МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Факультет компьютерных систем и информационных технологий

Кафедра информационных и управляющих систем

УТВЕРЖДАЮ
Декан факультета компьютерных систем и информационных технологий компьютерных систем и информационных компьютерных компьютерных систем и макультет компьютерных систем и макультет

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по учебной дисциплине

«Методы и теория оптимизации систем управления»

15.04.06 Мехатроника и робототехника

«Мехатронные и робототехнические системы»

Разработчик:	
доцент	Шульгин С.К.
ФОС рассмотрен и одобрен на заседании кафедры ин управляющих систем от «18» апреля 2023 г., протокол № 1:	
Заведующий кафедрой информационных и управляющих систем	_Горбунов А.И.

Луганск 2023 г.

фонда оценочных средств по учебной дисциплине «Методы и теория оптимизации систем управления»

Перечень компетенций (элементов компетенций), формируемых в ре-

зультате освоения учебной дисциплины (модуля) или практики

			ны (модуля) или практики	Drouge dos
№	Код контроли-	Формулировка	Контролируемые	Этапы фор-
п/п	руемой компетенции	контролируемой компетенции	темы учебной дисциплины,	мирования (семестр изу- чения)
			практики	
1.	ОПК-1	способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности;	Тема 1. Идентификация динамических свойств промышленных систем как объектов оптимального управления Тема 2. Методы решения дифференциальных уравнений, описывающих функционирование объектов управления Тема 3. Представление дифференциальных уравнений в нормальной форме Тема 4. Управляемость объектов. Устойчивость систем управления в пространстве состояний Тема 5. Структура вполне и не вполне управляемых объектов. Каноническая форма управляемости Тема 6. Критерии стабилизируемости, наблюдаемости и восстанавливаемости систем Тема 7. Условия наблюдаемости линейных систем, наблюдатели	заключительный заключительный заключительный заключительный заключительный заключительный заключительный заключительный
			Тема 8. Постановка задач оптимального управления при различных условиях Тема 9. Решение задач оп-	заключитель- ный заключитель-
			i .	i

			<u> </u>	
			тимального управления ме-	ный
			тодом классического вариа-	
			ционного исчисления. Урав-	
			нение Эйлера. Уравнение	
			Эйлера-Лагранжа	
			Тема 10. Задачи максималь-	заключитель-
			ного быстродействия. Прин-	ный
			цип максимума Понтрягина	
			Тема 11. Постановка задачи	заключитель-
			оптимального управления	ный
			методом динамического	
			программирования Беллмана	
			Тема 12. Решение задач оп-	заключитель-
			тимального управления с	ный
			использованием уравнения	
	THC 0		Беллмана	
2.	ПК-2	Способность ис-	Тема 9. Решение задач оп-	заключитель-
		пользовать знания	тимального управления ме-	ный
		теоретических и	тодом классического вариа-	
		эксперименталь-	ционного исчисления. Урав-	
		ных методов на-	нение Эйлера. Уравнение	
		учных исследова-	Эйлера-Лагранжа	
		ний, принципов	1 1	
		организации науч-	Тема 10. Задачи максималь-	заключитель-
		но-	ного быстродействия. Прин-	ный
			цип максимума Понтрягина	
		исследовательской	Тема 11. Постановка задачи	заключитель-
		деятельности с	оптимального управления	ный
		учетом современ-	методом динамического	
		ных достижений	программирования Беллмана	
		науки и передовых		
		технологий		

Показатели и критерии оценивания компетенций, описание шкал оценивания

No	Код контролируе-	Показатель оценивания	Контролируемые	Наименование
,	мой компетенции	(знания, умения, навыки)	темы учебной	оценочного
п/п			дисциплины	средства
1.	ОПК-1	Знать: современные тех-	Тема 1,	Контрольные
		нологии проектирования		вопросы
		робототехнических и ме-	Тема 2,	•
		хатронных объектов.		
		Уметь: формулировать	Тема 3,	
		принципы и физические		
		основы построения объ-		

		ектов робототехники и ехатроники и систем на их основе. Владеть: навыками представления результатов проектной деятельности, оформления технической документации в соответствии с ГОСТами и стандартами в области робототехники и мехатроники.	Тема 4, Тема 5, Тема 6, Тема 7, Тема 8, Тема 9, Тема 10, Тема 11, Тема 12	
2.	ПК-2	Владеть: навыками физического, математического и цифрового моделирования, вычислительного эксперимента, анализа и обработки результатов эксперимента, организации научночиследовательской деятельности в области создания объектов робототехники и автоматизированных систем машиностроительного производства.	Тема 9, Тема 10, Тема 11,	

Фонды оценочных средств по дисциплине «Методы и теория оптимизации систем управления»

Вопросы к защите лабораторных работ Лабораторная работа №1 Разработка и исследования математической модели движения манипулятора

Цель работы: Научиться анализировать функционирование объектов автоматического управления, выполнять декомпозицию на отдельные звенья и составлять дифференциальные уравнения звеньев и объекта в целом. Получить навыки использования компьютерных программ при моделировании динамики объектов управления.

Контрольные вопросы

1. Цели управления. Примеры систем и процессов автоматического

управления. Линейные системы и линеаризация нелинейных систем (тейлоровская и гармоническая). Стационарность.

- 2. Общее решение неоднородного линейного дифференциального уравнения с постоянными коэффициентами. Характеристический многочлен.
- 3. Равносильная запись линейного дифференциального уравнения с постоянными коэффициентами в нормальной форме 1-го порядка (в форме Фробениуса).

Лабораторная работа №2

Разработка и исследование математической модели электрического привода манипулятора

Цель работы: Изучить конструкции электроприводов манипуляторов. Составить дифференциальное уравнение движения электропривода манипулятора. Выполнить преобразование уравнения в нормальную форму. Разработать компьютерную программу функционирования привода.

Выполнить исследования процесса функционирования привода. Получить навыки системного подхода к функционированию манипулятора как единого объекта.

Контрольные вопросы

- 1. Принцип суперпозиции. Тестовые сигналы. Импульсные и переходные характеристики линейных систем. Интеграл свертки.
- 2. Преобразование Лапласа, его свойства и применения. Изображение Лапласа для производной функции, интеграла функции, экспоненциальной функции, степенной функции, единичного скачка, оператора запаздывания.
- 3. Изображение Лапласа для свертки функций. Передаточная функция. Связь с импульсной и переходной функцией. Передаточные функции последовательного, параллельного соединения, звена с обратной связью.

Лабораторная работа №3

Моделирование системы автоматического управления манипулятором и выбор оптимальных параметров наблюдателя системы

Цель работы: Изучить роль и функционирование наблюдателей при синтезе оптимальных систем автоматического управления при полной и неполной информации об объекте. Определять структуру наблюдателей и составлять дифференциальное уравнение. Научиться представлять структуру системы оптимального автоматического управления объектов совместно с наблюдателем.

Выполнить исследования процесса функционирования оптимальной системы. Получить навыки системного подхода к функционированию манипулятора как единого объекта.

- 1. П-, ПИ-, ПИД-регуляторы. Критерии качества регулирования. Устойчивость регулятора. Эвристический метод Никольса подбора параметров устойчивых регуляторов. Оптимизация параметров регуляторов. Каскадные регуляторы. Методы настройки.
- 2. 1-я предельная теорема для преобразования Лапласа. Применение к анализу систем регулирования.

3. Оценка снизу для модульного критерия качества систем регулирования (по 1-й предельной теореме).

Лабораторная работа №4

Разработка и исследования модели двумерного объекта на примере смесительного бака

Цель работы: Изучить метод математического моделирования процессов функционирования многомерных объектов. Убедиться, что объекты с несколькими входами и выходами невозможно автоматизировать традиционным путём, как это осуществляется при автоматизации объектов с одни входом и одним выходом.

На примере смесительного бака, как двумерного объекта, составить дифференциальное уравнение его функционирования, определить структуру и параметры наблюдателя. Выполнить исследования с целью поиска оптимальных параметров наблюдателя.

Контрольные вопросы

- 1. 2-я предельная теорема для преобразования Лапласа. Применение к анализу систем регулирования. Физическая реализуемость. Передаточные функции физически реализуемых систем. Примеры «физически нереализуемых» систем.
- 2. Определение оригинала по изображению Лапласа. Примеры аналитического расчета переходных характеристик простых звеньев.
- 3. Получение разностных уравнений для систем управления с дискретным временем исходя из передаточной функции непрерывной системы. Разностные аналоги 1-го и 2-го порядка точности для оператора дифференцирования. Дискретизация непрерывных систем средствами Scilab.

Лабораторная работа №5

Синтез и исследования оптимальной системы управления со свободными концами траектории и нефиксированном времени начала и окончания пере-

ходных процессов

Цель работы: Изучить методы синтеза оптимальных систем автоматического управления с использованием вариационного исчисления. Методом Эйлера-Лагранжа выполнить синтез системы оптимального автоматического управления при известных и неизвестных ограничениях на траекторию движения и времени начала и окончания процесса управления.

- 1. Общее решение неоднородного линейного разностного уравнения с постоянными коэффициентами. Характеристический многочлен.
- 2. Равносильная запись линейного разностного уравнения с постоянными коэффициентами в нормальной форме 1-го порядка (в форме Фробениуса).
- 3. Равносильность и равносильные преобразования систем в нормальной форме 1-го порядка. Минимальные и неминимальные системы (определение, примеры).

Синтез и исследования системы автоматического управления, оптимальной по быстродействию на основе принципа максимума Понтрягина

Цель работы: Изучить метод синтеза систем автоматического управления, оптимальных по быстродействию на основе принципа максимума Понтрягина Л.С. Научиться выполнять синтез системы оптимальной по быстродействию и исследовать её функционирование

Контрольные вопросы

- 1. Управляемость и наблюдаемость разностных систем.
- 2. Теорема о декомпозиции пространства состояний. Выделение управляемой и наблюдаемой подсистем. Построение минимальной системы средствами Scilab.
- 3. Матричная экспонента. Общее решение неоднородного линейного дифференциального уравнения в нормальной форме 1-го порядка через матричную экспоненту и интеграл свертки.

Лабораторная работа №6

Синтез оптимальной системы управления с использованием метода динамического программирования Беллмана

и её исследования

Цель работы: Изучить метод динамического программирования с целью освоения метода синтеза оптимальных систем при его использовании. Уметь составлять функциональное уравнение Беллмана и находить уравнение управляющего устройства, обеспечивающее её оптимальную структуру и параметры.

Контрольные вопросы

- 1. Устойчивость линейных систем «по входу». Критерий устойчивости по расположению корней характеристического многочлена (доказательство). Особенности формулировок в случае дискретного времени. Устойчивость нелинейной системы в точке равновесия по Ляпунову и асимптотическая устойчивость (определения).
- 2. Критерий устойчивости Михайлова. Доказательство с использованием принципа аргумента.
- 3. Критерий устойчивости Рауса—Гурвица. Необходимые и достаточные условия устойчивости систем 2 и 3 порядка. Критерий Стодолы.

Лабораторная работа №8

Исследование системы автоматического управления объектов при случайных возмущающих воздействиях

Цель работы Изучить метод синтеза систем автоматического управления при случайных возмущающих воздействиях со стационарными вероятностными характеристиками.

- 1. Теорема Найквиста. Доказательство с использованием принципа аргумента.
- 2. Запас устойчивости по Найквисту. Определение запаса устойчивости по амплитудно-частотным и фазо-частотным характеристикам.

3. Количественная характеристика устойчивости через норму решения матричного уравнения Ляпунова (случай непрерывного времени). Вычисления в Scilab.

Лабораторная работа №9

Синтез и исследования системы автоматического управления с чистым запаздыванием информации о выходной координате объекта управления

Цель работы: Изучить методику синтеза систем автоматического управления с чистым запаздыванием информации о выходной координате. Выполнить моделирование системы автоматического управления и провести исследования системы.

Контрольные вопросы

- 1. Количественная характеристика устойчивости через норму решения матричного уравнения Ляпунова (случай дискретного времени). Вычисления в Scilab.
 - 2. Модальное управление.
 - 3. Интервальные многочлены, устойчивость. Теорема Харитонова.

Лабораторная работа №10

Исследование системы автоматического управления при чистом запаздывании информации о выходных координатах объекта при переменном времени корреляции возмущений

Цель работы: Изучить методику синтеза систем автоматического управления с чистым запаздыванием информации о выходной координате при случайных воздействиях. Выполнить моделирование системы автоматического управления и провести исследования системы.

Контрольные вопросы

- 1. Фазовое пространство, фазовая плоскость и фазовые траектории. Примеры. Точки равновесия на фазовой плоскости. Определение устойчивости и асимптотической устойчивости по Ляпунову в окрестности точки равновесия.
- 2. Теорема Ляпунова--Пуанкаре об устойчивости по линейному приближению.
 - 3. Классификация движений вблизи точек равновесия.

Лабораторная работа №11

Исследования зависимости качества управления оптимальной системы при изменении параметров объекта и возмущениях случайного характера

Цель работы: Изучить методику синтеза систем автоматического управления при переменных параметрах объекта управления и случайных воздействиях с нестационарными вероятностными характеристиками. Выполнить моделирование системы автоматического управления и выполнить исследования системы.

- 1. Исследование устойчивости с помощью функций Ляпунова.
- 2. Задачи экстремального регулирования. Синхронное детектирование как способ оценки градиента целевой функции. Структурная схема регулятора с синхронным детектором.

3. Задачи оптимального управления без обратной связи. Принцип максимума Понтрягина. Синтез оптимального по быстродействию управления для системы второго порядка.

Лабораторная работа №12

Разработка и исследования системы автоматического управления объектом с переменной структурой при случайных возмущающих воздействиях

Цель работы: Изучить методику синтеза систем автоматического управления при переменных параметрах объекта управления и случайных воздействиях с нестационарными вероятностными характеристиками. Выполнить моделирование системы автоматического управления и выполнить исследования системы при переменной структуре объекта управления.

Контрольные вопросы

- 1. Условия трансверсальности. Синтез оптимального по быстродействию управления для системы второго порядка с конечным состоянием на многообразии.
- 2. Обратные задачи теории управления. Линейная задача фильтрации, геометрическая интерпретация, вывод формулы проектора. Постановка задачи идентификации параметров уравнения.
- 3. Примеры целевых функций для оценок параметров уравнения. Свойства оценок. Вычисление оценок по методу Егоршина—Осборна, по методу ортогональной регрессии К. Пирсона, по линейному методу наименьших квадратов К. Гаусса. Сравнение оценок

Критерии и шкала оценивания по оценочному средству защита лабораторных работ

Шкала оценивания	Критерий оценивания	
5	Ответы на вопросы к защите лабораторных работ даны на высоком уровне (правильные ответы даны на 90-100% вопросов/задач)	
4	Ответы на вопросы к защите практических работ даны на среднем уровне (правильные ответы даны на 75-89% вопросов/задач)	
3	Ответы на вопросы к защите лабораторных работ даны на низком уровне (правильные ответы даны на 50-74% вопросов/задач)	
2	Ответы на вопросы к защите лабораторных работ даны на неудовлетворительном уровне (правильные ответы даны менее чем на 50%)	

Вопросы для контрольных работ

- 1. В чём суть преобразование Лапласа.
- 2. Вектор и матрица состояния системы.
- 3. Каковы условия стабилизируемости объекта.

- 4. Подпространство управляемости.
- 5. Критерий наблюдаемости.
- 6. Условия наблюдаемости
- 7. Структура наблюдателей полного и пониженного порядка и условия их применения.
 - 8. Сформулируйте задачу Лагранжа и покажите метод ее решения.
 - 9. Что означают условия трансверсальности?
- 10. Какова область применения метода оптимизации с использованием принципа максимума Понтрягина?
- 11. Приведите необходимые условия принципа максимума и сформулируйте его.
- 12. Дайте формулировку задачи оптимального быстродействия. Сформулируйте ее постановку.
 - 13. Назовите, что составляет основу динамического программирования.
 - 14. Сформулируйте принцип оптимальности..
 - 15. Собственные значения матрицы системы.
 - 16. Нормальная форма уравнений состояния объектов управления.
- 17. Каковы преимущества представления уравнений в пространстве состояний?
 - 18. Критерий управляемости и полной управляемости системы.
 - 19. Сформулируйте понятия устойчивости и абсолютной устойчивости.
 - 20. В чем заключается особенность задач с нефиксированным временем?

Типовые варианты контрольных работ

ВАРИАНТ 1

- 1. В чём суть преобразование Лапласа.
- 2. Вектор и матрица состояния системы.
- 3. Каковы условия стабилизируемости объекта.
- 4. Подпространство управляемости.
- 5. Критерий наблюдаемости.
- 6. Условия наблюдаемости

ВАРИАНТ 2

- 1. Структура наблюдателей полного и пониженного порядка и условия их применения.
 - 2. Сформулируйте задачу Лагранжа и покажите метод ее решения.
 - 3. Что означают условия трансверсальности?
- 4. Какова область применения метода оптимизации с использованием принципа максимума Понтрягина?
- 5. Приведите необходимые условия принципа максимума и сформулируйте его.
- 6. Дайте формулировку задачи оптимального быстродействия. Сформулируйте ее постановку.

ВАРИАНТ 3

1. Сформулируйте принцип оптимальности..

- 2. Собственные значения матрицы системы.
- 3. Нормальная форма уравнений состояния объектов управления.
- 4. Каковы преимущества представления уравнений в пространстве состояний?
 - 5. Критерий управляемости и полной управляемости системы.
 - 6. Сформулируйте понятия устойчивости и абсолютной устойчивости.

Критерии и шкала оценивания по оценочному средству контрольная работа

Шкала оценивания	Критерий оценивания	
5	Контрольная работа выполнена на высоком уровне (правильные ответы даны на 90-100% вопросов/задач)	
4	Контрольная работа выполнена на среднем уровне (правильные ответы даны на 75-89% вопросов/задач)	
3	Контрольная работа выполнена на низком уровне (правильные ответы даны на 50-74% вопросов/задач)	
2	Контрольная работа выполнена на неудовлетворительном уровне (правильные ответы даны менее чем на 50%)	

Вопросы фронтального и индивидуального опросов

- 1. Какова область применения метода оптимизации с использованием принципа максимума Понтрягина?
 - 2. Вектор и матрица состояния системы.
 - 3. Сформулируйте понятия устойчивости и абсолютной устойчивости.
- 4. Каковы преимущества представления уравнений в пространстве состояний?
 - 5. В чём суть преобразование Лапласа.
 - 6. Условия наблюдаемости.
 - 7. Каковы условия стабилизируемости объекта.
 - 8. Модель преобразованной системы.
- 9. Структура наблюдателей полного и пониженного порядка и условия их применения.
- 10. Чем отличается задача с подвижными концами и фиксированным временем от задачи Лагранжа? Сформулируйте ее постановку и укажите особенности метода решения задачи.
- 11. Сформулируйте задачу оптимизации при фиксированном времени с закрепленными концами.
 - 12. Сформулируйте принцип оптимальности..
- 13. Дайте формулировку задачи оптимального быстродействия. Сформулируйте ее постановку.

- 14. В чём преимущества представления уравнения объекта в матричной форме?
- 15. Приведите необходимые условия принципа максимума и сформулируйте его.
 - 16. Условия наблюдаемости
 - 17. Сформулируйте задачу Лагранжа и покажите метод ее решения.
 - 18. Сформулируйте принцип оптимальности..
- 19. Каковы преимущества представления уравнений в пространстве состояний?
- 20. Приведите необходимые условия принципа максимума и сформулируйте его.

Критерии и шкала оценивания по оценочному средству фронтальный и

индивидуальный опрос

Шкала оценивания	Критерий оценивания	
5	Контрольная работа выполнена на высоком уровне (правильные ответы даны на 90-100% вопросов/задач)	
4	Контрольная работа выполнена на среднем уровне (правильные ответы даны на 75-89% вопросов/задач)	
3	Контрольная работа выполнена на низком уровне (правильные ответы даны на 50-74% вопросов/задач)	
2	Контрольная работа выполнена на неудовлетворительном уровне (правильные ответы даны менее чем на 50%)	

Оценочные средства для промежуточной аттестации (зачет)

- 1. Сформулируйте общую постановку задачи оптимального управления.
- 2. Каковы преимущества представления уравнений в пространстве состояний?
- 3. В чём преимущества представления уравнения объекта в матричной форме?
 - 4. Что такое фундаментальная и нормированная матрица.
 - 5. В чём суть преобразование Лапласа.
 - 6. Общее решение уравнения

- 7. Нормальная форма уравнений состояния объектов управления.
- 8. Векторная форма уравнений состояния.
- 9. Собственные значения матрицы системы.
- 10. Передаточная функция системы в символической форме.
- 11. Уравнения состояния в матричной форме.
- 12. Модель решения уравнений системы.
- 13. Вектор и матрица состояния системы.
- 14. Модель преобразованной системы.
- 15. Сформулируйте понятия устойчивости и абсолютной устойчивости.
- 16. Понятие управляемости системы.
- 17. Критерий управляемости и полной управляемости системы.
- 18. Что означает стабилизируемость систем?
- 19. Необходимые и достаточные условия управляемости объектов.
- 20. Каковы условия стабилизируемости объекта.
- 21. Представление в канонической форме управляемости не вполне управляемого объекта.
 - 22. Подпространство управляемости.
 - 23. Уравнение наблюдения.
 - 24. Условия наблюдаемости.
 - 25. Полная наблюдаемость.
 - 26. Критерий наблюдаемости.
- 27. Сформулируйте необходимые и достаточные условия наблюдаемости объекта управления.
 - 28. Каноническая форма наблюдаемости.
- 29. Структура наблюдателей полного и пониженного порядка и условия их применения.
 - 30. Приведите классификацию задач оптимального управления.
 - 31. Сформулируйте задачу Лагранжа и покажите метод ее решения.
- 32. Чем отличается задача с подвижными концами и фиксированным временем от задачи Лагранжа? Сформулируйте ее постановку и укажите особенности метода решения задачи.
 - 33. Что означают условия трансверсальности?
- 34. В чем заключается особенность задач с нефиксированным временем? Сформулируйте постановку задачи. Какие дополнительные условия при этом следует учитывать?
- 35. Какова область применения метода оптимизации с использованием принципа максимума Понтрягина?
- 36. Сформулируйте задачу оптимизации при фиксированном времени с закрепленными концами.
- 37. Приведите необходимые условия принципа максимума и сформулируйте его.
- 38. Каковы особенности задачи оптимизации с подвижными концами. Сформулируйте принцип максимума для этой задачи.
- 39. Дайте формулировку задачи оптимального быстродействия. Сформулируйте ее постановку.

- 40. Приведите условия решения задачи оптимального быстродействия.
- 41. Назовите, что составляет основу динамического программирования.
- 42. Что означает функция Беллмана.
- 43. Сформулируйте принцип оптимальности..
- 44. Назовите порядок нахождения оптимального управления методом динамического программирования.

Критерии и шкала оценивания по оценочному средству промежуточный контроль (зачет)

Характеристика знания предмета и ответов	Зачеты
Студент глубоко и в полном объеме владеет программным материалом. Грамотно, исчерпывающе и	зачтено
логично его излагает в устной или письменной фор-	
ме. При этом знает рекомендованную литературу,	
проявляет творческий подход в ответах на вопросы и	
правильно обосновывает принятые решения, хорошо	
владеет умениями и навыками при выполнении прак-	
тических задач.	
Студент знает программный материал, грамотно и по	
сути излагает его в устной или письменной форме,	
допуская незначительные неточности в утверждени-	
ях, трактовках, определениях и категориях или не-	
значительное количество ошибок. При этом владеет	
необходимыми умениями и навыками при выполне-	
нии практических задач.	
Студент знает только основной программный мате-	
риал, допускает неточности, недостаточно четкие	
формулировки, непоследовательность в ответах, из-	
лагаемых в устной или письменной форме. При этом	
недостаточно владеет умениями и навыками при вы-	
полнении практических задач. Допускает до 30%	
ошибок в излагаемых ответах.	
Студент не знает значительной части программного	не зачтено
материала. При этом допускает принципиальные	
ошибки в доказательствах, в трактовке понятий и ка-	
тегорий, проявляет низкую культуру знаний, не вла-	
деет основными умениями и навыками при выполне-	
нии практических задач. Студент отказывается от от-	
ветов на дополнительные вопросы.	

Форма листа изменений и дополнений, внесенных в ФОС

Лист изменений и дополнений

No	Виды дополнений и изме-	Дата и номер протокола	Подпись (с расшифров-
п/п	нений	заседания кафедры (ка- федр), на котором были	кой) заведующего кафедрой (заведующих кафед-
		рассмотрены и одобрены	рами)
		изменения и дополнения	- /

Экспертное заключение

Представленный фонд оценочных средств (далее – Φ OC) по дисциплине «Методы и теория оптимизации систем управления» соответствует требованиям Φ ГОС ВО.

Предлагаемые формы и средства текущего и промежуточного контроля адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 15.04.06 Мехатроника и робототехника.

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины представлены в полном объеме.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанный и представленный для экспертизы фонд оценочных средств рекомендуется к использованию в процессе подготовки обучающихся по указанному направлению.

Председатель учебно-методической комиссии факультета компьютерных систем и информационных технологий

Ветрова Н. Н.