МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Факультет компьютерных систем и информационных технологий Кафедра информационных и управляющих систем

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Современные методы вычислительной математики в решении задач мехатроники и робототехники»

по направлению подготовки 15.04.06 Мехатроника и робототехника магистерская программа «Мехатронные и робототехнические системы»

Лист согласования РПУД

Рабочая программа учебной дисциплины «Современные методы вычислительной математики в решении задач мехатроники и робототехники» по направлению подготовки 15.04.06 Мехатроника и робототехника. — /3 с.

Рабочая программа учебной дисциплины «Современные методы вычислительной математики в решении задач мехатроники и робототехники» составлена на основе Федерального государственного образовательного стандарта высшего образования по направлению подготовки 15.04.06 Мехатроника и робототехника, утвержденного приказом Министерства науки и высшего образования Российской Федерации от 14 августа 2020 г. № 1023, зарегистрированным в Министерстве юстиции Российской Федерации от 28 августа 2020 года № 59548, учебного плана по направлению подготовки 15.04.06 Мехатроника и робототехника (магистерская программа «Мехатронные и робототехнические системы») и Положения о рабочей программе учебной дисциплины в ФГБОУ ВО «ЛГУ им. В. Даля».

СОСТАВИТЕЛЬ:

старший преподаватель кафедры информационных и управляющих систем Синепольский Д.О.

Рабочая программа дисциплины утверждена на заседании кафедры информационных и управляющих систем 18 апреля 2023 года, протокол № 15. Заведующий кафедрой информационных и управляющих систем Переутверждена: «__» ___ 20 г., протокол № Согласована: Декан факультета компьютерных систем и информационных технологий Кочевский А. А. Рекомендована на заседании учебно-методической комиссии факультета компьютерных систем и информационных технологий 19 апреля 2023 года, протокол № 8. Председатель учебно-методической комиссии факультета компьютерных систем и информационных технологий Ветрова Н. Н.

[©] Синепольский Д.О., 2023 год

[©] ФГБОУ ВО «ЛГУ им. В. Даля», 2023 год

Структура и содержание дисциплины

1. Цели и задачи дисциплины, ее место в учебном процессе

Цель дисциплины «Современные методы вычислительной математики в решении задач мехатроники и робототехники» — дать студенту необходимый для профессиональной деятельности объем теоретических знаний, практических умений и навыков в области современной вычислительной техники и вычислительной математики, необходимых для моделирования и разработки роботизированных и мехатронных систем.

Задачи изучения дисциплины включают формирование у студентов теоретических знаний, выработка умений и практических навыков в следующих направлениях:

- формализация условий задач мехатроники и робототехники;
- составление математической модели робототехнических систем и их компонентов;
- методы и алгоритмы численного решения дифференциальных уравнений, получаемых при моделировании робототехнических систем, их достоинства и недостатки; оценка погрешностей решения;
- выбор рационального метода численного решения линейных и нелинейных дифференциальных уравнений и их систем;
- методы численной обработки результатов экспериментальной идентификации объектов мехатронных систем;
- проверка адекватности получаемых решений.

2. Место дисциплины в структуре ОПОП ВО.

Дисциплина «Современные методы вычислительной математики в решении задач мехатроники и робототехники» входит в обязательную часть учебного плана по направлению подготовки 15.04.06 Мехатроника и робототехника.

Содержание дисциплины является логическим продолжением содержания дисциплин «Математический анализ», «Физика», «Основы мехатроники и робототехники» в объеме подготовки бакалавра по направлению подготовки 15.03.06, «Методы и теория оптимизации систем управления» и служит основой для освоения дисциплин «Мехатронные и робототехнические системы специального назначения», «Новые технологии в мехатронике и робототехнике», «Теория эксперимента в исследованиях систем».

3. Требования к результатам освоения содержания дисциплины

Студенты, завершившие изучение дисциплины «Современные методы вычислительной математики в решении задач мехатроники и робототехники», должны

знать:

- численные методы решения уравнений с помощью ЭВМ;
- методы численного интегрирования, дифференцирования и решения дифференциальных уравнений с помощью ЭВМ;
- методы обработки результата натурных экспериментов с помощью ЭВМ;

уметь:

- для реального объекта или процесса построить его математическую модель;
- использовать численные методы при реализации математической модели на ЭВМ;
- обрабатывать результаты натурного эксперимента с помощью ЭВМ;

владеть:

- навыками построения математических моделей, описываемых линейными, нелинейными, дифференциальными уравнениями и системами уравнений;
- навыками планирования, проведения вычислительного эксперимента и анализа его результатов.

Перечисленные результаты образования являются основой для формирования следующих компетенций (в соответствии с ФГОС ВО и требованиями к результатам освоения основной образовательной программы (ОПОП ВО):

общепрофессиональных:

ОПК-11.1: Знать основные подходы, алгоритмы, методы расчетов и проектирования отдельных устройств и подсистем мехатронных робототехнических систем с использованием стандартных исполнительных и управляющих устройств, средств автоматики, измерительной вычислительной техники соответствии c техническим В заданием, разрабатывать цифровые управления алгоритмы И программы робототехнических систем.

ОПК-11.2: Уметь разрабатывать цифровые алгоритмы и программы управления робототехническими системами.

ОПК-11.3: Владеть навыками организации разработки и применения алгоритмов, современных цифровых программных методов расчета и проектирования отдельных устройств и подсистем мехатронных и робототехнических систем с использованием стандартных исполнительных и управляющих устройств, средств автоматики, измерительной и вычислительной техники в соответствии с техническим заданием.

ОПК-13.1: Знать основные положения, законы и методы естественных наук и математики при формировании моделей и методов исследования мехатронных и робототехнических систем.

ОПК-13.2: Уметь формировать модели и методы исследования мехатронных и робототехнических систем с учетом законов естественных наук и математики.

ОПК-13.3: Владеть навыками использования основных положений, законов и методов естественных наук и математики при формировании моделей и методов исследования мехатронных и робототехнических систем.

профессиональных:

ПК-2.2: Уметь составлять математические модели объектов мехатроники, робототехники комплексной автоматизации И производственных процессов, проводить вычислительные эксперименты с стандартных программных использованием пакетов И программного обеспечения.

ПК-2.3: Владеть навыками физического, математического цифрового моделирования, вычислительного эксперимента, анализа обработки результатов эксперимента, организации научноисследовательской деятельности в области создания объектов робототехники и автоматизированных систем машиностроительного производства.

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

	Объем часов (з.е.)			
Вид учебной работы	Очная форма	Очно-	Заочная	
Вид учесной рассты		заочная	форма	
		форма		
Объем учебной дисциплины (всего)	108	-	108	
	(3 3.e.)		(3 3.e.)	
Обязательная аудиторная учебная нагрузка	56	-	12	
дисциплины (всего)				
в том числе:				
Лекции	28	-	6	
Семинарские занятия	-	-	-	
Практические занятия	-	-	-	
Лабораторные работы	28	-	6	
Курсовая работа (курсовой проект)	-	-	-	
Индивидуальное задание	-	-	-	
Самостоятельная работа студента (всего)	52	-	92	
Форма аттестации	зачет	-	зачет	

4.2. Содержание разделов дисциплины

Тема 1 - Математическое и компьютерное моделирование РТС

(Моделирование процессов и систем как метод научного познания; Математическое моделирование; Форма и принципы представления математических моделей; Особенности построения математических моделей; Моделирование кривошипно-шатунного механизма;

Компьютерное моделирование и вычислительный эксперимент; Решение математических моделей)

- Тема 2 Численные методы решения нелинейных уравнений (Постановка задачи; Метод половинного деления; Метод простых итераций; Метод Ньютона; Метод секущих; Метод хорд)
- Тема 3 Моделирование линейных многомерных систем
 (Постановка задачи; Решение систем линейных уравнений методом Гаусса; Алгоритм)
- Тема 4 Моделирование многомерных нелинейных систем
 (Решение систем нелинейных уравнений; Метод простых итераций;
 Решение систем нелинейных уравнений методом Ньютона;
 Определение матрицы Якоби)
- Тема 5 Численные методы интегрирования
 (Постановка задачи; Метод прямоугольников; Метод трапеций; Метод Симпсона)
- Тема 6 Численные методы решения дифференциальных уравнений первого порядка

(Постановка задачи; Методы Рунге — Кутта; Метод Эйлера; Геометрический смысл метода Эйлера; Метод Рунге — Кутта 2-го порядка; Геометрический смысл модифицированного метода Эйлера. Метод Рунге — Кутта 4-го порядка)

Тема 7 - Решение дифференциальных уравнений высоких порядков (Постановка задачи; Решение дифференциальных уравнений второго порядка; Решение дифференциальных уравнений m-го порядка методом Рунге-Кутта 4-го порядка)

Тема 8 - Интерполирование функций

(Введение; Интерполирование функций; Построение интерполяционного многочлена в явном виде; Интерполяция по Лагранжу; Программирование формулы Лагранжа; Интерполяция по Ньютону; Разделённые разности; Программирование формулы Ньютона; Пример интерполяции по Ньютону; Сплайн-интерполяция)

Тема 9 - Аппроксимация опытных данных

(Постановка задачи; Сглаживание опытных данных методом наименьших квадратов; Программирование метода наименьших квадратов)

4.3. Лекции

	№ п/п Название темы		Объем часов		
			Очно- заочная форма	Заочная форма	
1	Математическое и компьютерное моделирование	2	-	0,5	
2	Численные методы решения нелинейных уравнений	4	ı	0,5	
3	Моделирование линейных многомерных систем	4	ı	0,5	
4	Моделирование многомерных нелинейных систем		-	1	
5	Численные методы интегрирования		-	0,5	
6	Численные методы решения дифференциальных уравнений первого порядка		-	1	
7	Решение дифференциальных уравнений высоких порядков		-	1	
8	Интерполирование функций		-	0,5	
9	Аппроксимация опытных данных		-	0,5	
Итого:		28	-	6	

4.4. Практические (семинарские) занятия

Не предусмотрены

4.5. Лабораторные работы

	Название темы		Объем часов		
№ п/п			Очно- заочная форма	Заочная форма	
1	Вычисление суммы ряда	2	-	0,5	
2	Численные методы решения нелинейных уравнений	4	-	0,5	
3	Решение системы линейных уравнений методом Гаусса		-	0,5	
4	Решение систем нелинейных уравнений		-	1	
5	Численные методы интегрирования		-	0,5	
6	Численные методы решения дифференциальных уравнений 1-го порядка		-	1	
7	Численные методы решения дифференциальных уравнений высоких порядков		-	1	
8	Интерполирование функций		-	0,5	
9	Аппроксимация опытных данных методом наименьших квадратов	2	-	0,5	
Итого):	28	-	6	

4.6. Самостоятельная работа студентов

					Объем часов	
№ п/п	Название темы	Вид СРС	Очная форма	Очно- заочная форма	Заочная форма	
1	Математическое и компьютерное моделирование	работа с литературой	6	-	10	

				Объем часо	OB .
№ п/п	Название темы	Вид СРС	Очная форма	Очно- заочная форма	Заочная форма
2	Численные методы решения нелинейных уравнений	работа с литературой, написание и отладка кода, подготовка отчетов	12	-	10
3	Моделирование линейных многомерных систем	работа с литературой, написание и отладка кода, подготовка отчетов	12	-	12
4	Моделирование многомерных нелинейных систем	работа с литературой, написание и отладка кода, подготовка отчетов	12	-	10
5	Численные методы интегрирования	работа с литературой, написание и отладка кода, подготовка отчетов	10	-	10
6	Численные методы решения дифференциальных уравнений первого порядка	работа с литературой, написание и отладка кода, подготовка отчетов	10	-	10
7	Решение дифференциальных уравнений высоких порядков	работа с литературой, написание и отладка кода, подготовка отчетов	12	-	10
8	Интерполирование функций	работа с литературой, написание и отладка кода, подготовка отчетов	10	-	10
9	Аппроксимация опытных данных	работа с литературой, написание и отладка кода, подготовка отчетов	12	-	10
Итого	0:		52	-	92

4.7. Курсовые работы/проекты

Не предусмотрены

5. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

- традиционные объяснительно-иллюстративные технологии, которые обеспечивают доступность учебного материала для большинства студентов, системность, отработанность организационных форм и привычных методов, относительно малые затраты времени;
- технологии проблемного обучения, направленные на развитие познавательной активности, творческой самостоятельности студентов и предполагающие последовательное и целенаправленное выдвижение перед студентом познавательных задач, разрешение которых позволяет студентам активно усваивать знания (используются поисковые методы; постановка познавательных задач);

- технологии развивающего обучения, позволяющие ориентировать учебный процесс на потенциальные возможности студентов, их реализацию и развитие;
- технологии концентрированного обучения, суть которых состоит в создании максимально близкой к естественным психологическим особенностям человеческого восприятия структуры учебного процесса и которые дают возможность глубокого и системного изучения содержания учебных дисциплин за счет объединения занятий в тематические блоки;
- технологии модульного обучения, дающие возможность обеспечения гибкости процесса обучения, адаптации его к индивидуальным потребностям и особенностям обучающихся (применяются, как правило, при самостоятельном обучении студентов по индивидуальному учебному плану);
- технологии дифференцированного обучения, обеспечивающие возможность создания оптимальных условий для развития интересов и способностей студентов, в том числе и студентов с особыми образовательными потребностями, что позволяет реализовать в культурно-образовательном пространстве университета идею создания равных возможностей для получения образования
- технологии активного (контекстного) обучения, с помощью которых осуществляется моделирование предметного, проблемного и социального содержания будущей профессиональной деятельности студентов (используются активные и интерактивные методы обучения) и т.д.

Максимальная эффективность педагогического процесса достигается путем конструирования оптимального комплекса педагогических технологий и (или) их элементов на личностно-ориентированной, деятельностной, диалогической основе и использования необходимых современных средств обучения.

6. Формы контроля освоения дисциплины

Текущая аттестация студентов производится в дискретные временные интервалы лектором и преподавателем, ведущим практические занятия в следующих формах:

- лабораторные работы;
- защита результатов лабораторных работ (устная форма).

Фонды оценочных средств, включающие типовые задания и методы контроля, позволяющие оценить результаты промежуточной аттестации обучающихся по данной дисциплине, помещаются в приложении к рабочей программе в соответствии с «Положением о фонде оценочных средств».

Промежуточный контроль по результатам освоения дисциплины проходит в форме экзамена, который включает в себя ответ на теоретические вопросы.

Студенты, выполнившие 75% текущих и контрольных мероприятий на «отлично», а остальные 25 % на «хорошо», имеют право на получение итоговой отличной оценки.

В экзаменационную ведомость и зачетную книжку выставляются оценки по шкале, приведенной в таблице.

Шкала оценивания	Характеристика знания предмета и ответов
отлично (5)	Студент глубоко и в полном объеме владеет программным материалом. Грамотно, исчерпывающе и логично его излагает в устной или письменной форме. При этом знает рекомендованную литературу, проявляет творческий подход в ответах на вопросы и правильно обосновывает принятые решения, хорошо владеет умениями и навыками при выполнении практических задач.
хорошо (4)	Студент знает программный материал, грамотно и по сути излагает его в устной или письменной форме, допуская незначительные неточности в утверждениях, трактовках, определениях и категориях или незначительное количество ошибок. При этом владеет необходимыми умениями и навыками при выполнении практических задач.
удовлетворительно (3)	Студент знает только основной программный материал, допускает неточности, недостаточно четкие формулировки, непоследовательность в ответах, излагаемых в устной или письменной форме. При этом недостаточно владеет умениями и навыками при выполнении практических задач. Допускает до 30% ошибок в излагаемых ответах.
неудовлетворительно (2)	Студент не знает значительной части программного материала. При этом допускает принципиальные ошибки в доказательствах, в трактовке понятий и категорий, проявляет низкую культуру знаний, не владеет основными умениями и навыками при выполнении практических задач. Студент отказывается от ответов на дополнительные вопросы.

7. Учебно-методическое и программно-информационное обеспечение дисциплины:

а) основная литература

- 1. Соболева О.Н., Введение в численные методы : учеб. пособие / О.Н. Соболева Новосибирск : Изд-во НГТУ, 2011. 64 с. ISBN 978-5-7782-1776-8 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785778217768.html (дата обращения: 11.03.2023). Режим доступа : по подписке.
- 2. Костомаров Д.П., Программирование и численные методы / Костомаров Д.П., Корухова Л.С., Манжелей С.Г. М.: Издательство Московского государственного университета, 2001. 224 с. ISBN 5-211-04059-7 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN5211040597.html (дата обращения: 11.03.2023) Режим доступа: по подписке.

- 3. Бахвалов Н.С., Численные методы / Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков. 8-е изд. (эл.). М. : БИНОМ, 2015. 639 с. (Классический университетский учебник.) ISBN 978-5-9963-2616-7 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785996326167.html (дата обращения: 11.03.2023). Режим доступа : по подписке.
- 4. Бахвалов Н.С., Численные методы. Решения задач и упражнения : учебное пособие для вузов / Н.С. Бахвалов, А.А. Корнев, Е.В. Чижонков М. : Лаборатория знаний, 2016. 355 с. (Классический университетский учебник) ISBN 978-5-93208-205-8 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785932082058.html (дата обращения: 11.03.2023). Режим доступа : по подписке.

б) дополнительная литература

- 1. Балабко Л.В., Численные методы / Л.В. Балабко, А.В. Томилова Архангельск: ИД САФУ, 2014. 163 с. ISBN 978-5-261-00962-7 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785261009627.html (дата обращения: 11.03.2023). Режим доступа: по подписке.
- 2. Орешкова М.Н., Численные методы / Орешкова М.Н. Архангельск : ИД САФУ, 2015. 120 с. ISBN 978-5-261-01040-1 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785261010401.html (дата обращения: 11.03.2023). Режим доступа : по подписке.
- 3. Карманова Е.В., Численные методы: учеб. пособие / Е.В. Карманова. 2-е изд., стер. М.: ФЛИНТА, 2015. 172 с. ISBN 978-5-9765-2303-6 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785976523036.html (дата обращения: 11.03.2023). Режим доступа: по подписке.
- 4. Смирнов А.П., Методы оптимизации. Алгоритмические основы задач оптимизации: курс лекций / А.П. Смирнов. М.: МИСиС, 2014. 135 с. ISBN 978-5-87623-781-1 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785876237811.html (дата обращения: 11.03.2023). Режим доступа: по подписке.
- 5. Струченков В.И., Методы оптимизации в прикладных задачах. / Струченков В. И. М.: СОЛОН-ПРЕСС, 2009. 320 с. ISBN 978-5-91359-061-9 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785913590619.html (дата обращения: 11.03.2023). Режим доступа: по подписке.
- 6. Волков Е. А. Численные методы [Текст] : учеб. пособие / Е. А. Волков. М. : Наука, 1982. 256 с.

- 7. Краскевич В. Е. Численные методы в инженерных исследованиях [Текст]: учеб. пособие / В. Е. Краскевич, К. Х. Зеленский, В. И. Гречко. К.: Вища школа, 1986. 264 с.
- 8. Лебедев А. Н. Моделирование в научно-технических исследованиях [Текст] / А. Н. Лебедев. М.: Радио и связь, 1989. 224 с. Библиогр.: с. 313 314. ISBN 5-256-00177-9 (в пер.)

в) методические указания

- 1. Конспект лекций по дисциплине «Современные методы вычислительной математики в решении задач мехатроники и робототехники» для студентов по направлению подготовки «Мехатроника и робототехника» (электронное издание) / Составители: Д.О. Синепольский, В.В. Макогон Луганск: изд-во ЛГУ им. В. Даля, 2023
- 2. Методические указания к лабораторным работам по дисциплине «Современные методы вычислительной математики в решении задач мехатроники и робототехники» для студентов по направлению подготовки «Мехатроника и робототехника» (электронное издание) / Составители: Д.О. Синепольский, В.В. Макогон Луганск: изд-во ЛГУ им. В. Даля, 2023

г) Интернет-ресурсы:

Электронные библиотечные системы и ресурсы

Электронно-библиотечная система «Консультант студента» – http://www.studentlibrary.ru/cgi-bin/mb4x

Информационный ресурс библиотеки образовательной организации

Научная библиотека имени А. Н. Коняева – http://biblio.dahluniver.ru/

8. Материально-техническое обеспечение дисциплины

Освоение дисциплины предполагает использование академических аудиторий, соответствующих действующим санитарным и противопожарным правилам и нормам.

Прочее: рабочее место преподавателя, оснащенное компьютером с доступом в Интернет.

Программное обеспечение:

Функциональное назначение	Бесплатное программное обеспечение	Ссылки
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu

Функциональное назначение	Бесплатное программное обеспечение	Ссылки
Система программирования на языке высокого уровня C++	Code::Blocks (GNU C++ 4.x)	http://www.codeblocks.org/downloads
Система программирования на языке высокого уровня Pascal	Free Pascal IDE	https://www.freepascal.org/download.var
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Отображение файлов в формате PDF	Foxit Reader	https://www.foxitsoftware.com/downloads/ (Free Download)
Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx