МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля»

Институт строительства, архитектуры и жилищно-коммунального хозяйства Кафедра общеобразовательных дисциплин

УТВЕРЖДАЮ

Директор института строительства, архитектуры и жилищно-коммунального хозяйства дальной дальн

<14 » 04 2023 F.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«ИНЖЕНЕРНЫЕ СИСТЕМЫ ЗДАНИЙ И СООРУЖЕНИЙ (ТЕПЛОГАЗОСНАБЖЕНИЕ С ЭЛЕМЕНТАМИ ТЕПЛОТЕХНИКИ)»

По направлению подготовки:

20.03.02 Природообустройство и водопользование

Профиль: «Природоохранное и водохозяйственное строительство»

Лист согласования РПУД

Рабочая программа учебной дисциплины «Инженерные системы зданий и сооружений (теплогазоснабжение с элементами теплотехники)» по направлению подготовки 20.03.02 Природообустройство и водопользование. —18 с.

Рабочая программа учебной дисциплины «Инженерные системы зданий и сооружений (теплогазоснабжение с элементами теплотехники)» составлена с учетом Федерального государственного образовательного стандарта высшего образования по направлению подготовки 20.03.02 Природообустройство и водопользование, утвержденного приказом Министерства науки и высшего образования Российской Федерации от 26.05.2020 №685 с изменениями и дополнениями № 1456 от 26.11.2020 и № 662 от 19.07.2022 и № 208 от 27.02.2023.

составитель:

Старший преподаватель кафедры общеобразовательных дисциплин Обжилян Н.А.

Рабочая программа дисциплины утверждена на заседании кафедры общеобразовательных дисциплин « №
Заведующий кафедрой общеобразовательных дисциплин Гапонов А.В.
Переутверждена: «»20 г., протокол №
Согласована (для обеспечивающей кафедры):
Директор института строительства, архитектуры Андрийчук Н.Д Андрийчук Н.Д Переутверждена: «» 20 года, протокол №
Рекомендована на заседании учебно-методической комиссии института
Председатель учебно-методической комиссии института ИСА и ЖКХ

[©] Обжилян Н.А., 2023 год © ФГБОУ ВО «ЛГУ им. В. ДАЛЯ», 2023 год

Структура и содержание дисциплины

1. Цели и задачи дисциплины, ее место в учебном процессе

Целью изучения дисциплины «Инженерные системы зданий и сооружений (теплогазоснабжение с элементами теплотехники)» является освоение студентами основ технической термодинамики и теплопередачи, изучение влажностный и воздушный режимы зданий, освоение принципов проектирования и реконструкции систем обеспечения микроклимата помещений, изучение возможности использования нетрадиционных источников энергоресурсов, ознакомление с задачами охраны окружающей среды.

Задачами изучения дисциплины «Инженерные системы зданий и сооружений (тепогазоснабжение с элементами теплотехники)» является:

рассмотрение основ технической термодинамики и теплопередачи; изучение влажностный и воздушный режимы зданий;

освоение принципов проектирования и реконструкции систем обеспечения микроклимата помещений;

изучение применения нетрадиционных источников энергоресурсов.

2. Место дисциплины в структуре ООП ВО. Требования к результатам освоения содержания дисциплины

Дисциплина «Инженерные системы зданий и сооружений (теплогазоснабжение с элементами теплотехники)» входит в базовую часть профессионального цикла подготовки студентов по направлению подготовки 08.03.01 Строительство.

Содержание дисциплины является логическим продолжением изучения дисциплин математика; физика; химия; теоретическая механика; техническая механика и служит основой для освоения дисциплин выпускная квалификационная работа.

3. Требования к результатам освоения содержания дисциплины

Код и наименование	Индикаторы достижений	Перечень планируемых
компетенции	компетенции (по реализуемой	результатов
	дисциплине)	
ОПК-1. Способен	ОПК-1.1	Знать: основные
участвовать в	Знание и владение методами	параметры состояния
осуществлении	управления процессами в	термодинамических систем,
технологических процессов	области инженерных	функции состояния,
по инженерным	изысканий, проектирования,	термодинамические
изысканиям, проектированию,	строительства, эксплуатации и	процессы преобразования
строительству,	реконструкции объектов.	работы в теплоту,
эксплуатации и	ОПК-1.2	классификацию систем
реконструкции объектов	Умение решать задачи,	теплоснабжения
природообустройства и	связанные с управлением	
водопользования	процессами в области	<i>Уметь:</i> формулировать и
	инженерных изысканий,	решать задачи передачи
	проектирования,	теплоты во всех элементах

строительства, эксплуатации и реконструкции объектов природообустройства и водопользования на основе использования естественнонаучных и	здания, определять теплоемкость рабочего тела, формулировать и решать задачи тепломассообмена, строительной теплофизики
технических наук при соблюдении экологической безопасности и качества работ.	Владеть: методикой расчета потребной тепловой мощности отопительных приборов в помещениях, методикой гидравлического расчета системы отопления.

4.Содержание и структура дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

Pur vuodvoji nadoriv	Объем час	ов (зач. ед.)
Вид учебной работы	Очная форма	Заочная форма
Объем учебной дисциплины (всего)	108	108
	(3 зач. ед)	(Ззач. ед)
Обязательная аудиторная учебная нагрузка	51	12
дисциплины (всего)		
в том числе:		
Лекции	34	8
Семинарские занятия	1	-
Практические занятия	17	4
Лабораторные работы	1	-
Курсовая работа (курсовой проект)	-	-
Другие формы и методы организации	-	-
образовательного процесса (расчетно-графические		
работы, индивидуальные задания и т.п.)		
Самостоятельная работа студента (всего)	57	96
Итоговая аттестация	экзамен	экзамен

4.2. Содержание разделов дисциплины

Раздел 1. Основы теплотехники

Тема 1. ОСНОВНЫЕ ПАРАМЕТРЫ СОСТОЯНИЯ ТЕРМОДИНАМИЧЕСКИХ СИСТЕМ

Термодинамическая Параметры система. состояния. Термодинамические Основные параметры состояния. термические параметры состояния. Измерение давления в технике. Температура. Основные понятия, характеризующие термодинамическую Равновесные и неравновесные состояния. Термические коэффициенты. Термодинамический процесс. Пример обратимого и необратимого процессов

Тема 2. ФУНКЦИИ СОСТОЯНИЯ. РАБОТА И ТЕПЛОТА

Первый закон термодинамики. Внутренняя энергия, работа и теплота. Первое начало термодинамики.

Тема 3. ОПРЕДЕЛЕНИЕ РАСЧЕТНОГО КОЭФФИЦИЕНТА ТЕПЛОПЕРЕДАЧИ ДЛЯ НАРУЖНЫХ СТЕН

Определение конструкции наружного ограждения здания. Определение сопротивления теплопередаче ограждающих конструкций. Расчетные параметры наружной среды. Расчетные параметры микроклимата помещений

Раздел 2. Теплогазоснабжение

Тема 4. СИСТЕМЫ ОТОПЛЕНИЯ ЗДАНИЙ: КЛАССИФИКАЦИЯ, ПРИНЦИП ДЕЙСТВИЯ

Устройство, принцип действия и классификация систем водяного отопления. Область применения и технико-экономические показатели различных систем водяного отопления

Тема 5. ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ТЕОРИИ ГОРЕНИЯ ТОПЛИВА

Состав топлива. Теплотехнические характеристики топлива. Классификация и маркировка твёрдого топлива. Материальный баланс процесса горения. Расчёт неполного горения. Кинетика процесса горения. Самовоспламенение и зажигание горючей смеси.

Тема 6. КЛАССИФИКАЦИЯ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ

Теплоснабжение. Котельные. Тепловые сети. Классификация тепловых сетей, подключение потребителей к тепловым сетям.

Тема 7. ТЕПЛОВОЙ БАЛАНС ПОМЕЩЕНИЙ И ТЕПЛОЗАТРАТЫ НА ОТОПЛЕНИЕ ЗДАНИЙ

Расчетная мощность систем отопления. Расчет тепловой мощности. Применение систем отопления.

Тема 8. ОСНОВНЫЕ ПРИНЦИПЫ ПОСТРОЕНИЯ СИСТЕМ ГАЗОСНАБЖЕНИЯ

Основные свойства и состав газообразного топлива. Газовые месторождения. Классификация газопроводов в системе газоснабжения. Схема газоснабжения предприятий. Подземные газопроводы. Системы снабжения потребителей СУГ.

4.3. Лекции

No	Название темы	Объем часов	
п/п		Очная	Заочная
		форма	форма

1	Основные параметры состояния термодинамических систем.	8	1
2	Функции состояния. Работа и теплота		1
3	Определение расчетного коэффициента теплопередачи для наружных стен	8	1
4	Системы отопления зданий: классификация, принцип действия	9	1
5	Физико-химические основы теории горения топлива	8	1
6	Классификация систем теплоснабжения	9	1
7	Тепловой баланс помещений и теплозатраты на отопление зданий	8	1
8	Основные принципы построения систем газоснабжения	8	1
	Итого:	34	8

4.4. Практические занятия

№ п/п	Название темы	Объег	м часов
		Очная форма	Заочная форма
1	Расчет теплопотерь через наружные ограждения здания	2	1
2	Определение основных теплопотерь через наружные ограждения	3	
3	Расчет потребной тепловой мощности отопительных приборов в помещениях	2	1
4	Определение требуемой площади теплообменной поверхности отопительного прибора	3	
5	Гидравлический расчет системы отопления	2	
6	Расчет воздухообмена в одном из помещений здания	2	
7	Системы отопления зданий: классификация, принцип действия	3	2
Итого:		17	4

4.5. Лабораторные работы. Не предусмотрено.

4.6. Самостоятельная работа студентов

No	Название темы	Вид СРС	Объем	часов
п/п			Очная форма	Заочная форма
1	Основные параметры состояния термодинамических систем.	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний и умений.	7	12
2	Функции состояния. Работа и теплота	Подготовка к практическим занятиям, к текущему и	7	12

		промежуточному контролю знаний и		
3	Определение расчетного коэффициента теплопередачи для наружных стен	умений. Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний и умений.	7	12
4	Системы отопления зданий: классификация, принцип действия	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний и умений.	7	12
5	Физико-химические основы теории горения топлива	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний и умений.	7	12
6	Классификация систем теплоснабжения	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний и умений.	7	12
7	Тепловой баланс помещений и теплозатраты на отопление зданий	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний и умений.	8	12
8	Основные принципы построения систем газоснабжения	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний и умений.	7	12
Ито	ого:		57	96

4.7. Курсовые работы

Не предусмотрено

5. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

• традиционные объяснительно-иллюстративные технологии, которые обеспечивают доступность учебного материала для большинства студентов,

системность, отработанность организационных форм и привычных методов, относительно малые затраты времени;

- технологии проблемного обучения, направленные на развитие познавательной активности, творческой самостоятельности студентов и предполагающие последовательное и целенаправленное выдвижение перед студентом познавательных задач, разрешение которых позволяет студентам активно усваивать знания (используются поисковые методы; постановка познавательных задач);
- технологии развивающего обучения, позволяющие ориентировать учебный процесс на потенциальные возможности студентов, их реализацию и развитие;
- технологии концентрированного обучения, суть которых состоит в создании максимально близкой к естественным психологическим особенностям человеческого восприятия структуры учебного процесса и которые дают возможность глубокого и системного изучения содержания учебных дисциплин за счет объединения занятий в тематические блоки;
- технологии модульного обучения, дающие возможность обеспечения гибкости процесса обучения, адаптации его к индивидуальным потребностям и особенностям обучающихся (применяются, как правило, при самостоятельном обучении студентов по индивидуальному учебному плану);
- дифференцированного обучения, обеспечивающие возможность создания оптимальных условий для развития интересов и способностей студентов, TOM студентов В числе И образовательными потребностями, что позволяет реализовать в культурнообразовательном пространстве университета идею создания возможностей для получения образования
- технологии активного (контекстного) обучения, с помощью которых осуществляется моделирование предметного, проблемного и социального содержания будущей профессиональной деятельности студентов (используются активные и интерактивные методы обучения) и т.д.

Максимальная эффективность педагогического процесса достигается путем конструирования оптимального комплекса педагогических технологий и (или) их элементов на личностно-ориентированной, деятельностной, диалогической основе и использования необходимых современных средств обучения.

6. Учебно-методическое и программно-информационное обеспечение дисциплины:

а) основная литература:

1. Кудинов, И.В. Теоретические основы теплотехники: учебное пособие / И.В. Кудинов, Е.В. Стефанюк; Министерство образования и науки РФ, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Самарский государственный архитектурно-строительный университет». - Самара: Самарский государственный архитектурно-строительный университет, 2013. - Ч. І. Термодинамика. - 172 с.: ил. - Библиогр. в кн. - ISBN 978-5-9585-0554-8; То

же [Электронный ресурс]. - URL: http://biblioclub.ru/index.php?page=book&id=256110

- 2. Смирнова, Л.И. Теплогазоснабжение и вентиляция: учебное пособие / Л.И. Смирнова. Волгоград: Волгоградский государственный архитектурно-строительный университет, 2010. 126 с. ISBN 978-5-98276-389-1; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=142386.
- Феткуллов, М.Р. Автономные системы теплоснабжения: учебнопрактическое пособие / М.Р. Феткуллов; Министерство образования и науки Федерации, Государственное, д.о. Российской o.y. Институт. Ульяновск: УлГТУ, 2011. - 158 с.: ил., табл схем. - Библ. в кн. - ISBN 978-5-9795-0720-0: To же [Электронный pecypc]. **URL**: http://biblioclub.ru/index.php?page=book&id=363224

б) дополнительная литература:

- 1. Жила В.А., Газоснабжение: учебник для студентов вузов по специальности "Теплогазоснабжение и вентиляция" / Жила В.А. М.: Издательство АСВ, 2014. 368 с. ISBN 978-5-4323-0023-2 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785432300232.html (дата обращения: 04.02.2018). Режим доступа: по подписке.
- 2. Штокман Е.А., Теплогазоснабжение и вентиляция: Учебное пособие / Штокман Е.А., Карагодин Ю.Н. М.: Издательство АСВ, 2013. 176 с. ISBN 978-5-93093-737-4 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785930937374.html (дата обращения: 04.02.2018). Режим доступа: по подписке.
- 3. Клименко А.В., Теплоэнергетика и теплотехника Кн. 4. Промышленная теплоэнергетика и теплотехника / Клименко А.В. М.: Издательский дом МЭИ, 2017. (Справочная серия "Теплоэнергетика и теплотехника") ISBN 978-5-383-01171-3 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785383011713.html (дата обращения: 04.02.2020). Режим доступа: по подписке
- 4. Клименко Теплоэнергетика 2. A.B., и теплотехника Кн. основы теплотехники. Теплотехнический эксперимент. Теоретические Клименко А.В. - М.: Издательский дом МЭИ, 2017. (Справочная серия и теплотехника") "Теплоэнергетика **ISBN** 978-5-383-01169-0 Текст:электронный // ЭБС "Консультант студента" : [сайт]. - URL: http://www.studentlibrary.ru/book/ISBN9785383011690.html (дата обращения: 04.02.2020). - Режим доступа: по подписке.

в) методические указания:

1. Обжилян Н.А. Методические указания для выполнения практических и работ по дисциплине «Инженерные системы зданий и сооружений (тепогазоснабжение с элементами теплотехники)» для студентов профессионального уровня подготовки бакалавр по направлению подготовки

08.03.01 «Строительство», 20.03.02 «Природообустройство и водопользование», 38.03.10 «Жилищное хозяйство и коммунальная инфраструктура» В.Б. Косарев – Луганск.: ГОУ ВПО ЛНУ им. В. Даля, 2018. - 20 с.

г) интернет-ресурсы

Министерство образования и науки Российской Федерации – http://минобрнауки.pф/

Федеральная служба по надзору в сфере образования и науки – http://obrnadzor.gov.ru/

Министерство образования и науки Луганской Народной Республики – https://minobr.su

Народный совет Луганской Народной Республики – https://nslnr.su

Портал Федеральных государственных образовательных стандартов высшего образования – http://fgosvo.ru

Федеральный портал «Российское образование» – http://www.edu.ru/

Информационная система «Единое окно доступа к образовательным ресурсам» – http://window.edu.ru/

Федеральный центр информационно-образовательных ресурсов – http://fcior.edu.ru/

Электронные библиотечные системы и ресурсы

Электронно-библиотечная система «Консультант студента» – http://www.studentlibrary.ru/cgi-bin/mb4x

Электронно-библиотечная система «StudMed.ru» - https://www.studmed.ru

Информационный ресурс библиотеки образовательной организации

Научная библиотека имени А. Н. Коняева – http://biblio.dahluniver.ru/ Научная библиотека ИСА и ЖКХ

7. Материально-техническое и программное обеспечение дисциплины

Освоение дисциплины «Инженерные системы зданий и сооружений (тепогазоснабжение с элементами теплотехники)» предполагает использование академических аудиторий, соответствующих действующим санитарным и противопожарным правилам и нормам.

Прочее: рабочее место преподавателя, оснащенное компьютером с доступом в Интернет.

Программное обеспечение:

Функциональное назначение	Бесплатное программное обеспечение	Ссылки
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu
Браузер	FirefoxMozilla	http://www.mozilla.org/ru/firefox/fx
Браузер	Opera	http://www.opera.com
Почтовый клиент	MozillaThunderbird	http://www.mozilla.org/ru/thunderbird
Файл-менеджер	FarManager	http://www.farmanager.com/download.php
Архиватор	7Zip	http://www.7-zip.org/
Графический редактор	GIMP (GNU Image Manipulation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator
Аудиоплейер	VLC	http://www.videolan.org/vlc/

8. Оценочные средства по дисциплине

Паспорт фонда оценочных средств по учебной дисциплине «Инженерные системы зданий и сооружений

(теплогазоснабжение с элементами теплотехники)»

Перечень компетенций (элементов компетенций), формируемых в результате освоения учебной дисциплины (модуля) или практики

№ π/π	Код контролируемой компетенции	Формулировка контролируемой компетенции	Контролируемые темы учебной дисциплины, практики	Этапы формирования (семестр изучения)
1	ΟΠΚ-1	Способен участвовать в осуществлении технологических процессов по инженерным изысканиям, проектированию, строительству, эксплуатации и реконструкции объектов природообустройства и водопользования	Тема 1. Основные параметры состояния термодинамических систем. Тема 2. Функции состояния. Работа и теплота Тема 3. Определение расчетного коэффициента теплопередачи для наружных стен Тема 4. Системы отопления зданий: классификация, принцип действия Тема 5. Физико-химические основы теории горения топлива Тема 6. Классификация систем теплоснабжения Тема 7. Тепловой баланс помещений и теплозатраты на отопление зданий Тема 8. Основные принципы построения систем газоснабжения	5

Показатели и критерии оценивания компетенций, описание шкал оценивания

No	Код	Индикаторы	Показатель	Контролируем	Наименован
π/	контролируемой	Ы	оценивания	ые темы	ие
П	компетенции	достижений	(знания, умения,	[оценочного
		компетенци	навыки)	дисциплины	средства
		и (по			
		реализуемой			
1	ОПК-1. Способен	дисциплине) ОПК-1.1	знать основные	Тема 1,	Вопросы для
1	участвовать в	ОПК-1.1	параметры	Тема 1, Тема 2,	обсуждения
	осуществлении	OHK 1.2	состояния	Тема 2, Тема 3,	(в виде
	технологических		термодинамическ	Тема 4,	докладов и
	процессов по		их систем,	Тема 5,	сообщений),
	инженерным		функции	Тема 6,	контрольные
	изысканиям, проектированию,		состояния,	Тема 7,	работы.
	строительству,		термодинамическ	Тема 8	_
	эксплуатации и		ие процессы		
	реконструкции		преобразования		
	объектов		работы в теплоту,		
	природообустройст		классификацию		
	ва и водопользования		систем		
	водопользования		теплоснабжения;		
			уметь		
			формулировать и решать задачи		
			передачи теплоты		
			во всех элементах		
			здания,		
			определять		
			теплоемкость		
			рабочего тела,		
			формулировать и		
			решать задачи		
			тепломассообмена		
			, строительной		
			теплофизики;		
			владеть		
			методикой		
			расчета потребной тепловой		
			мощности		
			отопительных		
			приборов в		
			помещениях,		
			методикой		
			гидравлического		
			расчета системы		
			отопления.		

Оценочных средств по дисциплине «Инженерные системы зданий и сооружений (теплогазоснабжение с элементами теплотехники)»

Вопросы для обсуждения (в виде докладов и сообщений):

- 1. Развитие централизованного теплоснабжения в европейских странах
- 2. Когенерационная и тригенерационная выработка тепловой энергии
- 3. Особенности качественно-количественного отпуска тепловой энергии
- 4. Возобновляемые источники тепловой энергии для систем теплоснабжения.
- 5. Основные показатели децентрализации теплоснабжения.
- 6. Системы автономного энергоснабжения отдельных объектов.
- 7. Особенности применения централизованных паровых систем.
- 8. Местные источники тепловой энергии и их технико-экономическая оценка.
- 9. Сервисное обслуживание тепловых пунктов систем теплоснабжения.
- 10. Современные энергосберегающие мероприятия в системах централизованного

теплоснабжения.

- 11. Испытания и наладка систем централизованного теплоснабжения.
- 12. Современные технологии в строительстве систем теплоснабжения.

Критерии и шкала оценивания по оценочному средству доклад, сообщение

Шкала оценивания	Критерий оценивания		
(интервал баллов)			
5	Доклад (сообщение) представлен(о) на высоком уровне (студент в полном объеме осветил рассматриваемую проблематику,		
	привел аргументы в пользу своих суждений, владеет профильным понятийным (категориальным) аппаратом и т.п.)		
4	Доклад (сообщение) представлен(о) на среднем уровне (студент		
	в целом осветил рассматриваемую проблематику, привел		
	аргументы в пользу своих суждений, допустив некоторые		
	неточности и т.п.)		
3	Доклад (сообщение) представлен(о) на низком уровне (студент		
	допустил существенные неточности, изложил материал с		
	ошибками, не владеет в достаточной степени профильным		
	категориальным аппаратом и т.п.)		
2	Доклад (сообщение) представлен(о) на неудовлетворительном		
	уровне или не представлен (студент не готов, не выполнил		
	задание и т.п.)		

Вопросы к контрольным работам:

- 1. Основные понятия и определения технической термодинамики. Термодинамика. Теплота и работа. Основные законы термодинамики. Теплопроводность, конвекцию и тепловое излучение. Тепловое излучение.
- 2. Требуется проверить первое условие температурной комфортности в помещении шириной 5,625 м, расположенном на среднем этаже гражданского здания. Наружная стена размером 6,4х3,9 м и два окна в ней

размером 2x2,5 м (общая площадь 10 м2) имеют коэффициент теплопередачи соответственно 1,05 и 2,68 Вт/м2-К. Помещение обогревается потолочной отопительной панелью размером 4,2 х 5 м. Расчётная температура: tif= -26°C, ts=+20°C, отопительной панели +32°C.

- 3. Определить термическое сопротивление неоднородной по толщине наружной стены площадью 10 м, из которых 20% имеют сопротивление, пониженное до 0,9 при основном сопротивлении 1,1.
- 4. Требуется определить количество наружного воздуха поступающего в здание в Москве через закрытые входные двойные качающиеся двухстворчатые двери размером 1,6x2,5 м с тамбуром между ними, если разность давления воздуха Ap = 52,7 Πa , а ширина щелей 5 мм (между створками щели двойной ширины).
- 5. Выполнить гидравлический расчёт двух горизонтальных однотрубных ветвей с нижним расположением обеих магистралей для отопления помещений на верхних этажах многоэтажного здания при расчётной температуре воды $tr=95^{\circ}C$, $to=70^{\circ}C$. Отопительные приборы на верхнем этаже —радиатор типа M-140-AO, на нижнем стальной конвектор типа $K\Pi$.
- 6. Определить число секций чугунного секционного радиатора М-90, устанавливаемого у наружной стены без ниши под подоконником (на расстоянии от него 40 мм) на пятом этаже пятиэтажного дома, в двухтрубной насосной системе водяного отопления с нижним расположением магистралей (принята схема 2 присоединения прибора), если tr=95°C, to=70°C, tB=20°C, понижение температуры воды в подающей магистрали до стояка ZAtM=20°C, Qn=H48 Вт. Барометрическое давление в месте строительства 101325 Па (760 мм ртутного столба).
- 7. Рассчитать воздуховоды системы естественной вытяжной вентиляции, обслуживающей врачебные кабинеты двухэтажного здания поликлиники. Аксонометрическая схема системы вентиляции с указанием объема воздуха, проходящего по каждому участку, длин и номеров участков Воздух удаляется из верхней зоны помещений на высоте 0,5 м от потолка. Высота этажей, включая толщину перекрытия, 3,3 м. Высота чердака под коньком крыши 3,6 м.

Критерии и шкала оценивания по оценочному средству контрольная работа

Шкала оценивания	Критерий оценивания
(интервал баллов)	
5	Контрольная работа выполнена на высоком уровне (правильные
	ответы даны на 90-100% вопросов/задач)
4	Контрольная работа выполнена на среднем уровне (правильные
	ответы даны на 75-89% вопросов/задач)
3	Контрольная работа выполнена на низком уровне (правильные
	ответы даны на 50-74% вопросов/задач)
2	Контрольная работа выполнена на неудовлетворительном
	уровне (правильные ответы даны менее чем на 50%)

Оценочные средства для промежуточной аттестации (экзамен)

- 1. Назначение систем отопления, теплоснабжения, вентиляции и кондиционирования воздуха. Требования, предъявляемые к системам обеспечения микроклимата.
- 2. Микроклимат в помещении. Оптимальные и допустимые параметры микроклимата.
- 3. Влияние климатических условий на выбор расчетных параметров наружного воздуха для систем отопления, вентиляции и кондиционирования воздуха.
- 4. Расчетные параметры наружного воздуха для проектирования систем отопления, вентиляции и кондиционирования воздуха.
- 5. Сопротивление теплопередачи конструкций. Требуемое сопротивление теплопередачи наружных ограждений.
- 6. Сопротивление воздухопроницанию ограждений. Фильтрация воздуха через наружные ограждения и причины ее возникновения.
- 7. Влажность воздуха в помещении и ее влияние на воздушно-тепловой режим помещения. Конденсационная влага.
 - 8. Определение основных потерь теплоты через наружные ограждения.
 - 9. Расчет теплоты на нагрев инфильтрующегося воздуха.
- 10. Расчет теплопоступлений в помещении. Удельная тепловая характеристика здания.
 - 11. Основные конструктивные элементы систем отопления.
 - 12. Требования, предъявляемые к системам отопления.
 - 13. Классификация систем отопления.
- 14. Теплоносители, применяемые в системах отопления. Их преимущества и недостатки.
- 15. Требования, предъявляемые к отопительным приборам, их классификация.
 - 16. Виды и конструкции отопительных приборов.
- 17. Теплопередача отопительных приборов. Расчет площади поверхности отопительных приборов.
 - 18. Классификация систем водяного отопления.
- 19. Определение естественного циркуляционного давления в водяных системах отопления.
- 20. Определение располагаемого давления для водяной системы отопления с искусственной циркуляцией.
- 21. Основные принципы гидравлического расчета теплопроводов систем водяного отопления.
 - 22. Классификация систем вентиляции.
- 23. Определение необходимого воздухообмена. Кратность воздухообмена.
 - 24. Вытяжные системы вентиляции. Основные элементы.
 - 25. Приточные системы вентиляции. Основные элементы.
- 26. Аэродинамический расчет систем естественной и механической вентиляции.

- 27. Вентиляторы. Подбор вентиляторов.
- 28. Назначение и принцип работы дефлекторов.
- 29. Классификация систем кондиционирования воздуха.
- 30. Центральные системы кондиционирования воздуха.
- 31. Местные кондиционеры.
- 32. Контрольно-измерительная аппаратура, применяемая для испытаний систем отопления и вентиляции.

Критерии и шкала оценивания по оценочному средству промежуточный контроль (экзамен)

Национальная шкала	Характеристика знания предмета и	Зачеты		
	ответов			
отлично (5)	Студент глубоко и в полном объёме владеет программным материалом. Грамотно, исчерпывающе и логично его излагает в устной или письменной форме. При этом знает рекомендованную литературу, проявляет творческий подход в ответах на вопросы и правильно обосновывает принятые решения, хорошо владеет умениями и навыками при выполнении практических задач.	зачтено		
хорошо (4)	Студент знает программный материал, грамотно и по сути излагает его в устной или письменной форме, допуская незначительные неточности в утверждениях, трактовках, определениях и категориях или незначительное количество ошибок. При этом владеет необходимыми умениями и навыками при выполнении практических задач.			
удовлетворительно (3)	Студент знает только основной программный материал, допускает неточности, недостаточно чёткие формулировки, непоследовательность в ответах, излагаемых в устной или письменной форме. При этом недостаточно владеет умениями и навыками при выполнении практических задач. Допускает до 30% ошибок в излагаемых ответах.			
неудовлетворительно (2)	Студент не знает значительной части программного материала. При этом допускает принципиальные ошибки в доказательствах, в трактовке понятий и категорий, проявляет низкую культуру знаний, не владеет основными умениями и навыками при выполнении	не зачтено		

практических	задач	ч.	Студент
отказывается	OT	ответс	ов на
дополнительные	вопросі	Ы	

Лист изменений и дополнений

`	Подпись (с расшифровкой	Дата и номер протокола заседания кафедры	Виды дополнений и изменений	№ п/п
	заведующего кафе	(кафедр), на котором были		11/11
афедрами)	(заведующих кафед	рассмотрены и одобрены		
		изменения и дополнения		