. В чем основная идея метода Гаусса? Из каких двух основных этапов он состоит?
- 3. В чем заключается проблема реализации метода Гаусса типа «единственное деление»? В чем заключается поиск ненулевого ведущего элемента?
- 4. Чем определяется вычислительная сложность расчета по методу Гаусса?

Лабораторная работа № 4

Решение систем нелинейных уравнений

Цель работы: закрепление теоретического материала, составление алгоритмов и программ для решения систем нелинейных уравнений вида $f_i(\vec{X}) = 0$ $i = \overrightarrow{1,n}$

Вопросы для защиты

- 1. Известны ли прямые методы решения систем нелинейных уравнений? Какая стратегия применяется в этом случае?
- 2. Что такое область сходимости системы? Что такое начальная точка? Как выбор начальной точки влияет на результат решения?
- 3. Опишите графический метод выбора начальной точки.
- 4. Какое преобразование необходимо выполнить над системой для применения метода простых итераций? Какое условие сходимости итерационного процесса?
- 5. В чем заключается применение метода Ньютона для решения СНЛУ? Что такое якобиан? К какой ранее решенной задаче сводится решение СНЛУ?
- 6. Как влияет увеличение размерности системы на область сходимости?

Лабораторная работа № 5

Численные методы интегрирования

Цель работы: закрепление теоретического материала, составление алгоритмов и программ для приближенного вычисления определенных интегралов с заданной точностью

Вопросы для защиты

- 1. В чем заключается основная идея вычисления итерационного вычисления определенных интегралов? В чем различие методов прямоугольников, трапеций и Симпсона?
- 2. Чем будет отличаться результат вычислений для интерполяции 0-го и 1-го порядка, если подынтегральная функция периодическая и интервал интегрирования совпадает с периодом?
- 3. Чему будет равно среднее значение между результатом метода левых и правых прямоугольников? Докажите.
- 4. Как определить шаг и количество требуемых итераций, если подынтегральная функция задана аналитически? Что измениться если подынтегральное выражение будет зависеть от таблично заданной функции?

Лабораторная работа № 6

Численные методы решения дифференциальных уравнений 1-го порядка

Цель работы: закрепление теоретического материала, составление алгоритмов и программ для решения дифференциальных уравнений первого порядка, удовлетворяющих начальным условиям

Вопросы для защиты

- 1. Что такое общий вид и нормальная форма дифференциального уравнения?
- 2. Опишите формулировку задачи Коши в численных методах.
- 3. В чем заключается метод Рунге-Кутта? Какая связь с рядом Тейлора, в чем отличие реализаций разных порядков?
- 4. К какой реализации Рунге-Кутта относится метод Эйлера? Опишите его геометрический смысл.
- 5. Опишите модифицированный метод Эйлера?
- 6. Какая реализация метода Рунге-Кутта получила наибольшее распространение на ЭВМ?

Лабораторная работа № 7 Численные методы решения дифференциальных уравнений высоких порядков

Цель работы: закрепление теоретического материала, составление алгоритмов и программ для решения дифференциальных уравнений высоких порядков, удовлетворяющих начальным условиям

Вопросы для защиты

- 1. Назовите общий алгоритм решения дифференциальных уравнений высоких порядков. На какой ранее рассмотренный метод он опирается?
- 2. Как будет представлено решение системы уравнений второго порядка? Сформулируйте задачу Коши для системы, состоящей из двух дифференциальных уравнений второго порядка.
- 3. Какая часть алгоритма решения системы дифференциальных уравнений будет зависеть от самой системы? Какой параметр алгоритма будет зависеть от размерности системы?
- 4. Сколько значений должна рассчитать подпрограмма вычисления «правых частей» при решении уравнения m-го порядка?

Лабораторная работа № 8 Интерполирование функций

Цель работы: закрепление теоретического материала, составление алгоритмов и программ для выполнения интерполяции

Вопросы для защиты

- 1. В чем заключается задача интерполяции таблично заданной функции? Как производится построение интерполяционного многочлена в явном виде?
- 2. Опишите интерполяционную функцию Лагранжа. Почему полином Лагранжа является интерполяционным многочленом?

- 3. Как строится интерполяционный многочлен по формуле Ньютона? Что такое разделенные разности?
- 4. В чем преимущество интерполяции по формуле Ньютона перед интерполяцией по Лагранжу?

Лабораторная работа № 9

Аппроксимация опытных данных методом наименьших квадратов

Цель работы: изучение методики аппроксимации экспериментальных данных с использованием метода наименьших квадратов

Вопросы для защиты

- 1. В чем отличие задач интерполяции, экстраполяции и аппроксимации? В чем заключается метод сглаживания опытных данных?
- 2. Как проводится аппроксимирующая кривая в методе наименьших квадратов? В каких пределах может меняться степень аппроксимирующего многочлена?
- 3. К решению какой задачи сводится отыскание коэффициентов аппроксимирующего полинома? Почему?
- 4. Что такое схема Горнера?

Критерии и шкала оценивания по оценочному средству защита

лабораторных работ

Шкала оценивания	Критерий оценивания	
5	Ответы на вопросы к защите лабораторных работ даны на	
	высоком уровне (правильные ответы даны на 90-100%	
	вопросов)	
4	Ответы на вопросы к защите лабораторных работ даны на	
	среднем уровне (правильные ответы даны на 75-89% вопросов)	
3	Ответы на вопросы к защите лабораторных работ даны на	
	низком уровне (правильные ответы даны на 50-74% вопросов)	
2	Ответы на вопросы к защите лабораторных работ даны на	
	неудовлетворительном уровне (правильные ответы даны менее	
	чем на 50%)	

Вопросы для контрольных работ

- 1. Какие методы вычисления элементарных функций на ЭВМ, помимо разложения в ряд Тейлора вы знаете?
- 2. Опишите метод Ньютона и его модификацию.
- 3. Как определить шаг и количество требуемых итераций, если подынтегральная функция задана аналитически? Что измениться если подынтегральное выражение будет зависеть от таблично заданной функции?
- 4. Интерполяционный многочлен Ньютона. Разделенные разности.
- 5. Метод наименьших квадратов (МНК). Назначение и область применения метода.

- 6. Решения систем дифференциальных уравнений. Суть методов. Их преимущества и недостатки. Алгоритм основной программы.
- 7. Метод наименьших квадратов. Суть метода.
- 8. Опишите метод хорд.
- 9. Каким образом связаны точность и количество итераций?
- 10. Назовите достоинства и недостатки вычисления путем разложения в ряд.
- 11. При каких условиях ряд является сходящимся? Как это можно учесть при вычислении суммы ряда?
- 12. Решение систем линейных уравнений (СЛУ). Постановка задачи. Методы, используемые при решения СЛУ. Их применения.
- 13. Модифицированный метод Эйлера. Формула метода, точность метода, алгоритм. Геометрический смысл метода.
- 14. Решение систем нелинейных уравнений методом Ньютона. Суть метода, область применения и алгоритм.
- 15. Численные методы решения алгебраических и трансцендентных уравнений. Отделение корней. Уточнение корней.
- 16.Определенный интеграл в математических моделях реальных процессов и систем. Численные методы интегрирования. Их сущность и область применения. Квадратурная формула, её погрешность.
- 17. Аппроксимирующий многочлен. Его особенности. Способы построения.
- 18. Как строится интерполяционный многочлен по формуле Ньютона? Что такое разделенные разности?
- 19. Как влияет увеличение размерности системы на область сходимости?
- 20. Какие точные методы решения систем линейных уравнений на ЭВМ вам известны?
- 21.К какой реализации Рунге-Кутта относится метод Эйлера? Опишите его геометрический смысл.
- 22. Какие требования к интервалу изоляции выдвигает метод дихотомии?
- 23. Численные методы интегрирования. Суть методов. Их преимущества и недостатки.
- 24. Что такое общий вид и нормальная форма дифференциального уравнения?
- 25. Решения систем дифференциальных уравнений методом Рунге-Кутта (IV порядка). Подпрограмма, реализующая метод.
- 26. Уточнение корней системы нелинейных уравнений по методу итераций. Суть метода, область применения и алгоритм.
- 27. Решение систем нелинейных уравнений. Матрица Якоби. Способы её определения.
- 28.В чем преимущество интерполяции по формуле Ньютона перед интерполяцией по Лагранжу?
- 29.В чем заключается задача интерполяции таблично заданной функции? Как производится построение интерполяционного многочлена в явном виде?

- 30.На каком преобразовании (замене) уравнения основывается метод простых итераций? При каком условии решение по данному методу сходится?
- 31. Метод Гаусса. Суть метода. Его преимущества и недостатки.
- 32. Уточнение корня по методу итераций. Суть метода, область применения и алгоритм.
- 33. Метод прямоугольников. Суть метода. Точность метода. Алгоритм.
- 34.К решению какой задачи сводится отыскание коэффициентов аппроксимирующего полинома? Почему?
- 35. Математическая модель реальных объектов, процессов и систем. Её особенности и этапы построения.
- 36. Как можно ускорить вычисление факториалов?
- 37.В чем заключается метод Рунге-Кутта? Какая связь с рядом Тейлора, в чем отличие реализаций разных порядков?
- 38. Компьютерное моделирование. Его роль в научном познании.
- 39. Чем будет отличаться результат вычислений для интерполяции 0-го и 1-го порядка, если подынтегральная функция периодическая и интервал интегрирования совпадает с периодом?
- 40. Назовите общий алгоритм решения дифференциальных уравнений высоких порядков. На какой ранее рассмотренный метод он опирается?
- 41.Описание закономерностей, действующих в реальных объектах и системах с помощью линейных и нелинейных уравнений и их систем.
- 42. Метод Гаусса. Постановка задачи. Методы, используемые при решение СЛУ. Алгоритм метода.
- 43. Метод Симпсона. Суть метода. Точность метода. Алгоритм.
- 44. Опишите формулировку задачи Коши в численных методах.
- 45.Опишите модифицированный метод Эйлера?
- 46.В чем основная идея метода Гаусса? Из каких двух основных этапов он состоит?
- 47.В чем заключается проблема реализации метода Гаусса типа «единственное деление»? В чем заключается поиск ненулевого ведущего элемента?
- 48.В каких случаях прибегают к вычислению функций на ЭВМ путем разложения в ряд?
- 49. Как проводится аппроксимирующая кривая в методе наименьших квадратов? В каких пределах может меняться степень аппроксимирующего многочлена?
- 50.Объясните понятия «интервала изоляции» и «уточнение корня».
- 51. Метод трапеций. Суть метода. Точность метода. Алгоритм.
- 52. Чем определяется вычислительная сложность расчета по методу Гаусса?
- 53. Какая реализация метода Рунге-Кутта получила наибольшее распространение на ЭВМ?
- 54. Метод наименьших квадратов. Алгоритм метода.

- 55. Как будет представлено решение системы уравнений второго порядка? Сформулируйте задачу Коши для системы, состоящей из двух дифференциальных уравнений второго порядка.
- 56. Что такое область сходимости системы? Что такое начальная точка? Как выбор начальной точки влияет на результат решения?
- 57.В чем заключается основная идея вычисления итерационного вычисления определенных интегралов? В чем различие методов прямоугольников, трапеций и Симпсона?
- 58. Какая часть алгоритма решения системы дифференциальных уравнений будет зависеть от самой системы? Какой параметр алгоритма будет зависеть от размерности системы?
- 59. Метод Эйлера. Формула метода, точность метода, алгоритм. Геометрический смысл метода Эйлера.
- 60.Опишите графический метод выбора начальной точки.
- 61.Сколько значений должна рассчитать подпрограмма вычисления «правых частей» при решении уравнения m-го порядка?
- 62.Известны ли прямые методы решения систем нелинейных уравнений? Какая стратегия применяется в этом случае?
- 63. Какое преобразование необходимо выполнить над системой для применения метода простых итераций? Какое условие сходимости итерационного процесса?
- 64.Опишите интерполяционную функцию Лагранжа. Почему полином Лагранжа является интерполяционным многочленом?
- 65. Чему будет равно среднее значение между результатом метода левых и правых прямоугольников? Докажите.
- 66. Методы Рунге-Кутта. Суть методов. Их преимущества и недостатки.
- 67. Метод Рунге-Кутта (IV порядка). Формула метода, точность метода, алгоритм.
- 68.В чем заключается применение метода Ньютона для решения СНЛУ? Что такое якобиан? К какой ранее решенной задаче сводится решение СНЛУ?
- 69.В чем отличие задач интерполяции, экстраполяции и аппроксимации? В чем заключается метод сглаживания опытных данных?
- 70. Что такое схема Горнера?
- 71. Обработка опытных данных. Интерполирование и экстраполирование результатов эксперимента. Суть прогноза.
- 72.Влияние степени многочлена на вид аппроксимирующей функции. Поиск оптимальной степени аппроксимирующего многочлена.
- 73.Основные этапы решения прикладных задач с помощью ЭВМ
- 74. Уточнение корня по методу хорд. Суть метода, область применения и алгоритм.
- 75. Уточнение корня по методу Ньютона. Суть метода, область применения и алгоритм.
- 76. Уточнение корня по методу половинного деления. Суть метода, область применения и алгоритм.

- 77. Решение систем нелинейных уравнений.
- 78.Интерполирование функции по формуле Ньютона. Суть метода и алгоритм.
- 79. Численные методы решения дифференциальных уравнений. Постановка задачи Коши.
- 80.Интерполирование функции по формуле Лагранжа. Суть метода и алгоритм.
- 81. Метод Гаусса. Поиск ненулевого ведущего элемента.
- 82.Интерполяционный многочлен. Его особенности. Способы построения.
- 83. Моделирование динамических систем. Описание закономерностей, действующих в реальных объектах, процессах и системах, с помощью дифференциальных уравнений.
- 84. Построение интерполяционного многочлена в явном виде.
- 85. Аппроксимация опытных данных. Методы аппроксимации. Суть методов. Область применения.

Типовые варианты контрольных работ

ВАРИАНТ 1

- 1. Компьютерное моделирование. Его роль в научном познании.
- 2. Аппроксимация опытных данных. Методы аппроксимации. Суть методов. Область применения.
- 3. Какая часть алгоритма решения системы дифференциальных уравнений будет зависеть от самой системы? Какой параметр алгоритма будет зависеть от размерности системы?
- 4. На каком преобразовании (замене) уравнения основывается метод простых итераций? При каком условии решение по данному методу сходится?
- 5. Численные методы интегрирования. Суть методов. Их преимущества и недостатки.

ВАРИАНТ 2

- 1. Моделирование динамических систем. Описание закономерностей, действующих в реальных объектах, процессах и системах, с помощью дифференциальных уравнений.
- 2. Методы Рунге-Кутта. Суть методов. Их преимущества и недостатки.
- 3. Метод наименьших квадратов. Алгоритм метода.
- 4. Как строится интерполяционный многочлен по формуле Ньютона? Что такое разделенные разности?
- 5. Опишите метод хорд.

ВАРИАНТ 3

1. Как определить шаг и количество требуемых итераций, если подынтегральная функция задана аналитически? Что измениться если

- подынтегральное выражение будет зависеть от таблично заданной функции?
- 2. Интерполирование функции по формуле Лагранжа. Суть метода и алгоритм.
- 3. Что такое общий вид и нормальная форма дифференциального уравнения?
- 4. Численные методы решения алгебраических и трансцендентных уравнений. Отделение корней. Уточнение корней.
- 5. В чем заключается применение метода Ньютона для решения СНЛУ? Что такое якобиан? К какой ранее решенной задаче сводится решение СНЛУ?

Критерии и шкала оценивания по оценочному средству контрольная работа

1			
Шкала оценивания	Критерий оценивания		
5	Контрольная работа выполнена на высоком уровне		
	(правильные ответы даны на 90-100% вопросов)		
4	Контрольная работа выполнена на среднем уровне (правильные		
	ответы даны на 75-89% вопросов)		
3	Контрольная работа выполнена на низком уровне (правильные		
	ответы даны на 50-74% вопросов)		
2	Контрольная работа выполнена на неудовлетворительном		
	уровне (правильные ответы даны менее чем на 50%)		

Оценочные средства для промежуточной аттестации (зачет)

- 1. Основные этапы решения прикладных задач с помощью ЭВМ
- 2. Математическая модель реальных объектов, процессов и систем. Её особенности и этапы построения.
- 3. Компьютерное моделирование. Его роль в научном познании.
- 4. Описание закономерностей, действующих в реальных объектах и системах с помощью линейных и нелинейных уравнений и их систем.
- 5. Численные методы решения алгебраических и трансцендентных уравнений. Отделение корней. Уточнение корней.
- 6. Уточнение корня по методу половинного деления. Суть метода, область применения и алгоритм.
- 7. Уточнение корня по методу итераций. Суть метода, область применения и алгоритм.
- 8. Уточнение корня по методу Ньютона. Суть метода, область применения и алгоритм.
- 9. Уточнение корня по методу хорд. Суть метода, область применения и алгоритм.
- 10. Решение систем линейных уравнений (СЛУ). Постановка задачи. Методы, используемые при решения СЛУ. Их применения.
- 11. Метод Гаусса. Суть метода. Его преимущества и недостатки.
- 12. Метод Гаусса. Поиск ненулевого ведущего элемента.

- 13. Метод Гаусса. Постановка задачи. Методы, используемые при решение СЛУ. Алгоритм метода.
- 14. Решение систем нелинейных уравнений.
- 15. Уточнение корней системы нелинейных уравнений по методу итераций. Суть метода, область применения и алгоритм.
- 16. Решение систем нелинейных уравнений методом Ньютона. Суть метода, область применения и алгоритм.
- 17. Решение систем нелинейных уравнений. Матрица Якоби. Способы её определения.
- 18. Обработка опытных данных. Интерполирование и экстраполирование результатов эксперимента. Суть прогноза.
- 19.Интерполяционный многочлен. Его особенности. Способы построения.
- 20. Построение интерполяционного многочлена в явном виде.
- 21.Интерполирование функции по формуле Лагранжа. Суть метода и алгоритм.
- 22.Интерполирование функции по формуле Ньютона. Суть метода и алгоритм.
- 23. Интерполяционный многочлен Ньютона. Разделенные разности.
- 24. Аппроксимация опытных данных. Методы аппроксимации. Суть методов. Область применения.
- 25.Метод наименьших квадратов (МНК). Назначение и область применения метода.
- 26. Аппроксимирующий многочлен. Его особенности. Способы построения.
- 27. Метод наименьших квадратов. Суть метода.
- 28. Метод наименьших квадратов. Алгоритм метода.
- 29.Влияние степени многочлена на вид аппроксимирующей функции. Поиск оптимальной степени аппроксимирующего многочлена.
- 30.Определенный интеграл в математических моделях реальных процессов и систем. Численные методы интегрирования. Их сущность и область применения. Квадратурная формула, её погрешность.
- 31. Численные методы интегрирования. Суть методов. Их преимущества и недостатки.
- 32. Метод прямоугольников. Суть метода. Точность метода. Алгоритм.
- 33. Метод трапеций. Суть метода. Точность метода. Алгоритм.
- 34. Метод Симпсона. Суть метода. Точность метода. Алгоритм.
- 35. Моделирование динамических систем. Описание закономерностей, действующих в реальных объектах, процессах и системах, с помощью дифференциальных уравнений.
- 36. Численные методы решения дифференциальных уравнений. Постановка задачи Коши.
- 37. Методы Рунге-Кутта. Суть методов. Их преимущества и недостатки.
- 38.Метод Эйлера. Формула метода, точность метода, алгоритм. Геометрический смысл метода Эйлера.

- 39. Модифицированный метод Эйлера. Формула метода, точность метода, алгоритм. Геометрический смысл метода.
- 40.Метод Рунге-Кутта (IV порядка). Формула метода, точность метода, алгоритм.
- 41. Решения систем дифференциальных уравнений. Суть методов. Их преимущества и недостатки. Алгоритм основной программы.
- 42. Решения систем дифференциальных уравнений методом Рунге-Кутта (IV порядка). Подпрограмма, реализующая метод.

Критерии и шкала оценивания по оценочному средству промежуточный контроль (зачет)

Характеристика знания предмета и ответов	Шкала оценивания
Студент глубоко и в полном объеме владеет программным материалом. Грамотно, исчерпывающе и логично его излагает в устной или письменной форме. При этом знает рекомендованную литературу, проявляет творческий подход в ответах на вопросы и правильно обосновывает принятые решения, хорошо владеет умениями и навыками при выполнении практических задач	зачтено
Студент знает программный материал, грамотно и по сути излагает его в устной или письменной форме, допуская незначительные неточности в утверждениях, трактовках, определениях и категориях или незначительное количество ошибок. При этом владеет необходимыми умениями и навыками при выполнении практических задач. Студент знает только основной программный материал, допускает неточности, недостаточно чёткие формулировки,	
непоследовательность в ответах, излагаемых в устной или письменной форме. При этом недостаточно владеет умениями и навыками при выполнении практических задач. Допускает до 30% ошибок в излагаемых ответах.	
Студент не знает значительной части программного материала. При этом допускает принципиальные ошибки в доказательствах, в трактовке понятий и категорий, проявляет низкую культуру знаний, не владеет основными умениями и навыками при выполнении практических задач. Студент отказывается от ответов на дополнительные вопросы.	не зачтено

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)

Экспертное заключение

Представленный фонд оценочных средств (далее – ФОС) по дисциплине «Современные методы вычислительной математики в решении задач мехатроники и робототехники» соответствует требованиям ФГОС ВО.

Предлагаемые формы и средства текущего и промежуточного контроля адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 15.04.06 Мехатроника и робототехника.

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины представлены в полном объеме.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанный и представленный для экспертизы фонд оценочных средств рекомендуется к использованию в процессе подготовки обучающихся по указанному направлению.

Председатель учебно-методической комиссии факультета компьютерных систем и информационных технологий

Z Be

Ветрова Н. Н.