МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля»

Институт строительства, архитектуры и жилищно-коммунального хозяйства Кафедра общеобразовательных дисциплин

УТВЕРЖДАЮ

Директор института строительства, архитектуры и жилищнокоммунального хозяйства

д.т.н., профессор Андрийчук Н.Д. 2023 r.

«14» O4

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«ФИЗИКА»

По направлению подготовки:

20.03.02 Природообустройство и водопользование

Профиль: «Природоохранное и водохозяйственное строительство»

Лист согласования РПУД

Рабочая программа учебной дисциплины «Физика» по направлению подготовки 20.03.02 Природообустройство и водопользование. —46 с.

Рабочая программа учебной дисциплины «Физика» составлена с учетом Федерального государственного образовательного стандарта высшего образования по направлению подготовки 20.03.02 Природообустройство и водопользование, утвержденного приказом Министерства науки и высшего образования Российской Федерации от 26.05.2020 №685 с изменениями и дополнениями № 1456 от 26.11.2020 и № 662 от 19.07.2022 и № 208 от 27.02.2023.

CO	OT	A .	DI	A'	CC	П	Ι.

Старший преподаватель кафедры общеобразовательных дисциплин Голубничая Н.В.

Рабочая программа дисциплины утверждена на заседании кафедры общеобразовательных дисциплин « $\frac{12}{20}$ » 20 <u>/</u> 20_/
Заведующий кафедрой общеобразовательных дисциплин Гапонов А.В.
Переутверждена: «»20 г., протокол №
Согласована (для обеспечивающей кафедры):
Директор института строительства, архитектуры и жилищно-коммунального хозяйства
Рекомендована на заседании учебно-методической комиссии института « $\cancel{\cancel{13}}$ » $\cancel{\cancel{04}}$ 20 $\cancel{\cancel{33}}$ г., протокол № $\cancel{\cancel{3}}$.
Председатель учебно-методической комиссии института ИСА и ЖКХ/Ремень В.И./

[©] Голубничая Н.В., 2023 год © ФГБОУ ВО «ЛГУ им. В. ДАЛЯ», 2023 го

Структура и содержание дисциплины

1. Цели и задачи дисциплины, ее место в учебном процессе

Целями освоения дисциплины «Физика» являются:

- формирование научного современного естественнонаучного мировоззрения и мышления;
- овладение базовыми знаниями в области теории физических процессов и систем, а также методов их анализа.

Задачами освоения дисциплины «Физика» являются:

- изучить основные физические явления, овладеть фундаментальными понятиями, законами и теориями классической и современной физики;
- ознакомиться с научной аппаратурой и методами физического исследования, приобрести навыки проведения физического эксперимента;
- научиться выделять физическое содержание в профессиональных задачах будущей деятельности;
 - овладеть методами решения профессиональных задач.

2. Место дисциплины в структуре ОПОП.

Дисциплина «Физика» относится к Блоку 1 обязательной части. Необходимыми условиями для освоения дисциплины являются: знание физики и математики в объеме базового уровня среднего образования, умения использовать эти знания при изучении университетского курса физики, владение навыком проведения лабораторных измерений и навыком математических расчетов. Содержание дисциплины является логическим продолжением дисциплин математика и служит основой для освоения дисциплин теоретическая механика, строительная физика.

3. Требования к результатам освоения содержания дисциплины

Код и наименование ком-	Индикаторы достижений	Перечень планируемых
петенции	компетенции (по реали-	результатов
	зуемой дисциплине)	
УК-6. Способен управлять	УК-6.2 Использует личност-	Знать:
своим временем, выстраи-	ный потенциал для успеш-	-технику безопасности при
вать и реализовывать траек-	ного выполнения поручен-	проведении экспериментов,
торию саморазвития на ос-	ной работы	теоретические основы
нове принципов образова-	УК-6.3 Критически оцени-	физики;
ния в течение всей жизни	вает эффективность исполь-	-основные виды
	зования времени и других	экспериментов в области
	ресурсов при решении по-	механики, молекулярной
	ставленных задач.	физики и термодинамики,
		электричества и магнетизма,
		оптики и ядерной физики;
		- порядок оформления
		лабораторных работ после
		проведения экспериментов;
		теоретические основы
		математики и физики;
		физические методы;

-методы математического программирования с использованием информационнокоммуникационных технологий. Уметь: -анализировать первичные результаты экспериментов; - делать расчеты по формулам, строить графики; - грамотно отвечать на вопросы при защите лабораторных работ; -использовать существующие пакеты программ или языков программирования для компьютерного моделирования. Владеть: -навыками грамотной речи, аналитическим и последовательным мышлением, физикоматематическим аппаратом -навыками решения математических задач с использованием разнообразных средств компьютерной поддержки; -методами компьютерного моделирования физических явлений и процессов.

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

Ρωτ γινοδικού ποδοπι	Объем час	Объем часов (зач. ед.)		
Вид учебной работы	Очная форма	Заочная форма		
Общая учебная нагрузка (всего)	216	216		
	(5 зач. ед)	(5 зач. ед)		
Обязательная контактная работа (всего)	136	24		
в том числе:				
Лекции	68	12		
Семинарские занятия	-	-		
Практические занятия	34	4		
Лабораторные работы	-34	8		

Курсовая работа (курсовой проект)	-	-
Другие формы и методы организации образовательного	-	-
процесса (расчетно-графические работы, групповые дис-		
куссии, ролевые игры, тренинг, компьютерные симуля-		
ции, интерактивные лекции, семинары, анализ деловых		
ситуаций и т.п.)		
Самостоятельная работа студента (всего)	80	192
Форма аттестации	Экзамен (2,3 се-	Экзамен (2,3 се-
	местр)	местр)

4.2. Содержание разделов дисциплины

2 семестр

Тема 1. ВВЕДЕНИЕ. ФИЗИКА КАК НАУКА

Предмет и модели в физике. Методы физического исследования: опыт, гипотеза, эксперимент, теория. Математика и физика. Важнейшие этапы истории физики. Роль физики в развитии техники и влияние техники на развитие физики. Роль физики в становлении инженера. Общая структура и задачи курса физики. Размерность физических величин. Основные единицы СИ. Кинематика и динамика.

Тема 2. ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ

Физические модели: материальная точка, система материальных точек, абсолютно твердое тело, сплошная среда. Кинематическое описание движения. Прямолинейное движение точки. Движения по окружности. Угловая скорость и угловое ускорение. Поступательное и вращательное движения. Уравнение движения. Законы движения. Законы сохранения. Основы релятивистской механики. Принципы относительности в механике. Кинематика и динамика твердого тела, жидкости и газов. Упругие и неупругие взаимодействия. Условие равновесия, элементы статики.

Тема 3. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

Свойства жидкостей. Явление поверхностного натяжения жидкостей. Свойства твердых тел. Явление линейного расширения. Сила внутреннего трения. Длина свободного пробега молекул. Вакуум. Эффективный диаметр соударения молекул. Удельная и молярная теплоемкость изопроцессов. Адиабатный процесс. Показатель адиабаты. Уравнение Пуассона. Связь между макроскопическими состояниями и микроскопическими параметрами. Первый закон термодинамики. Тепловые машины. Цикл Карно. Второй закон термодинамики. Элементы физической кинетики. Фазовые равновесия и превращения. Границы применения идеального газа, другие модели газа.

3 семестр

Тема 4. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

Предмет и физическая модель электромагнетизма. Электростатика. Характеристики электрического поля. Электрическое поле в веществе. Напряженность, потенциал. Силовые линии поля, эквипотенциальные поверхности. Проводники и диэлектрики. Электроёмкость. Конденсаторы. Постоянный электрический ток Электрические цепи. Источники тока. Сторонние силы. ЭДС. Электрическое сопротив-

ление проводников. Зависимость сопротивления от геометрических размеров проводника и его температуры. Магнитное поле и его характеристики. Свойства ферромагнетиков. Явление гистерезиса. Действие магнитного поля на ток. Магнитный поток. Явление электромагнитной индукции. Явление самоиндукции. Индуктивность контура. Точка Кюри. Уравнение Максвелла в и принцип относительности. Условия на границе раздела магнетиков.

Тема 5. КОЛЕБАНИЯ И ВОЛНЫ, ОПТИКА, КВАНТОВАЯ МЕХАНИКА

Физические модели колебательных и волновых процессов. Понятие о колебательных процессах. Единый подход к колебаниям различной физической природы. Гармонические колебания и их характеристики. Затухающие колебания, вынужденные колебания, резонанс. Волновые процессы. Волновое уравнение. Упругие волны. Звук. Электромагнитные волны, и из свойства. Шкала электромагнитных волн. Свет. Основные законы геометрической оптики. Показатель преломления. Явление полного внутреннего отражения. Оптические приборы. Увеличение микроскопа. Физический смысл спектрального разложения. Кинематика волновых процессов, интерференция и дифракция волн. Принцип галографии. Явление внешнего фотоэффекта. Уравнение Эйнштейна.

Тема 6. ФИЗИКА ТВЕРДОГО ТЕЛА. АТОМНАЯ ФИЗИКА.

Элементы зонной теории твердого тела. Собственная и примесная проводимость полупроводников. Температурная зависимость проводимости полупроводников. Свойства р-п перехода. Полупроводниковый диод. Принцип действия полупроводникового триода и его применение. Явление радиоактивного распада. Период полураспада изотопа. Явление поглощения радиоактивного излучения веществом.

Тема 7. КВАНТОВАЯ ФИЗИКА

Предмет квантовой физики. Тепловое излучение. Построение модели квантовой физики. Фотоэффект. Корпускулярно-волновой дуализм вещества. Волновая функция. Уравнение Шредингера. Атом водорода. Сложные атомы. Принцип Паули. Спектры атомов и молекул. Ядро, ядерные силы. Слабые и сильные взаимодействия. Ядерные реакции. Атомная энергетика.

Тема 8. СТАТИСТИЧЕСКАЯ ФИЗИКА

Предмет и модели статистической физики. Элементы квантовой статистики. Фотоны. Основные модели твердых тел. Элементы физического материаловедения. Физические основы микроэлектроники. Зонная теория. Элементы квантовой электроники. Лазер. Люминесценция. Сверхпроводимость и сверхтекучесть. Магнетики. Жидкие кристаллы. Элементы физической электроники. Плазма. Вещество в экстремальных условиях.

Тема 9. СОВРЕМЕННАЯ КАРТИНА МИРА

Классическая и релятивистская механика частиц. Классическая теория поля. Колебания и волны. Квантовая механика. Квантовая теория поля. Статистическая физика и термодинамика.

4.3. Лекции

№ п/п	Название темы	Объе	ем часов	
		Очная форма	Заочная форма	
	2 семестр			
1	Введение. Физика как наука	2	2	
2	Физические основы механики	10	2	
3	Молекулярная физика и термодинамика	22	2	
Итого за 2 семестр		34	6	
	3 семестр			
4	Электричество и магнетизм	8	1	
5	Колебания и волны. Оптика. Квантовая механика	8	1	
6	Физика твердого тела. Атомная физика	6	1	
7	Квантовая физика	8	1	
8	Статистическая физика	2	1	
9	Современная картина мира	2	1	
Итого за	3 семестр	34	6	
Итого:	-	68	12	

4.4. Практические (семинарские) занятия

№ п/п	Название темы	Объем часов	
		Очная форма	Заочная форма
	2 семестр		
1	Физические основы механики	8	1
2	Молекулярная физика и термодинамика	9	1
Итого за	2 семестр	17 2	
	3 семестр		
3	Электричество и магнетизм	8	1
4	Колебания и волны. Оптика. Квантовая механика	2	1
5	Физика твердого тела. Атомная физика.	4	
6	Квантовая физика	3	
Итого за	3 семестр	17	2
Итого:		34	4

4.5. Лабораторные работы

№ п/п	Название темы	Объе	м часов		
		Очная форма	Заочная форма		
	2 семестр				
1	Физические основы механики	10	2		
2	Молекулярная физика и термодинамика	7	2		
Итого за	2 семестр	17	4		

	3 семестр				
3	Электричество и магнетизм	7	2		
4	Колебания и волны. Оптика. Квантовая механика	6	2		
5	Физика твердого тела. Атомная физика.	2			
6	Квантовая физика	2			
Итого за 3 семестр 17 4		4			
Итого:		34	8		

4.6. Самостоятельная работа студентов

No	Название разделов	Вид СРС	Объем	м часов	
п/п	-		Очная форма	Заочная форма	
		2 семестр			
2	Физические основы механики	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний и умений.	18	30	
3	Молекулярная физика и термодинамика	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний и умений.	22	30	
		3 семестр			
4	Электричество и магнетизм	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний и умений.	8	30	
5	Колебания и волны. Оптика. Квантовая механика	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний и умений.	8	20	
				•	
6	Физика твердого тела. Атомная физика.	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний и умений.	8	20	
7	Квантовая физика	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний и умений.	6	30	
8	Статистическая физика	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний и умений.	10	30	
9	Современная картина мира	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний и умений.	-	2	
	Итого:		80	192	

4.7. Курсовые работы/проекты Не предусмотрены

5. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

•традиционные объяснительно-иллюстративные технологии, которые обеспечивают доступность учебного материала для большинства студентов, системность,

отработанность организационных форм и привычных методов, относительно малые затраты времени;

- •технологии проблемного обучения, направленные на развитие познавательной активности, творческой самостоятельности студентов и предполагающие последовательное и целенаправленное выдвижение перед студентом познавательных задач, разрешение которых позволяет студентам активно усваивать знания (используются поисковые методы; постановка познавательных задач);
- •технологии развивающего обучения, позволяющие ориентировать учебный процесс на потенциальные возможности студентов, их реализацию и развитие;
- •технологии концентрированного обучения, суть которых состоит в создании максимально близкой к естественным психологическим особенностям человеческого восприятия структуры учебного процесса и которые дают возможность глубокого и системного изучения содержания учебных дисциплин за счет объединения занятий в тематические блоки;
- •технологии модульного обучения, дающие возможность обеспечения гибкости процесса обучения, адаптации его к индивидуальным потребностям и особенностям обучающихся (применяются, как правило, при самостоятельном обучении студентов по индивидуальному учебному плану);
- •технологии дифференцированного обучения, обеспечивающие возможность создания оптимальных условий для развития интересов и способностей студентов, в том числе и студентов с особыми образовательными потребностями, что позволяет реализовать в культурно-образовательном пространстве университета идею создания равных возможностей для получения образования
- •технологии активного (контекстного) обучения, с помощью которых осуществляется моделирование предметного, проблемного и социального содержания будущей профессиональной деятельности студентов (используются активные и интерактивные методы обучения) и т.д.

Максимальная эффективность педагогического процесса достигается путем конструирования оптимального комплекса педагогических технологий и (или) их элементов на личностно-ориентированной, деятельностной, диалогической основе и использования необходимых современных средств обучения.

6. Учебно-методическое и программно-информационное обеспечение дисциплины:

а)Основная литература

1. Физика : курс лекций в двух частях : учебное пособие. Ч. 1 / Л.М. Гончарова [и др.] ; под ред. В.П. Попова ; Юж.-Рос. гос. политехн. ун-т (НПИ) им. М.И. Платова. - Новочеркасск : ЮРГПУ (НПИ), 2022. - 80 с.

http://libweb.srspu.ru/ProtectedView/Book/ViewBook/7587

2. Сборник задач по физике / И.В. Никитина [и др.]; под ред. И.В. Никитиной; Юж.-Рос. гос. политехн. ун-т (НПИ) им. М.И. Платова. - Новочеркасск: ЮРГПУ (НПИ), 2017. - 70 с.

http://libweb.srspu.ru/ProtectedView/Book/ViewBook/3431

3. Науменко А.А.

Квантовая механика и статистическая физика : учебно-методическое пособие по изучению дисциплины / А.А. Науменко ; Юж.-Рос. гос. политехн. ун-т (НПИ) им. М.И. Платова. - Новочеркасск : ЮРГПУ (НПИ), 2017. - 91 с.

http://libweb.srspu.ru/ProtectedView/Book/ViewBook/3109

4. Малибашев А.В.

Физика : учебное пособие для выполнения лабораторных работ / А.В. Малибашев, В.А. Малибашев ; Юж.-Рос. гос. политехн. ун-т (НПИ) им. М.И. Платова. - Новочеркасск : ЮРГПУ (НПИ), 2017. - 48 с.

http://libweb.srspu.ru/ProtectedView/Book/ViewBook/2947

5. Пятерко И.А.

Физика аэрозолей: учебно-методическое пособие к лекционному и лабораторному курсу по дисциплине «Физика аэрозолей» для бакалавров очной и заочной формы обучения по направлению 08.03.01 СТРОИТЕЛЬСТВО, направленность "Теплогазоснабжение и вентиляция" / И.А. Пятерко; Юж.-Рос. гос. политехн. ун-т (НПИ) им. М.И. Платова. - Новочеркасск: ЮРГПУ (НПИ), 2017. - 44 с.

http://libweb.srspu.ru/ProtectedView/Book/ViewBook/2955

б)Дополнительная литература

- 6. Михайлов В.К., Волны. Оптика. Атомная физика. Молекулярная физика: учебное пособие / В.К. Михайлов, М.И. Панфилова М.: Издательство МИСИ МГСУ, 2017. 145 с. ISBN 978-5-7264-1581-9 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785726415819.html (дата обращения: 02.02.2018). Режим доступа: по подписке.
- 7. Иродов И.Е., Квантовая физика. Основные законы : учебное пособие / И.Е. Иродов М. : Лаборатория знаний, 2017. 261 с. ISBN 978-5-00101-492-8 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785001014928.html (дата обращения: 02.02.2018). Режим доступа : по подписке.
- 8. Романова В.В., Физика. Примеры решения задач : учеб. пособие / В.В. Романова Минск : РИПО, 2017. 346 с. ISBN 978-985-503-737-9 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9789855037379.html (дата обращения: 02.02.2018). Режим доступа : по подписке.
- 9. Рыженков А.П., Физика окружающей среды / Рыженков А.П. М. : Прометей, 2018. 91 с. ISBN 978-5-906879-78-3 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785906879783.html (дата обращения: 02.02.2018). Режим доступа : по подписке.
- 10. Лотов К.В., Физика сплошных сред : учеб. пособие / Лотов К.В. Новосибирск : РИЦ НГУ, 2018. 136 с. ISBN 978-5-4437-0780-8 Текст : электронный //

- ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785443707808.html (дата обращения: 02.02.2018). Режим доступа : по подписке.
- 11. Абдрахманова А.Х., Физика. Электричество : тексты лекций / Абдрахманова, А. Х. Казань : Издательство КНИТУ, 2018. 120 с. ISBN 978-5-7882-2340-7 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785788223407.html (дата обращения: 02.02.2018). Режим доступа : по подписке.

в) методические указания:

- 1. Голубничая Н.В. Методические указания для выполнения практических работ по дисциплине «Физика» для студентов профессионального уровня подготовки бакалавр по направлению подготовки 08.03.01 «Строительство», 20.03.02 «Природообустройство и водопользование», 38.03.10 «Жилищное хозяйство и коммунальная инфраструктура» / Н.В. Голубничая. Луганск.: ГОУ ВПО ЛНУ им. В. Даля, 2018 18 с.
- 2. Голубничая Н.В. Методические указания для выполнения лабораторных работ по дисциплине «Физика» для студентов профессионального уровня подготовки бакалавр по направлению подготовки 08.03.01 «Строительство», 20.03.02 «Природообустройство и водопользование», 38.03.10 «Жилищное хозяйство и коммунальная инфраструктура» / Н.В. Голубничая. Луганск.: ГОУ ВПО ЛНУ им. В. Даля, 2018 20 с.

г) Интернет-ресурсы

Министерство образования и науки Российской Федерации – http://минобрнауки.pd/

Федеральная служба по надзору в сфере образования и науки – http://obrnadzor.gov.ru/

Министерство образования и науки Луганской Народной Республики – https://minobr.su

Народный совет Луганской Народной Республики – https://nslnr.su

Портал Федеральных государственных образовательных стандартов высшего образования — http://fgosvo.ru

Федеральный портал «Российское образование» — $\underline{\text{http://www.edu.ru/}}$

Информационная система «Единое окно доступа к образовательным ресурсам» – http://window.edu.ru/

Федеральный центр информационно-образовательных ресурсов – http://fcior.edu.ru/

Электронные библиотечные системы и ресурсы

Электронно-библиотечная система «Консультант студента» — http://www.studentlibrary.ru/cgi-bin/mb4x

Электронно-библиотечная система «StudMed.ru» – https://www.studmed.ru

Информационный ресурс библиотеки образовательной организации

Научная библиотека имени А. Н. Коняева – http://biblio.dahluniver.ru/ Научная библиотека ИСА и ЖКХ

7. Материально-техническое обеспечение дисциплины

Освоение дисциплины «Физика» предполагает использование академических аудиторий, соответствующих действующим санитарным и противопожарным правилам и нормам.

Прочее: рабочее место преподавателя, оснащенное компьютером с доступом в Интернет.

Программное обеспечение:

Функциональное назна- чение	Бесплатное программное обес- печение	Ссылки
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu
Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx
Браузер	Opera	http://www.opera.com
Почтовый клиент	Mozilla Thunderbird	http://www.mozilla.org/ru/thunderbird
Файл-менеджер	Far Manager	http://www.farmanager.com/download.php
Архиватор	7Zip	http://www.7-zip.org/
Графический редактор	GIMP (GNU Image Manipulation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator
Аудиоплейер	VLC	http://www.videolan.org/vlc/

8. Оценочные средства по дисциплине

Паспорт фонда оценочных средств по учебной дисциплине «Физика»

Перечень компетенций (элементов компетенций), формируемых в результате

освоения учебной дисциплины

№ п/п	Код компетенции	Формулировка контролируемой компетенции	Индикаторы достижений компетенции (по дисциплине)	Темы учебной дисциплины	Этапы формирования (семестр изучения)
1	УК-6	Способен управлять своим временем, выстраивать и реализовывать траекторию саморазвития на основе принципов образования в течение всей жизни	УК-6.2 Использует личностный потенциал для успешного выполнения порученной работы УК-6.3 Критически оценивает эффективность использования времени и других ресурсов при решении поставленных задач.	Тема 1. Введение. Физика как наука Тема 2. Физические основы механики Тема 3. Молекулярная физика и термодинамика Тема 4. Электричество и магнетизм Тема 5. Колебания и волны. Оптика. Квантовая механика Тема 6. Физика твердого тела. Атомная физика. Тема 7. Квантовая физика Тема 8. Статистическая физика Тема 9. Современная картина мира	2,3

Показатели и критерии оценивания компетенций, описание шкал оценивания

№ п/п	Код контроли- руемой компе- тенции	Индикато- ры дости- жений ком- петенции	Перечень плани- руемых результа- тов	Контролируемые темы учебной дисциплины	Наименование оценочного сред- ства
1.	УК-6. Способен управлять своим временем, выстраивать и реализовывать траекторию саморазвития на основе принципов образования в течение всей жизни	УК-6.2. УК-6.3.	Знать: основные физические явления, фундаментальные понятия, законы и теории классической и современной физики, имеющих отношение к строительству. Уметь: пользоваться физическими приборами и измерительными инструментами, применять статистические методы обработки результатов измерений и их представление в виде таблиц и графиков. Владеть: навыками ранее приобретенных знаний, умений и навыков для решения конкретных задач строительной тематики.	Тема 1. Введение. Физика как наука Тема 2. Физические основы механики Тема 3. Молекулярная физика и термодинамика Тема 4. Электричество и магнетизм Тема 5. Колебания и волны. Оптика. Квантовая механика Тема 6. Физика твердого тела. Атомная физика. Тема 7. Квантовая физика Тема 8. Статистическая физика Тема 9. Современная картина мира	Вопросы для обсуж- дения (в ви- де докладов и сообще- ний), кон- трольные работы.

Фонды оценочных средств по дисциплине «Физика»

Вопросы для допуска к выполнению лабораторных работ:

- 1.Цель работы.
- 2. Какое явление изучается в работе.
- 3. Какие законы изучаются в работе.
- 4. Какие физические величины определяются в работе.
- 5.Вывод рабочей формулы.
- 6.Порядок выполнения работ.
- 7. Методика проведения измерений.
- 8. Описание экспериментальной установки

Вопросы для защиты лабораторных работ:

Для защиты лабораторных работ необходимо:

а) в тетради для лабораторных работ выполнить обработку результатов измерений в

соответствии с «Заданиями», приведенными в «Методических указаниях»;

б) подготовить ответы на вопросы для самоконтроля, соответствующие «Вопросам к

экзамену» по исследованным в лабораторной работе явлениям.

Для каждого явления по возможности нужно:

1. а) привести название явления, сформулировать его определение и указать, что

происходит в результате этого явления,

- б) указать необходимые условия для возникновения и наблюдения явления,
- в) объяснить явление согласно той или иной теории,
- г) привести примеры осуществления явления в природе и примеры применения в

технике;

- 2. для каждой вводимой физической величины:
- а) привести название величины,
- б) указать свойство (качество), количественной мерой которого она является,
- в) сформулировать определение,
- г) записать математическое выражение, соответствующее определению,
- д) указать единицу измерения и наименование единицы измерения,
- е) указать математические способы расчета и экспериментальные методы нахождения

значения величины;

3. а) перечислить опытные законы, выражающие зависимость физических величин друг

от друга в изучаемом явлении,

- б) сформулировать законы,
- в) записать законы в виде математических выражений,
- г) объяснить законы в рамках той или иной теории,
- д) сравнить опытные законы с теоретическими предсказаниями,
- е) указать причины расхождения теории с экспериментом.

Вопросы для обсуждения (в виде докладов и сообщений): 1 семестр

Вопросы по разделам.

К разделу 1:

- 1. Физика-наука о природе. Что изучает физика как наука? Какова ее связь с математикой и с другими естественно научными дисциплинами?
- 2. Каковы функции и взаимосвязь эксперимента и теории в процессе познания природы? Моделирование явлений и объектов природы в физике. Научные гипотезы и постулаты.

- 3. Назовите известные вам модели принятые в физике. Что мы понимаем под физическими понятиями и величинами? Что понимается под единицей измерения физической величины и эталоном? Приведите примеры систем единиц измерения и различных шкал измерения одной и той же физической величины..
- 4. Перечислите виды физических законов, области их применения и причины существования границ их применимости.
- 5. Дайте определение физической теории, приведите примеры известных физических теорий. Чем определяются пространственные и временные границы их применимости? Какие принципы лежат в основе построения физических теорий и осуществления их совместимости и преемственности? Принцип соответствия.
- 6. Какие виды физического эксперимента вам известны? Что определяется в экспериментальной физике под словом погрешность эксперимента?
- 7. На какие разделы подразделяется современная физика и каков ее инструмент в зависимости от круга изучаемых явлений и объектов. Что понимается под физической картиной мира и какова роль субъективного фактора в ее построении?
- 8. Что понимается под категорией «материя»? Какие виды материи существуют?
 - 9. Дайте определение вещества и поля. Как они взаимосвязаны?
- 10. Что изучает механика и на какие разделы она делится? Что понимается под механическим движением?
- 11. Назовите исторические этапы развития механики. С именами, каких великих ученых они связаны?
 - 12. Что называют системой отсчета в механике?
- 13. Что называют траекторией? Как подразделяют движения в зависимости от вида траектории? 14. Какие еще формы движения кроме механической существуют? Какие науки их изучают?
 - 15. Основные элементы физической картины мира.

К разделу 2:

- 1. Какое движение называют равнопеременным? Чем отличается реальное движение от изученных ранее в курсе физики движений?
- 2. Что называют координатами и как определяется радиус-вектор точки в пространстве, какова связь между ними?
- 3. Какую величину называют вектором перемещения и как определяется ее численное значение? 4. Что называют путем и как определяется средняя путевая скорость?
- 5. Как определяется мгновенная скорость и может ли она при каких-то условиях совпадать по значению со средней скоростью?
- 6. Дайте определение мгновенного и среднего ускорений? На какие составляющие они делятся? Как находится средняя скорость равнопеременного лвижения?
- 7. Как определяется пройденный путь при равнопеременном движении с начальной и без нее скорости? Как меняется при этом движении скорость?
- 8. Как находится угловая скорость вращательного движения? Куда она направлена? Как связаны угловая и линейная скорости равномерного движения по

окружности? Покажите взаимосвязь их векторов и радиус-вектора.

- 9. Как определяются значение и направление углового ускорения?
- 10. Напишите уравнения для равнопеременного вращательного движения по аналогии с прямолинейным равнопеременным движением.
- 11. Как определяются средняя угловая скорость и средняя частота вращения при равнопеременном вращательном движении?
 - 12. Какие виды ускорения вы знаете?
- 13. Какое движение называют поступательным? Для каких тел оно характерно?
 - 14. Какая система отсчета считается инерциальной?
 - 15. Какое свойство тел называют инертностью? Что является его мерой?
- 16. Сформулируйте второй закон Ньютона в полном виде. 5. Сформулируйте в полном виде третий закон Ньютона.
- 17. Закон всемирного тяготения. Космические скорости. 6. При каком условии тело движущееся ускоренно и прямолинейно под действием нескольких сил может перейти во вращательное движение?
 - 18. От каких факторов зависит значение силы трения скольжения?
 - 19. Что такое механическое напряжение и в каких единицах оно измеряется?
- 20. Как формулируется закон Гука в полном виде? В чем заключается физическая суть модуля Юнга? 21. Какими методами определяется работа производимая силой, значение которой непрерывно меняется?
- 22. Какие силы называют консервативными? Как определяется работа в системе, в которой действуют консервативные силы?
- 23. Преобразования Галилея. Следствия. Принцип относительности Галилея. Преобразования Лоренца. Принцип соответствия. Границы применимости механики Ньютона.
- 24. Дифференциальное уравнение затухающих гармонических колебаний и его решение. Логарифмический декремент затухания. Энергия гармонических колебаний.
 - 25. Что понимается под замкнутой (изолированной) системой?
 - 2. Как определяется равновесия тела имеющего ось вращения?
- 3. Нахождение работы совершенной телом по графику зависимости силы от перемещение.
 - 4. Что такое мощность и как ее можно повысить?
 - 5. Какие виды механической энергии вы знаете?
- 6. Как формулируется закон сохранения полной механической энергии в замкнутой системе?
- 7. Дайте определение импульса силы и импульса тела. Как они связаны между собой?
- 8. Как формулируется закон сохранения импульса для замкнутой системы? Выполняется ли он в случае абсолютно неупругого соударения?
- 9. Момент силы и момент импульса относительно точки и относительно неподвижной оси. Основное уравнение динамики вращательного 33 движения (вывод). Момент инерции. Закон сохранения момента импульса.
 - 10. Что такое момент инерции тела вращения? Какую роль играет он в законах

сохранения для вращательного движения?

11.Как определяется момент силы? Какую роль выполняет он в законах динамики вращательного движения?

К разделу 3:

- 1. Что представляет собой модель идеального газа?
- 2. Как связаны средняя кинетическая энергия молекул и температура газа?
- 3.Чем отличается молекулярная масса вещества от относительной молекулярной массы?
 - 4. Дайте определение закона Авогадро.
 - 5. Дайте определение закона Дальтона.
- 6.Изобразите на графике как распределены молекулы газа по скоростям. Прокомментируйте зависимость вида кривой распределения от температуры
- 7. Внутренняя энергия идеального газа. Какое состояние системы называется неравновесным. 8.Какие процессы называют обратимыми?
 - 9. Сформулируйте первое начало термодинамики.
- 10. Какая величина в формуле первого начала не может быть полным дифференциалом и с чем это связано?
 - 11. Как находится работа в термодинамике?
 - 12. Что называется теплоёмкостью? Какие виды теплоемкости вам известны?
- 13.Как выглядит первое начало термодинамики для изотермического процесса?
- 14. Напишите как будет выглядеть первое начало термодинамики для изобарного и изохорного процессов.
 - 15.Из чего складывается внутренняя энергия идеального газа?
- 16.Как будет выглядеть формула для внутренней энергии газов в каждом конкретном случае? 17.Дайте не менее двух формулировок второго начала термодинамики.
 - 18.Из каких процессов состоит цикл Карно?
 - 19. Как определяется максимальный кпд тепловой машины?

2 семестр

К разделу 4:

- 1.Перечислите основные свойства электрического заряда.
- 2.Сформулируйте закон сохранения заряда и приведите примеры его проявления.
- 3. Определите точечные и распределенные заряды как источники различных (неоднородных и однородных)полей. Покажите графически как выглядят эти поля.
- 4. Напряженность и потенциал как силовая и энергетическая характеристики поля. Покажите их связь.
- 5. Как определяется электрическая емкость и от каких свойств проводника она зависит?
- 6.Как зависит общая емкость батареи конденсаторов от способа их соединения? Покажите это на конкретных примерах.
 - 7. Что является переносчиком тока в разных случаях? Дайте общую

характеристику.

- 8.Дайте возможные варианты определения энергии электрического поля созданного заряженным проводником при известных значениях следующих физических величин: заряд, напряжение, электроемкость.
- 9. Какую электрическую цепь называют полной? Из каких участков она состоит.
- 10.Силы какой природы являются сторонними для электрической цепи? Приведите примеры таких сил.
- 11.Как находится суммарная ЭДС при последовательном и параллельном соединении источников тока в батарею?
- 12. Покажите как рассчитывается ток и ток короткого замыкания для цепи содержащей несколько, различным образом соединенных, сопротивлений и несколько источников тока.
 - 13. Законы Ома и Джоуля-Ленца.
 - 14. Электрический ток в жидкостях. Закон электролиза.
- 15.Полупроводники. Собственная и примесная проводимости полупроводников. 16.Полупроводниковый диод. Полупроводниковые приборы.
 - 17. Электрический ток в полупроводниках. Полупроводниковые приборы.
 - 18. Электрический ток в газах. Несамостоятельный и самостоятельный разряды К разделу 5:
- 1.По какому правилу определяется направление линий индукций магнитного поля созданного токами в каждом случае? Как зависит значение индукции магнитного поля от силы тока и расстояния (или каких то других геометрических факторов) в каждом конкретном случае?
- 2. Какое действие магнитного поля характеризует магнитный поток приведите конкретные примеры.
- 3. Что характеризует индуктивность? От каких свойств источника магнитного поля зависит индуктивность?
- 4.Сформулируйте закон электромагнитной индукции. От каких факторов зависит значение ЭДС индукции?
 - 5.В чем заключается явление самоиндукции?
- 6.По какому закону функциональной зависимости вырабатывается ЭДС индукции при вращении рамки в магнитном поле? Как можно увеличить максимальное значение ЭДС?
 - 7. Можно ли вырабатывать ток индукции в рамке не вращая ее?
 - 8. Что означают действующие значения силы тока и напряжения?
- 9. Что означает реактивное сопротивление? Каким элементами электрической схемы оно создается?
 - 10.Сформулируйте закон Ома для цепи переменного тока.
- 11.Из каких элементов состоит электрическая схема называемая колебательным контуром? Как она работает?
- 12. Какого типа колебания вырабатывает колебательный контур? Что надо включить в схему колебательного контура чтобы колебания не затухали?
- 13. Приведите формулу выражающую зависимость собственной частоты контура от параметров его элементов. Как можно добиться резонанса в контуре?

- 14. Какое физическое явление называют электромагнитной волной? Какие параметры ее характеризуют?
- 15. Назовите все известные вам виды электромагнитных волн и дайте краткую характеристику этим видам.
- 16.Охарактеризуйте световой диапазон шкалы электромагнитных волн. На примере световых волн покажите волновые свойства.
 - 17. Раскройте двойственность материи на примере становления теории оптики.
- 18.Сформулируйте условия возникновения максимумов и минимумов интерференционной картины.
 - 19. Как устроена дифракционная решетка? Как находится ее постоянная?
 - 20.В каких оптических приборах используются волновые свойства свет?
- 21. Дайте теоретическое обоснование основным законам геометрической оптики на основе принципа Гюйгенса и волновых характеристик (волновая поверхность, волновой фронт, вторичные волны, луч).
- 22. Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Разрешающая способность дифракционной решетки.
- 23.Поляризация света (свет естественный и поляризованный). Виды поляризации.

К разделу 6:

- 1. Элементы зонной теории твердого тела.
- 2. Собственная и примесная проводимость полупроводников.
- 3. Температурная зависимость проводимости полупроводников.
- 4. Свойства р-п перехода.
- 5.Полупроводниковый диод.
- 6. Принцип действия полупроводникового триода и его применение.
- 7. Явление радиоактивного распада.
- 8.Период полураспада изотопа.
- 9. Явление поглощения радиоактивного излучения веществом.
- **К разделу 7:** 1.Какое явление называют фотоэффектом и какие его виды существуют?
 - 2. Как определяются энергия и импульс фотона?
- 3. Приведите уравнение Эйнштейна для фотоэффекта. Как определяется красная граница фотоэффекта и в чем ее физический смысл?
- 4.На каких участках и уровнях атомной системы происходит излучение и поглощение энергии и в каком виде?
 - 5.Сформулируйте первый и второй постулаты Бора.
- 6.Назовите серии частот видимого света излучаемых атомом? Какова их связь с линейчатыми спектрами излучения и поглощения характерных для отдельных химических элементов?
 - 7. Какова природа поля ядерных сил? Взаимопревращение нуклонов в ядре.
- 8. Формула Эйнштейна для взаимосвязи массы и энергии. Дефект массы. Приведите диаграмму удельной энергии связи и разъясните какие превращения ядер являются энергетически выгодными.
 - 9. Напишите реакции альфа распада и бета распада.
 - 10. Напишите примеры реакций происходящих при бомбардировке ядер легких

элементов протонами и нейтронами.

- 11. Распишите цепную реакцию деления и определите условия, при которых она является управляемой?
- 12. Приведите пример реакции синтеза и разъясните условия, при которых она может протекать. 13. На какие классы и по каким параметрам разделяют элементарные частицы?
 - 14. Покажите пример реакции взаимодействия элементарных частиц.

К разделу 8:

- 1. Предмет и модели статистической физики.
- 2. Элементы квантовой статистики. Фотоны.
- 3. Основные модели твердых тел.
- 4. Элементы физического материаловедения.
- 5. Физические основы микроэлектроники.
- 6. Зонная теория.
- 7. Элементы квантовой электроники. Лазер.
- 8. Люминесценция.
- 9. Сверхпроводимость и сверхтекучесть.
- 10. Магнетики.
- 11. Жидкие кристаллы.
- 12. Элементы физической электроники.
- 13. Плазма. Вещество в экстремальных условиях.

К разделу 9:

- 1. Агрегатные состояния вещества. Квантовые статистики.
- 2. Мезоскопические объекты.
- 3. Успехи квантовой физики и физики твердого тела в создании новых приборов и технологий. Атомная и ядерная энергетика.
 - 4. Квантово полевая картина мира.
- 5. Физическая картина мира, ее современное состояние и тенденции развития.
 - 6. Физическая картина мира как часть естественно-научной картины мира
 - 7. Строение и происхождение галактик.
 - 8. Термоядерный синтез. Энергия Солнца.
 - 9. Солнечная система. Происхождение Солнечной системы.

Критерии и шкала оценивания по оценочному средству доклад, сообщение

Шкала оценивания	Критерий оценивания	
(интервал баллов)		
5	1) полно и аргументировано отвечает по содержанию задания; 2) обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры не только по учебнику, но самостоятельно составленные; 3) излагает материал последовательно и правильно	
4	студент дает ответ, удовлетворяющий тем же требованиям, что и для оценки «5», но допускает 1-2 ошибки, которые сам же исправляет.	
3	ставится, если студент обнаруживает знание и понимание основны положений данного задания, но: 1) излагает материал неполно и до	

	пускает неточности в определении понятий или формулировке правил; 2) не умеет достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры; 3) излагает материал непоследовательно и допускает ошибки.
2	студент обнаруживает незнание ответа на соответствующее задание, допускает ошибки в формулировке определений и правил, искажающие их смысл, беспорядочно и неуверенно излагает материал; отмечаются такие недостатки в подготовке студента, которые являются серьезным препятствием к успешному овладению последующим материалом.

Тесты

1 семестр

Тема 1:

- 1. Из каких свойств пространства и времени следует закон сохранения энергии:
- а. однородность времени; б. однородность пространства; в. изотропность пространства.
- 2. Из каких свойств пространства и времени следует закон сохранения импульса:
- а. однородность времени; б. однородность пространства; в. изотропность пространства.
- 3. Из каких свойств пространства и времени следует закон сохранения момента импульса:
- а. однородность времени; б. однородность пространства; в. изотропность пространства.
 - 4. Вселенная в данный момент:
 - а. расширяется; б. сжимается; в. остается неизменной.
 - 5. Центр расширения Вселенной:
- а. находится в нашей галактике; б. в геометрическом центре Вселенной; в. центра расширения вообще нет.
- 6. При движении с постоянной скоростью линейные размеры тела вдоль направления движения:
 - а. неизменны; б. уменьшаются; в. увеличиваются.
- 7. При движении с постоянной скоростью время вдоль направления движения: а. ускоряется; б. неизменно; в. замедляется.
 - 8. Пространство и время:
- а. никак не связаны между собой; б. образуют единый пространственно- временной континуум.
 - 9. Вблизи гравитирующих масс пространство:
- а. искривляется и геометрия неевклидова; б. не изменяется и геометрия евклидова.
 - 10. Вблизи гравитирующих масс время:
 - а. замедляется; б. неизменно; в. ускоряется.
- 11. При одинаковых давлении и температуре количество «структурных элементов; одно и то же в:

- а. килограмме; б. моле; в. литре.
- 12. В изолированной системе энтропия:
- а. возрастает; б. уменьшается; в. остается неизменной.
- 13. Достаточное условие макросостояния. Число частиц в системе равно:
- а. числу Авогадро; б. числу Лошмидта; в. постоянной Больцмана.
- 14. Смысл постоянной Планка:
- а. максимальное действие; б. минимальное действие; в. нулевое действие.
- 15. Смысл постоянной Больцмана:
- а. связь между микроскопическими динамическими явлениями и макроскопическими характеристиками; б. просто числовой коэффициент. в. нулевое действие.
 - 16. Электроны в атомах:
- а. находятся в определенных квантовых состояниях; б. вращаются по определенным орбитам; в. неподвижны.
 - 17. Сколько существует поколений фундаментальных элементарных частиц: а. одно; б. три; в. бесконечно много.
 - 18. Сколько всего существует фундаментальны взаимодействий:
 - а. десять; б. четыре; в. одно.
 - 19. Гравитационное взаимодействие отвечает за:
- а. стабильность орбит планет; б. стабильность молекул; в. стабильность атомов.
 - 20. Электромагнитное взаимодействие отвечает за:
- а. стабильность атомов; б. стабильность Солнечной системы; в. равномерное и медленное горение Солнца.
 - 21. Слабое взаимодействие отвечает за:
- а. равномерное и медленное «горение» Солнца; б. стабильность атомов; в. стабильность молекул.
 - 22. Сильное взаимодействие отвечает за:
- а. стабильность молекул; б. за скорость химических реакций. в. стабильность атомных ядер;
 - 23. Вселенная «родилась»:
 - а. взрыва галактики; б. в процессе Большого взрыва; в. взрыва квазара.

Тема 2:

Выбрать правильный вариант ответа.

- 1. Среди перечисленных ниже физических величин, какая одна величина скалярная? 1.Сила. 2. Скорость. 3. Путь. 4. Перемещение.
 - 2. Какая из приведенных ниже формул соответствует определению скорости?

1.
$$\overline{\upsilon} = \overline{\upsilon_0} + \overline{a} \cdot t$$
 2. $\overline{\upsilon} = \sqrt{2as}$. 3. $\overline{\upsilon} = \frac{s}{\Delta t}$ 4. Все три из ответов A - B.

3. Какая из приведенных ниже формул соответствует определению ускорения?

1.
$$a = \frac{v^2}{2S}$$
. 2. $a = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v} - \vec{v}_0}{\Delta t}$. 3. $a_u = \frac{v^2}{R}$. 4. Ни одна формула из ответов A - B.

- 4. У верхнего конца трубки, из которой откачан воздух, находятся дробинка, пробка и птичье перо. Какое из этих тел при одновременном старте первым достигнет нижнего конца трубки?
 - а. Дробинка. б Пробка. в. Птичье перо. г. Все три одновременно.
- 5. Велосипедист начинает движение из состояния покоя и движется прямолинейно равноускоренно. Через 10 с после начала движения его скорость становится равной 5 м/с. Каково ускорение велосипедиста?

25

- 1. 50 m/c^2 . 2. 10 m/c^2 . 3. 2 m/c^2 . 4. 0,5 m/c^2 .
- 6. Автомобиль трогается с места и движется с возрастающей скоростью прямолинейно. Какое направление имеет вектор ускорения?
 - а. Ускорение равно нулю.
- б. Вектор ускорения направлен против направления движения автомобиля.
 - в. Ускорение не имеет направления.
 - г. Вектор ускорения направлен по направлению движения автомобиля.
- 7. Луна движется вокруг Земли по примерно круговой орбите радиусом \sim 384 000 км со скоростью около 1020 м/с. Каково примерно центростремительное ускорение Луны?

1. 2.7 m/c^2 . 2. 0.27 m/c^2 3. 0.0027 m/c^2 . 4. 0.0000027 m/c^2 .

- 8. При равноускоренном прямолинейном движении скорость катера увеличилась за 10 с от 5 м/с до 9 м/с. Какой путь пройден катером за это время? 1. 140 м. 2. 90 м. 3. 20 м. 4.50 м.
- 9. Велосипедист начинает движение из состояния покоя и движется прямолинейно равноускорено. Через 10 с после начала движения его скорость становится равной 5 м/с. С каким ускорением двигался велосипедист?

1. 50 m/c^2 . 2. 10 m/c^2 . 3. 0,5 m/c^2 . 4. 2 m/c^2 .

- 10. Автомобиль трогается с места и движется с возрастающей скоростью прямолинейно. Какое направление имеет вектор ускорения?
 - 1. Ускорение равно нулю.
 - 2. Против направления движения автомобиля.
 - 3. Ускорение не имеет направления.
 - 4. По направлению движения автомобиля.

11. При равноускоренном прямолинейном движении скорость катера увеличилась за 10 с от 5 м/с до 9 м/с. Какой путь пройден катером за это время? 1. 140 м. 2. 40 м. 3. 70 м. 4. 50 м.			
12. Расстояние 2м измерено с абсолютной ошибкой 2 мм. Какова относительная ошибка измерения?			
1. 0,001. 2. 0,01. 3. 0,01. 4. 1.			
13. Мяч брошен вверх со скоростью 20 м/с. На какое расстояние от поверхности Земли он удалится за 2 с?			
1.0 м. 2.40 м. 3.20 м. 4.10 м.			
14. Камень брошен горизонтально со скоростью 5 м/с. Через 0,8 с он упал на Землю. С какой начальной высоты был брошен камень?			
1. 3,2 м. 2. 7,2 м. 3. 4 м. 4. 8 м.			
 15. Мяч, неподвижно лежавший на полу вагона движущегося поезда, покатился влево, если смотреть по ходу поезда. Как изменилось движение поезда? 1. Скорость поезда увеличилась. 2. Скорость поезда уменьшилась. 3. Поезд повернул вправо. 4. Поезд повернул влево. 			
16. Покоящееся тело начинает движение с постоянным ускорением. За 3 с оно проходит путь 9 м. Какой путь тело пройдет за четвертую секунду? 1. 7 м. 2. 4 м. 3. 5 м. 4. 11 м.			
17. При прямолинейном равноускоренном движении с начальной скоростью, равной нулю, путь, пройденный телом за две секунды от начала движения, больше пути, пройденного за первую секунду, в			
1. 2 раза. 2. 3 раза. 3. 4 раза. 4. 5 раз.			
 18. Какие элементы системы отсчета используют, кода ищут клад? 1. Тело отсчета. 2. Часы. 3. Тело отсчета, систему координат. 4. Тело отсчета, часы, систему координат 			
19. Что является траекторией движения молекулы воздуха? 1. Прямая. 2. Дуга окружности. 3. Дуга параболы. 4. Ломаная линия.			
20. Как должно двигаться тело, чтобы пройденный путь был равен модулю перемещения?			

- 3. По кривой линии.
- 4. По прямой, не изменяя направления движения.
- 21. Расстояние 2м измерено с абсолютной ошибкой 2мм. Какова относительная ошибка измерения?
 - 1. 0,001. 2. 0,01. 3. 0,01. 4. 1.
- 22. При прямолинейном равноускоренном движении с начальной скоростью, равной нулю, путь, пройденный телом за две секунды от начала движения, больше пути, пройденного за первую секунду, в
 - 1. 2 раза. 2. 3 раза. 3. 4 раза. 4. 5 раз.
- 23. Под действием силы 10Н пружина длиной 1м, удлинилась на 0,1 м. Какова жесткость пружины?
 - 1. 10 H/m. 2. 100 H/m. 3. 0,1 m/H. 4. 0,01 m/H.
- 24. Тело равномерно движется по наклонной плоскости. На тело действует сила тяжести 50 H, сила трения 30 H и сила реакции опоры 40 H. Каков коэффициент трения?
 - 1. 0,6. 2. 0,8. 3. 0,5. 4. 0,75.
- 25. На тело действуют сила тяжести 30 Н и сила 40 Н, направленная горизонтально. Каково значение модуля равнодействующей этих сил?
 - 1. 10 H. 2. 70 H. 3. 50 H. 4. 250 H.
- 26. Равнодействующая всех сил, приложенных к телу массой 5 кг, равна 10 Н. Каковы скорость и ускорение движения тела?
 - 1. Скорость 0 м/с, ускорение 2 м/с2.
 - 2. Скорость 2 м/с, ускорение 0 м/с2.
 - 3. Скорость 2 м/с, ускорение 2 м/с2.
 - 4. Скорость может быть любой, ускорение 2 м/с2.
- 27. На наклонной плоскости неподвижно лежит брусок. Сверху на него надавили в направлении, перпендикулярном наклонной плоскости. Как изменилась в результате этого сила трения?
- 1. Увеличилась. 2. Уменьшилась. 3. Не изменилась. 4. Могла, как увеличиться, так и уменьшиться в зависимости от угла наклона.
- 28. Масса Луны примерно в 81 раз меньше массы Земли. Чему равно отношение силы всемирного тяготения F1, действующей со стороны Земли на Луну, к силе F2, действующей со стороны Луны на Землю?
 - 1. 1/81. 2. 1/9. 3. 1. 4. 9.
 - 29. Одинаков ли вес одного и того же тела на экваторе и на полюсе Земли?
 - 1. Одинаков.
 - 2. Неодинаков, больше на экваторе.
 - 3. Неодинаков, меньше на экваторе.
 - 4. Зимой больше на экваторе, летом меньше на экваторе.

30. В аквариум вместимостью 15 куб.м налита вода. Какова масса воды в аквариуме? Плотность воды примите равной 1000 кг/м3.

1. 15 000 кг. 2. 0,015 кг.

3. □6,67 кг.

4. 15 кг.

31. На поверхности воды плавает футбольный мяч. Сила тяжести, действующая на мяч, равна 4 Н. Чему равна выталкивающая сила, действующая на мяч?

1. 0,4 H.

2. 4 H.

3. 40 H.

4. В задаче недостает данных.

- 32. В состоянии невесомости:
 - 1. Вес тела равен нулю.
 - 2. На тело не действуют никакие силы.
 - 3. Сила тяжести равна нулю.
 - 4. Масса тела равна нулю.
- 33. Мяч был брошен с поверхности Земли вертикально вверх. Он достиг высшей точки траектории и затем упал на Землю. В какой момент времени движения полная механическая энергия мяча имела максимальное значение? Сопротивлением воздуха пренебречь.
 - 1. В момент начала движения вверх.
 - 2. В момент достижения верхней точки траектории.
- 3. В момент прохождения половины расстояния до верхней точки траектории.
- 4. В течение всего времени полета полная механическая энергия была одинакова.
- 34. Какова кинетическая энергия автомобиля массой 1000 кг, движущегося со скоростью 36 км/ч?

 $1.36 \cdot 10^3$ Дж. $2.648 \cdot 10^3$ Дж. 3.10^4 Дж. $4.5 \cdot 10^4$ Дж.

35.Какова потенциальная энергия стакана с водой на столе относительно уровня пола? Масса стакана с водой 300~ г, высота стола 80~ см, ускорение силы тяжести 10~ м/с2.

1. 2,4•105 Дж. 2. 2,4 Дж. 3. 2,4•102 Дж. 4. 2,4•103 Дж

36. Пружина жесткостью 103 Н/м растянута на 4 см. Какова, потенциальная энергия упругой деформации пружины?

1. 0,8 Дж. 2. 80 Дж. 3. 40 Дж. 4. 1,6 Дж.

- 37. С поверхности Земли на пятый этаж дома один и тот же человек поднялся первый раз по обычной лестнице, второй раз по более короткой, но отвесной пожарной лестнице, а третий раз с помощью лифта. В каком случае работа силы тяжести была максимальной?
 - 1. В первом.
 - 2. Во втором.
 - 3. В третьем.

- 4. Во всех трех случаях работа была одинаковой.
- 38. Как называется физическая величина, равная произведению массы тела на вектор его мгновенной скорости?
 - 1. Импульс тела.
 - 2. Импульс силы.
 - 3. Кинетическая энергия.
 - 4. Потенциальная энергия.
- 39. Как называется физическая величина, равная половине произведения массы тела на квадрат его мгновенной скорости?
 - 1. Импульс тела.
 - 2. Импульс силы.
 - 3. Кинетическая энергия.
 - 4. Потенциальная энергия.

Тема 3:

- 1. Все тела состоят...
- А. Из маленьких шариков (металлических, пластмассовых или стеклянных).
 - Б. Только из протонов.
 - В. Из частиц (молекул, атомов и др.).
 - Г. Только из электронов.
 - 2. Явление диффузии доказывает...
 - А. Только факт существования молекул.
 - Б. Только факт движения молекул.
 - В. Факт существования и движения молекул.
 - Г. Факт взаимодействия молекул.
 - 3. Диффузия происходит...
 - А. Только в газах.
 - Б. Только в жидкостях.
 - В. Только в твердых телах.
 - Г. Газах, жидкостях и твердых телах.
 - 4. Частицы, из которых состоит вещество, ...
 - А. Начинают двигаться, если тело бросить вверх.
 - Б. Всегда находятся в покое.
 - В. При любой температуре движутся непрерывно и хаотично.
 - Г. Начинают двигаться, если тело нагреть до 100 °C.
- 5. Какое из перечисленных ниже явлений может служить доказательством того, что между частицами вещества проявляются силы притяжения?
- А. Свинцовые цилиндры слипаются, если их прижать друг к другу свежими срезами.
 - Б. Запах цветов распространяется в воздухе.
 - В. Лед в теплом помещении тает.

- Г. При прохождении тока электрическая лампочка светится.
- 6. Железный брусок практически невозможно сжать. Это объясняется тем, что при сжатии бруска частицы железа...
 - А. Начинают непрерывно хаотически двигаться.
 - Б. Начинают сильнее притягиваться друг к другу.
 - В. Имеют одинаковую массу и одинаковые размеры.
 - Г. Начинают сильнее отталкиваться друг от друга.
- 7. Во время обработки на токарном станке деталь нагрелась. Как изменилась ее внутренняя энергия?
 - А. Уменьшилась за счет теплопередачи.
 - Б. Увеличилась за счет теплопередачи.
 - В. Увеличилась за счет совершения работы.
 - Г. Уменьшилась за счет совершения работы.
 - 8. Какой вид теплопередачи сопровождается переносом вещества?
 - А. Только теплопроводность.
 - Б. Только конвекция.
 - В. Только излучение.
 - Г. Теплопроводность и излучение.
- 9. Удельная теплоемкость графита равна 750Дж/кг ·°С. Это означает, что... А. Для нагревания любой массы графита на 1°С потребуется 750Дж теплоты.
 - Б. 1кг графита при 0°С выделяет 750 Дж теплоты.
 - В. Любой массе графита при 100°С сообщается 750Дж теплоты.
 - Г. Для нагревания 1кг графита на 1°С потребуется 750Дж теплоты.
 - 10. Плавление вещества происходит потому, что...
 - А. Частицы с любыми скоростями покидают твердое тело.
 - Б. Частицы уменьшаются в размерах.
 - В. Разрушается кристаллическая решетка.
 - Г. Уменьшается потенциальная энергия частиц твердого тела.
 - 11. Удельная теплота плавления стали равна 84000Дж/кг. Это означает, что...
 - А. Для плавления любой массы стали при 0°C потребуется 84000Дж теплоты.
- Б. Для плавления любой массы стали при 100°C потребуется 84000 Дж теплоты.
- В. Для плавления 1 кг стали при температуре 1500° С потребуется 84000Дж теплоты.
- Γ . Для плавления любой массы стали при температуре 1500°C потребуется 84000 Дж теплоты.
- 12. Кристаллическое тело плавится при постоянной температуре. При этом подводимая к телу энергия преобразуется...
 - А. В механическую энергию тела.
 - Б. Во внутреннюю энергию тела.
 - В. В кинетическую энергию тела.
 - Г. В световую энергию тела.
 - 13. Испарение жидкости происходит потому, что...
 - А. Самые массивные частицы покидают жидкость и переходят в газ.

- Б. Самые крупные частицы покидают жидкость и переходят в газ.
- В. Самые быстрые частицы покидают жидкость и переходят в газ.
- Г. Самые быстрые частицы переходят из газа в жидкость.
- 14. Как нужно изменить объем газа для того, чтобы при постоянной температуре его давление увеличилось в 4 раза?
 - А. Увеличить в 2 раза.
 - Б. Увеличить в 4 раза.
 - В. Уменьшить в 2 раза.
 - Г. Уменьшить в 4 раза.
 - 15. Почему высоко в горах не удается сварить яйцо в кипящей воде.
 - А. Высоко в горах холодно.
- Б. Высоко в горах давление воздуха ниже, чем на уровне моря. При той же температуре, но при пониженном давлении яйцо не сваривается.
- В. При понижении атмосферного давления понижается температура кипения воды.
- Г. Высоко в горах уменьшается сила земного тяготения, и это уменьшает конвекцию в яйце.
- 16. Какой вид деформации наблюдается в струне гитары во время игры на ней?
 - А. Пластическая деформация.
 - Б. Упругая деформация.
 - В. Текучая деформация.
 - Г. Гармоническая.
 - 17. Оцените массу атмосферного воздуха в помещении объемом 200 м³.

А. 0.02 кг. Б. 0.2 кг. В. $\sim 2 \text{ кг.}$ Д. 200 кг.

- 18. Что служит рабочим телом в двигателе автомобиля?
 - А. Воздух. Б. Вода. В. Бензин. Г. Поршень.
- 19. Что служит рабочим телом в реактивном двигателе самолета?

А. Турбина. Б. Крылья. В. Горючее. Г. Возд 20. Сколько молекул содержится в одном моле водорода?

A. $6 \cdot 10^{23}$. B. $12 \cdot 10^{23}$. B. $6 \cdot 10^{26}$. $\Gamma \cdot 10^{23}$

- 21. Единицей измерения какой физической величины является один моль?
- А. Массы. Б. Количество материи. В. Количество вещества. Г. Объема.
 - 22. Как называется процесс изменения состояния газа при постоянном объеме?
 - А. Изотермический.
 - Б. Изохорный.
 - В. Изобарный.
 - Г. Адиабатный.
- 23. Как называется процесс изменения состояния газа без теплообмена с окружающей средой и другими телами?
 - А. Изотермический.
 - Б. Изохорный.
 - В. Изобарный.
 - Г. Алиабатный.

24. Кто впервые наблюдал хаотическое движение мелких твердых частиц, вы-			
зываемое беспорядочными ударами молекул жидкости?			
А. О. Штерн. Б. Р. Броун. В. М. Ломоносов. Г. И. Ньютон.			
25. Чему равно значение постоянной Больцмана? А. $1,38*10^{-23}$ Дж/кг.			
Б. 1,83*10 ²³ Дж/К			
В. 8,31*10 ⁻²³ Дж/кг.			
Г. 1,38*10 ²³ Дж/кг			
26. Единица концентрации в СИ			
A. M^3 . B. $K\Gamma/M^3$. Γ . M^{-1} .			
27. Чему равно значение постоянной Авогадро?			
A. $6,022 * 10^{23}$ моль ⁻¹ .			
Б. $6,022*10^{-23}$ моль ⁻¹ .			
В. 8,31*10 ⁻²³ Дж/кг.			
Г. 1,38*10 ²³ моль.			
28. Какой закон описывает изотермический процесс?			
A. PV=const. B. VT=const. Γ . PT=const.			
2 семестр			
Тема 4:			
1. Какими электрическими зарядами обладают электрон и протон?			
А. Электрон — отрицательным, протон — положительным.			
Б. Электрон — положительным, протон — отрицательным.			
В. Электрон и протон — положительным.			
Г. Электрон — отрицательным, протон не имеет заряда.			
2. Сколько электронов в нейтральном атоме водорода? A. 1. Б. 2. В. 3. Г. 0.			
3. Упорядоченным движением каких частиц создается электрический ток в			
металлах?			
А. Положительных ионов.			
А. Положительных ионов.Б. Отрицательных ионов.В. Электронов.Г. Положительных и отрицательных ионов и электронов.			
А. Положительных ионов. Б. Отрицательных ионов. В. Электронов. Г. Положительных и отрицательных ионов и электронов. 4. Как называется единица измерения силы тока?			
А. Положительных ионов.Б. Отрицательных ионов.В. Электронов.Г. Положительных и отрицательных ионов и электронов.			
А. Положительных ионов. Б. Отрицательных ионов. В. Электронов. Г. Положительных и отрицательных ионов и электронов. 4. Как называется единица измерения силы тока? А. Ватт. Б. Ампер. В. Вольт. Г. Ом.			
 А. Положительных ионов. Б. Отрицательных ионов. В. Электронов. Г. Положительных и отрицательных ионов и электронов. 4. Как называется единица измерения силы тока? А. Ватт. Б. Ампер. В. Вольт. Г. Ом. 5. Сила тока в электрической цепи равна 2 А. Сопротивление электрической 			
А. Положительных ионов. Б. Отрицательных ионов. В. Электронов. Г. Положительных и отрицательных ионов и электронов. 4. Как называется единица измерения силы тока? А. Ватт. Б. Ампер. В. Вольт. Г. Ом.			
А. Положительных ионов. Б. Отрицательных ионов. В. Электронов. Г. Положительных и отрицательных ионов и электронов. 4. Как называется единица измерения силы тока? А. Ватт. Б. Ампер. В. Вольт. Г. Ом. 5. Сила тока в электрической цепи равна 2 А. Сопротивление электрической лампы 14 Ом. Чему равно напряжение на лампе? А. 28 В. Б. 7 В. В. 0,125 В. Г. 16 В. 6. Сила тока, проходящая через нить лампы, 0,3А, напряжение на лампе 6В.			
А. Положительных ионов. Б. Отрицательных ионов. В. Электронов. Г. Положительных и отрицательных ионов и электронов. 4. Как называется единица измерения силы тока? А. Ватт. Б. Ампер. В. Вольт. Г. Ом. 5. Сила тока в электрической цепи равна 2 А. Сопротивление электрической лампы 14 Ом. Чему равно напряжение на лампе? А. 28 В. Б. 7 В. В. 0,125 В. Г. 16 В. 6. Сила тока, проходящая через нить лампы, 0,3А, напряжение на лампе 6В. Каково электрическое сопротивление нити лампы?			
А. Положительных ионов. Б. Отрицательных ионов. В. Электронов. Г. Положительных и отрицательных ионов и электронов. 4. Как называется единица измерения силы тока? А. Ватт. Б. Ампер. В. Вольт. Г. Ом. 5. Сила тока в электрической цепи равна 2 А. Сопротивление электрической лампы 14 Ом. Чему равно напряжение на лампе? А. 28 В. Б. 7 В. В. 0,125 В. Г. 16 В. 6. Сила тока, проходящая через нить лампы, 0,3А, напряжение на лампе 6В. Каково электрическое сопротивление нити лампы? А. 2 Ом. Б. 1,8 Ом. В. 0,5 Ом. Г. 20 Ом.			
А. Положительных ионов. Б. Отрицательных ионов. В. Электронов. Г. Положительных и отрицательных ионов и электронов. 4. Как называется единица измерения силы тока? А. Ватт. Б. Ампер. В. Вольт. Г. Ом. 5. Сила тока в электрической цепи равна 2 А. Сопротивление электрической лампы 14 Ом. Чему равно напряжение на лампе? А. 28 В. Б. 7 В. В. 0,125 В. Г. 16 В. 6. Сила тока, проходящая через нить лампы, 0,3А, напряжение на лампе 6В. Каково электрическое сопротивление нити лампы?			

- 8. Какова мощность электрического тока в электрической плите при напряжении 200В и силе тока 2А?
 - А. 100 Bt. Б. 400 Bt. B. 0,01 Bt. Г. 4 кВt.
- 9. Какое количество теплоты выделяется в проводнике сопротивлением 20 Ом за 10 мин при силе тока в цепи 2 А?
 - А. 480 кДж. Б. 48 кДж. В. 24 кДж. Г. 8 кДж.
- 10. Для измерения силы тока в лампе и напряжения на ней в электрическую цепь включают амперметр и вольтметр. Какой из этих электроизмерительных приборов должен быть включен параллельно лампе?
 - А. Только амперметр.
 - Б. Только вольтметр.
 - В. Амперметр и вольтметр.
 - Г. Ни амперметр, ни вольтметр.
- 11. Как включаются автоматы, отключающие при перегрузках электрическую сеть квартиры последовательно или параллельно электрическим приборам, включаемым в квартире?
 - А. Параллельно.
 - Б. Последовательно.
 - В. Один автомат последовательно, другой параллельно.
 - Г. Можно включать последовательно, можно параллельно.
- 12. В комнате включены одна люстра с тремя электрическими лампами, телевизор и электрический утюг. Как они включены друг относительно друга?
 - А. Все параллельно.
 - Б. Все последовательно.
 - В. Лампы параллельно, утюг и телевизор последовательно.
 - Г. Лампы последовательно, утюг и телевизор параллельно.
 - 13. Как называется подвижная часть генератора?
 - А. Ротор. Б. Статор. В. Трансформатор. Г. Электродвигатель.
- 14. Необходимо измерить силу тока в лампе и напряжение на ней. Как следует включить по отношению к лампе амперметр и вольтметр?
 - 1. Амперметр и вольтметр последовательно.
 - 2. Амперметр и вольтметр параллельно.
 - 3. Амперметр последовательно, вольтметр параллельно.
 - 4. Амперметр параллельно, вольтметр последовательно.
- 15. Кто первым высказал гипотезу о существовании электрических и магнитных полей как физической реальности?
 - А. Х.Эрстед. Б. М.Фарадей. В. Д.Максвелл. Г. Г.Герц.
- 16. Как называется отношение работы, совершаемой электрическим полем при перемещении положительного заряда, к значению заряда?
 - А. Потенциал электрического поля.
 - Б. Напряженность электрического поля.
 - В.Электрическое напряжение.
 - Г. Электроемкость.

- 17. Какая физическая величина определяется отношением силы, с которой действует электрическое поле на электрический заряд, к значению этого заряда?
 - А. Потенциал электрического поля.
 - Б. Напряженность электрического поля.
 - В. Электрическое напряжение.
 - Г. Электроемкость.
- 18. С какой силой действует однородное магнитное поле с индукцией 4 Тл на прямолинейный проводник длиной 30 см с током 20 А, расположенный перпендикулярно вектору индукции?
 - А. 2 Н. Б. 24 Н. В. 0.5 Н. Г. 12 Н.
 - 19. Кто открыл явление электромагнитной индукции?
 - А. М. Фарадей. Б. Е. Максвелл. В. А. Вольта. Г. А. Ампер.
 - 20. Вокруг покоящегося постоянного магнита существует:
 - А. Электрическое поле.
 - Б. Магнитное поле.
 - В. Постоянные электрическое и магнитное поля.
 - Г. Переменное электромагнитное поле.
- 21. Как называется физическая величина, равная произведению модуля В индукции магнитного поля на площадь S поверхности, пронизываемой магнитным полем, и косинус угла а между вектором индукции и нормалью n к этой поверхности?
 - А. Индуктивность.
 - Б. Магнитный поток.
 - В. Магнитная индукция.
 - Г. Самоиндукция.
 - 22. Как называется единица измерения магнитного потока?
 - А. Тесла. Б. Вебер. В. Гаусс. Г. Генри.
 - 23. Единицей измерения, какой физической величины является 1 Генри?

А. Индукции магнитного поля. Б. Электроемкости. В. Самоиндукции. Г. Индуктивности.

- 24. Электромагнитные волны впервые были обнаружены в 1887 году...
 - А. Д. Максвеллом.
 - Б. Г. Герцем.
 - В. М. Фарадеем.
 - Г. А. Эйнштейном.
- 25. Какое явление лежит в основе действия генераторов?
 - А. Намагничивание.
 - Б. Электролиз.
 - В. Электромагнитная индукция.
 - Г. Резонанс.
- 26. Кто впервые с помощью магнитного поля получил электрический ток А. Ш.Кулон. Б. А.Ампер. В. М.Фарадей. Г. Н.Тесла.

Тема 5:

1. Какова скорость света в вакууме?

- А. 300 000м/с. Б. 300 000км/ч. В. 300 000км/мин. Г. 300 000км/с.
- 2. Луч света падает на зеркальную поверхность и отражается. Угол падения 30°. Каков угол отражения?
- 3. Между электрической лампой и стеной находится мяч, на стене круглая тень от мяча. Изменится ли радиус тени, если мяч переместить ближе к лампе?
 - А. Не изменится.
 - Б. Увеличится.
 - В. Уменьшится.
 - Г. При небольшом перемещении увеличится, при большом уменьшится.
 - 4. Отчего на небе после дождя бывает, видна разноцветная радуга?
 - А. Проходя через капли воды, белый свет окрашивается в разные цвета.
- Б. Белый цвет является светом, состоящим из разных цветов. В каплях воды в результате различного преломления он разделяется на составные цвета.
- В. Вместе с парами воды в облака в результате конвекции попадают различные мелкие окрашенные частицы. При падении вниз капли дождя захватывают эти частицы, и мы видим радугу.
 - Г. Никакой радуги на небе не бывает. Это просто обман зрения.
 - 5. Какой оптический прибор может давать увеличенное изображение?
 - А. Плоское зеркало.
 - Б. Собирающая линза.
 - В. Стеклянная пластинка.
 - Г. Перископ.
- 6.Во время работы (подготовки домашних заданий, шитья, рисования и др.) свет должен падать:
 - А. Слева. Б. Справа. В. Сверху. Г. Снизу или спереди.
- 7. При каких условиях за непрозрачным телом наблюдается одна тень с четкими границами?
 - А. Если свет идет от яркого источника любых размеров.
 - Б. Если свет ид от слабого источника любых размеров.
 - В. Если источник света один и малых размеров.
 - Г. Если источник света один, но больших размеров.
 - 8. Отчего происходят лунные затмения?
 - А. Между Луной и Землей иногда проходят другие планеты.
 - Б. Это результат падения тени от кометы на Луну.
 - В. Это результат падения тени от Земли на Луну.
- Г. Это результат отклонения солнечных лучей от прямолинейного направления под влиянием притяжения Земли.
 - 9. Отчего происходят солнечные затмения?
 - А. Между Солнцем и Землей иногда проходят другие планеты.
 - Б. Это результат падения тени от кометы на Землю.
 - В. Это результат падения тени от Луны на Землю.
- Г. Это результат отклонения солнечных лучей от прямолинейного направления под влиянием притяжения Луны.

- 10. Кому из ученых принадлежит открытие интерфенции света?
 - А. А.Попов. Б. Г.Герц. В. Т.Юнг. Г. М.Планк.
- 11. Примером интерференции света может служить
 - А. Радужная окраска мыльных пузырей.
 - Б. Появление радуги.
 - В. Образование тени.
 - Г. Образование полутени.
- 12. Световая волна, какого цвета имеет максимальную частоту?
 - А. Красного. Б. Желтого. В. Синего. Г. Фиолетового.
- 13. Световая волна, какого цвета имеет максимальную длину волны?
 - А. Красного. Б. Желтого. В. Синего. Г. Фиолетового.
- 14. Как можно назвать частицу электромагнитной волны?
 - А. Только фотон.
 - Б. Только квант.
 - В. Только корпускула.
 - Г. Фотон, квант, корпускула.
- 15. Какой вид электромагнитного излучения из предложенного списка обладает наибольшей частотой?
 - А. Видимый свет.
 - Б. Инфракрасное излучение.
 - В. Радиоволны.
 - Г. Рентгеновское излучение.

Тема 6:

- 1. Укажите основные свойства полупроводников:
- А. Удельное сопротивление полупроводников с увеличением температуры достаточно резко уменьшается.
- В. Удельное сопротивление полупроводников уменьшается при освещении его поверхности.
- С. Удельное сопротивление полупроводников увеличивается при освещении его поверхности.
- Д. Удельное сопротивление полупроводников с увеличением температуры достаточно резко увеличивается.
- Е. Добавление примесей приводит к резкому уменьшению сопротивления полупроводника.
 - 2. Сопоставьте определения и понятия.
- А. Проводимость полупроводников, обусловленная наличием у них свободных электронов.
 - В. Проводимость полупроводников, обусловленная движением дырок.
 - С. Вакантное место с недостающим электроном в ковалентной связи.
- D. Квазичастица, являющаяся носителем положительного заряда, равного элементарному заряду, в полупроводниках.
- Е. Проводимость полупроводника, обусловленная движением свободных электронов и дырок в чистом полупроводнике.
 - 3. Контакт двух полупроводников с разным типом проводимости.

- А. Электронно-дырочный переход
- В. п-р-переход
- С. х-z-переход
- D. Электронно-позитронный переход
- 4. Укажите особенности прямого и обратного включения р-п-перехода
- А. Внешнее напряжение создаёт в переходе поле, которое противоположно по направлению внутреннему диффузионному полю.
- В. Внешнее напряжение создаёт в переходе поле, которое совпадает по направлению внутреннему диффузионному полю.
- С. При таком подключении полупроводник способен проводить электрический ток.
- D. При таком подключении полупроводник неспособен проводить электрический ток.
 - 5. Полупроводниковый прибор с двумя п-р-переходами называется....
 - А) резистором
- Б) фоторезистором
- В) диодом
- В) транзистором.
- 6. В четырехвалентный германий добавили: 1) пятивалентный фосфор, 2) трехвалентный индий. Каким типом проводимости будет обладать полупроводник в каждом случае?
 - А) 1-дырочной, 2-электронной
 - Б) 1-электронной, 2-дырочной
 - В) В обоих случаях электронной
 - Г) В обоих случаях дырочной
- 7. Какая доля от большого количества радиоактивных атомов остается нераспавшейся через интервал времени, равный двум периодам полураспада?
 - 1.0%
 - 2.50%
 - 3.75 %
 - 4. 25 %
- 8. Управляемая и неуправляемая ядерные реакции. Особенности их протекания. Критическая масса, коэффициент размножения нейтронов.
- 9. Для каких сил, которые действуют между нуклонами в ядре, характерны такие свойства действуют только на заряженные частицы, постепенно уменьшаются с расстоянием:
 - А: гравитационные силы
 - Б: ядерные силы
 - В: электромагнитные силы
 - Г: упругие силы
 - Д: слабое взаимодействие
 - 10. Причина уменьшения удельной энергии связи ядер легких элементов:
 - А: увеличение влияния кулоновских сил
 - Б: уменьшение влияния кулоновских сил
 - В: маленький радиус действия ядерных сил
 - Г: большой радиус действия ядерных сил
 - Д: спонтанное излучение

- 11. Для каких сил, которые действуют между нуклонами в ядре, характерны такие свойства самые мощные в природе, действуют только на коротких расстояниях:
 - А: гравитационные силы
 - Б: ядерные силы
 - В: электромагнитные силы
 - Г: упругие силы
 - Д: слабое взаимодействие
 - 12. Причина уменьшения удельной энергии связи ядер тяжелых элементов:
 - А: увеличение влияния кулоновских сил
 - Б: уменьшение влияния кулоновских сил
 - В: маленький радиус действия ядерных сил
 - Г: большой радиус действия ядерных сил
 - Д: спонтанное излучение

Тема 7:

- 1. Как называется явление испускания электронов веществом под действием электромагнитных излучений?
 - А. Электролиз. Б. Фотосинтез. В. Фотоэффект. Г. Электризация.
- 2. Как называется минимальное количество энергии, которое может излучать система?
 - А. Квант. Б. Джоуль. В. Электрон. Г. Электрон вольт.
 - 3. Кто предложил ядерную модель строения атома?
 - А. Д. Томсон. Б. Э. Резерфорд. В. А. Беккерель. Г. В. Гейзенберг.
- 4. Из атомного ядра в результате самопроизвольного превращения вылетело ядро атома гелия. Какой это вид радиоактивного распада?
 - А. Альфа-распад.
 - Б. Бета-распад.
 - В. Гамма-распад.
 - Г. Протонный распад.
 - 5. Какие частицы освобождаются из атомного ядра при бета-минус распаде? А. Электрон.
 - Б. Позитрон.
 - В. Электрон и антинейтрино.
 - Г. Ядро атома гелия.
- 6. Какой вид радиоактивного излучения наиболее опасен при внешнем облучении человека?
 - А. Бета-излучение.
 - Б. Альфа-излучение.
 - В. Гамма-излучение.
 - Г. Все три одинаково опасны.
 - 7. У каких из перечисленных ниже частиц есть античастицы?
 - 1) Протон. 2) Нейтрон. 3) Электрон.
 - А. Только 1. Б. Только 2. В. Только 3. Г. 1;2 и 3.

- 8. В чем главное отличие светового пучка лазера от световых пучков, испускаемых обычными источниками света?
 - А. Монохроматичность излучения.
 - Б. Когерентность излучения.
 - В. Большая мощность излучения.
 - Г. Все три особенности А-В одинаково важны.
 - 9. По отношению к какой частице позитрон является античастицей?
 - А. К электрону. Б. К протону. В. К нейтрону. Г. К фотону.
 - 10. Кто экспериментально доказал существование атомного ядра?
 - А. М. Кюри. Б. Франк и Г. Герц. В. А. Беккерель. Г. Э. Резерфорд.
- 11. Какой вид радиоактивного излучения наиболее опасен при внутреннем облучении человека?
 - А. Бета-излучение.
 - Б. Гамма-излучение.
 - В. Альфа-излучение.
 - Г. Вес три одинаково опасны.
- 12. Как называется минимальное количество энергии, которое может поглошать система?
 - А. Электрон. Б. Джоуль. В. Квант. Г. Электрон вольт.
- 13. Как называется коэффициент пропорциональности между энергией кванта и частотой колебаний?
 - А. Постоянная Больцмана.
 - Б. Постоянная Планка.
 - В. Постоянная Фарадея.
 - Г. Постоянная Ридберга.
 - 14. Какой из перечисленных ниже величин пропорциональна энергия кванта? А. Частоте колебаний.
 - Б. Длине волны.
 - В. Скорости фотона.
 - Г. Времени излучения.
 - 15. Каково происхождение гамма излучения при радиоактивном распаде?
- А. Гамма-кванты испускаются при переходе атома из возбужденного состояния в основное.
- Б. Гамма-кванты производятся альфа частицами при их движении через вещество.
- В. Гамма-кванты производятся бетта частицами при их движении через вещество.
- Г. Гамма-кванты испускаются возбужденными в результате радиоактивного распада атомными ядрами.
- 16. Электрон и протон движутся с одинаковыми скоростями. Которая из этих частиц в этом случае обладает большей длиной волны?
 - А. Электрон.
 - Б. Протон.
 - В. Длины волн протона и электрона одинаковы.

- Г. Электроны и протоны нельзя характеризовать длиной волны.
- 17. Излучение, которое обладает наибольшей проникающей способностью
 - А. ультрафиолетовое.
 - Б. рентгеновское.
 - В. СВЧ-излучение.
 - Г. гамма-излучение.
- 18. Атом становится отрицательным ионом, если ...
 - А. потеряет один или несколько электронов.
 - Б. приобретет один или несколько электронов.
 - В. потеряет или приобретет один или несколько протонов.
 - Г. потеряет один или несколько нейтронов.
- 19. Кто из ученых впервые открыл явление радиоактивности?
 - А. Д.Томсон. Б. Э.Резерфорд. В. А.Беккерель. Г. А.Эйнштейн.
- 20. α-излучение это
 - А. Поток положительных частиц.
 - Б. Поток отрицательных частиц.
 - В. Поток нейтральных частиц.
 - Г. Среди ответов нет правильного.
- 21. Что представляет собой α-излучение?
 - А. Поток ядер гелия.
 - Б. Поток протонов.
 - В. Поток электронов.
 - Г. Электромагнитные волны большой частоты.
- 22. Что представляет собой ү-излучение?
- А. Поток ядер гелия. Б. Поток протонов.
- В. Поток электронов. Г. Электромагнитные волны большой частоты.
- 23. Согласно современным представлениям ядро состоит из:
 - А. Электронов и протонов. Б. Нейтронов и позитронов.
 - В. Одних протонов.
- Г. Протонов и нейтронов.
- 24. Массовое число равно
 - А. Сумме протонов и нейтронов в ядре.
 - Б. Сумме числа протонов и электронов.
 - В. Сумме числа протонов, нейтронов и электронов.
 - Г. Разности между числом нейтронов и протонов в ядре.

Тема 8:

- 1. В лазере используется спонтанное излучение атома.
- А. да
- Б. нет
- 2. Лазер источник оптического когерентного излучения, характеризующегося высокой направленностью и большой плотностью энергии.
 - А. да
 - Б. нет
 - 3. Усиление света происходит, если любая часть атомов среды находится в

возбужденном состоянии.

- А. да
- Б. нет
- 4. Возбуждение атомов среды происходит за счет поглощения света.
- А. да
- Б. нет
- 5. Свет лазера строго монохроматичный, но кванты света и не согласованные.
- А. да
- Б. нет
- 6. Лазеры создают почти не расходящийся пучок света.
- А. да
- Б. нет
- 7.Индуцированное излучение самопроизвольное излучение возбужденного атома под действием падающего света.
 - А. да
 - Б. нет
- 8. Частота электромагнитного излучения должна быть больше собственной частоты излучения возбужденного атома.
 - А. да
 - Б. нет

Критерии и шкала оценивания по оценочному средству тесты

Шкала оценивания (интервал баллов)	Критерий оценивания
5	Тесты выполнены на высоком уровне (правильные ответы даны на 90-100% тестов)
4	Тесты выполнены на среднем уровне (правильные ответы даны на 75-89% тестов)
3	Тесты выполнены на низком уровне (правильные ответы даны на 50-74% тестов)
2	Тесты выполнены на неудовлетворительном уровне (правильные ответы даны менее чем на 50% тестов)

Примерные варианты контрольных работ:

1 семестр

Кинематика

- 1. Колесо радиусом 10 см вращается с постоянным угловым ускорением 3,14 рад/с2. Найти для точек на ободе колеса к концу первой секунды после начала движения: угловую скорость; линейную скорость тангенциальное ускорение; нормальное ускорение; полное ускорение.
- 2. Зависимость пройденного телом пути от времени задается уравнением $s(t) = A + Bt + Ct^2 + Dt^3$ ($C = 0.1 \text{ M/c}^2$, $D = 0.03 \text{ M/c}^3$) Определите: 1) через сколько

времени после начала движения ускорение тела будет равно 2 м/c^2 ; 2) среднее ускорение <а> тела за этот промежуток времени.

3. Тело, брошенное вертикально вверх, вернулось на землю через время t = 3 с. Какова была начальная скорость v_0 тела и на какую высоту h оно поднялось?

Динамика

- 1. Автомобиль массой $5\cdot103$ кг трогается с места с ускорением 0.6 м/с 2 . Какую силу тяги развивает его двигатель, если коэффициент сопротивления движению 0.04?
- 2. Изучая дорожное происшествие, автоинспектор установил, что тормозной путь автомобиля на асфальтированной дороге равен 60м. С какой скоростью двигался автомобиль, если коэффициент трения скольжения шин по асфальту равен 0,5?
- 3. На горизонтальной дороге автомобиль делает поворот радиусом 16 м. Какова наибольшая величина скорости, которую может развивать автомобиль, чтобы его не занесло, если коэффициент трения скольжения колес о дорогу 0,4?
- 4. Мальчик массой 50 кг, скатившись на санках с горки, проехал по горизонтальной дороге до остановки путь 20 м за 10 с. Найти коэффициент трения и силу трения.
- 5. С какой скоростью двигался поезд массой 1500 т если под действием тормозящей силы 150 кН он прошел с момента начало торможения до остановки путь 500 м?
- 6. Мальчик массой 50 кг качается на качелях с длиной подвеса 4 м. С какой силой он давит на сиденье при прохождении среднего положения и со скоростью 6 м/с?
- 7. Брусок тянут на нити по горизонтальной поверхности со скоростью 5 см/с. Коэффициент трения бруска о поверхность 0,01. Какой путь пройдет брусок до остановки, если нить оборвется.
- 8. Латунная проволока диаметром 0,8 мм имеет длину 3,6 м. Под действием силы 25 Н проволока удлиняется на 2 мм. Определите модуль упругости для латуни.
- 9. К проволоке из углеродистой стали подвешен груз массой 100 кг. Длина проволоки 1 м, диаметр 2 мм. Модуль Юнга для стали $E=2\cdot 10^{11}$ Па, предел прочности $\sigma=330$ МПа. На сколько увеличится длина

Молекулярная физика

- 1. В закрытом сосуде вместимостью 20 л находятся водород массой 6 г и гелий массой 12 г. Определите: 1) давление; 2) молярную массу газовой смеси в сосуде, если температура смеси T = 300 K.
- 2. Азот массой m=10 г находится при температуре T=290 К. Определите: 1) среднюю кинетическую энергия одной молекулы азота; 2) среднюю кинетическую энергию вращательного движения всех молекул азота. Газ считайте идеальным.
- 3. Определите удельные теплоемкости c_v и c_p , если известно, что некоторый газ при нормальных условиях имеет удельный объем $v=0.7~{\rm m}^3/{\rm kr}$. Какой это газ?

4. При изобарном нагревании некоторого идеального газа ($\nu=2$ моль) на $\Delta T=90$ К ему было сообщено количество теплоты 5,25 кДж. Определите: 1) работу, совершаемую газом; 2) изменение внутренней энергии газа; 3) величину $\gamma=c_p/c_V$.

2 семестр

Электричество и магнетизм

- 1. Есть два неподвижных положительных заряда 4e и e, расстояние между которыми равно ℓ . Где нужно разместить третий положительный заряд q, чтобы он был в равновесии?
- 2. Определить электрический потенциал заряженного проводящего уединенного шара, если в точках, удаленных от его поверхности в вакууме на 5 и 10 см, потенциал электрического поля равен 300 и 210 В.
- 3. Два прямолинейных параллельных проводника большой длины расположены на расстоянии 50 см друг от друга. В первом проводнике сила тока равна 20 А, во втором 24 А. Определить индукцию и напряженность магнитного поля в точке А, расположенной на расстоянии 40 см от первого проводника и 30 см от второго (рис.), если токи в них направлены в противоположные стороны.
- 4. Ионы двух изотопов калия с массами 39 а.е.м. и 41 а.е.м., получившие кинетическую энергию в электрическом поле, влетают в однородное магнитное поле с индукцией 0,16 Тл перпендикулярно к линиям индукции. Определить, на сколько будут отличаться друг от друга радиусы траекторий ионов изотопов в магнитном поле, если их движение происходит в вакууме, заряд каждого иона равен $1,6 \cdot 10^{-19}$ Кл, а в электрическом поле все ионы проходят разность потенциалов 500 В.
- 5. Проводник ab, длина которого 40 см и масса 8 гр, подвешен на тонких проволочках. При прохождении по нему тока 5 А он отклонился в однородном магнитном поле так, что нити образовали угол 90^{0} с вертикалью. Какова индукция магнитного поля?
- 6. Батарея аккумуляторов с ЭДС 2,8 В включена в цепь; R_1 =1,8 Ом, R_2 =2 Ом,

R_3 =3 Ом. Амперметр показывает 0,48 А. Определить внутреннее сопротивление батареи.

- 7. 10 параллельных ламп по 0,5 кОм рассчитанных каждая на 120 В, питаются через реостат от сети напряжением 220 В. Какова мощность электрического тока в реостате?
- 8. ЭДС батареи ξ = 12,0 В. Наибольшая сила тока, которую может дать батарея, $I_{\text{макс}}$ = 5,0 А. Какая наибольшая мощность $P_{\text{макс}}$ может выделиться на подключенном к батарее резисторе с переменным сопротивлением?

Колебания и волны. Оптика. Квантовая механика

- 1. Алмазная пластинка освещается фиолетовым светом частотой 7,5 · 10¹⁴ Гц. Определить длину волны этого света в вакууме и алмазе, если показатель преломления алмаза для этих лучей равен 2,465.
- 2. С помощью линзы, фокусное расстояние которой 8 см, получено мнимое изображение, расстояние до которого в четыре раза больше, чем до предмета. Определить оптическую силу линзы, коэффициент увеличения и расстояние от предмета до линзы. Построить изображение предмета.
- 3. Точечный источник света, расположенный в центре полого шара, излучает полный световой поток 314 лм. Определить силу света источника и радиус шаровой поверхности, если на ней источником создается освещенность 25 лк. Какой световой поток посылает источник света внутрь телесного угла в 1,6 ср?
- 4. Установка для наблюдения коле Ньютона освещается монохроматическим светом с длиной волны 0,6 мкм. Найти толщину воздушного слоя между линзой и стеклянной пластинкой в том месте где, наблюдается пятое кольцо в отраженном свете.

Физика твердого тела. Атомная физика.

- 1. Определите длину волны электромагнитного излучения атома водорода при переходе его с пятого на второй энергетический уровень.
- **2.** Определить минимальную энергию возбуждения атома водорода, если его энергия в нормальном состоянии 13,53 эВ.
- **3.** Какой длины волну электромагнитного излучения поглотил атом водорода, если он при этом перешел со второго на третий энергетический уровень?
- **4.** Определите длину волны излучения, поглощаемого атомом водорода при переходе его электрона со второй стационарной орбиты на четвертую, если энергия атома водорода в нормальном состоянии 13,53 эВ

5.

Квантовая физика

- 1. Какова максимальная скорость фотоэлектронов, если фототок прекращается при запирающем напряжении 0,8В.
- 2. Определить энергию фотонов, соответствующих наиболее длинным (760нм) и наиболее коротким (380нм) волнам видимой части спектра.
 - 3. Каков импульс фотона, энергия которого равна 3эВ?
- 4. Под каким напряжением работает рентгеновская трубка, если самые «жесткие» лучи в рентгеновском спектре этой трубки имеют частоту 1019Гц.
- 5. Возникает ли фотоэффект в цинке под действием излучения, имеющего длину волны 0,45мкм? Работа выхода электронов из цинка 4,2эВ.
- 6. Какое запирающее напряжение надо подать, чтобы электроны вырванные ультрафиолетовым светом с длиной волны 100нм из вольфрамового катода не могли создать ток в цепи. Если работа выхода равна 7,2·10-19Дж.
- 7. Чему равна длина волны кванта с энергией, равной средней кинетической энергии атома гелия при температуре 100° C? Постоянная Больцмана $k=1,38\cdot10^{-}$

- ²³Дж/К.
- 8. Источник света мощностью $100\mathrm{Bt}$ испускает $5{\cdot}1020$ фотонов за 1с. Найти длину волны излучения.
- 9. Электрон разогнали из состояния покоя в электрическом поле при напряжении 100В. Чему равна длина волны де Бройля этого электрона?

Критерии и шкала оценивания по оценочному средству контрольная работа

Шкала ния	оценива- (интервал		
баллов)			
	5	Контрольная работа выполнена на высоком уровне	
		(правильные ответы даны на 90-100% вопросов/задач)	
	4	Контрольная работа выполнена на среднем уровне	
		(правильные ответы даны на 75-89% вопросов/задач)	
	3	Контрольная работа выполнена на низком уровне (пра-	
		вильные ответы даны на 50-74% вопросов/задач)	
	2 Контрольная работа выполнена на неудовлетворитель-		
		ном уровне (правильные ответы даны менее чем на	
		50%)	

Оценочные средства для промежуточной аттестации (экзамен)

Примеры экзаменационных билетов 1 семестр Экзаменационный билет № 1

- 1. Физические модели: материальная точка, система материальных точек, абсолютно твердое тело, сплошная среда.
 - 2. Адиабатный процесс. Показатель адиабаты. Уравнение Пуассона.
- 3. В установке на рисунке угол α наклонной плоскости с горизонтом равен 20° , массы тел $m_1 = 200$ г и $m_2 = 150$ г. Считая нить и блок невесомыми и пренебрегая силами трения, определить ускорение, с которыми будут двигаться тела, если тело m_2 опускается.

2 семестр ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №_1___

- 1. Характеристики электрического поля. Электрическое поле в веществе. Напряженность, потенциал. Силовые линии поля, эквипотенциальные поверхности.
 - 2. Оптические приборы. Увеличение микроскопа. Физический смысл спектрального разложения.
- 3. Расстояние между электродами в трубке, наполненной парами ртути, 10 см. Какова средняя длина свободного пробега электрона, если самостоятельный разряд наступает при напряжении 600 B? Энергия ионизации паров ртути $1,7\cdot10^{-18}$ Дж. Поле считать однородным.

Критерии и шкала оценивания по оценочному средству промежуточный контроль (экзамен)

Шкала оценивания	Критерий оценивания		
(интервал баллов)			
отлично (5)	Студент глубоко и в полном объёме владеет программным материалом. Гра-		
	мотно, исчерпывающе и логично его излагает в устной или письменной форме.		
	При этом знает рекомендованную литературу, проявляет творческий подход в		
	ответах на вопросы и правильно обосновывает принятые решения, хорошо вла-		
	деет умениями и навыками при выполнении практических задач.		
хорошо (4)	Студент знает программный материал, грамотно и по сути излагает его в устной		
	или письменной форме, допуская незначительные неточности в утверждениях,		
	трактовках, определениях и категориях или незначительное количество оши-		
	бок. При этом владеет необходимыми умениями и навыками при выполнении		
	практических задач.		
удовлетворительно (3)	Студент знает только основной программный материал, допускает неточности,		
	недостаточно чёткие формулировки, непоследовательность в ответах, излагае-		
	мых в устной или письменной форме. При этом недостаточно владеет умения-		
	ми и навыками при выполнении практических задач. Допускает до 30% ошибок		
	в излагаемых ответах.		
неудовлетворительно	Студент не знает значительной части программного материала. При этом до-		
(2)	пускает принципиальные ошибки в доказательствах, в трактовке понятий и ка-		
	тегорий, проявляет низкую культуру знаний, не владеет основными умениями и		
	навыками при выполнении практических задач. Студент отказывается от отве-		
	тов на дополнительные вопросы		

Форма листа изменений и дополнений, внесенных в ФОС

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)