МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Факультет компьютерных систем и информационных технологий Кафедра прикладной математики

УТВЕРЖДАЮ Декан факультета компьютерных систем и информационных технологий

acycles Kon

_Кочевский А.А. 2023 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по учебной дисциплине

Математика

22.03.01 Материаловедение и технологии материалов «Материаловедение в машиностроении»

Разработчик: доцент Малый В.В.

ФОС рассмотрен и одобрен на заседании кафедры прикладной математики от 18 апреля 2023 г., протокол № 10

Заведующий кафедрой прикладной математики

Малый В.В.

Паспорт

фонда оценочных средств по учебной дисциплине

«Математика»

Перечень компетенций (элементов компетенций), формируемых в результате освоения учебной дисциплины

	Код	Формулировка	Контролируем	Этапы
	контролируемой	контролируемой	ые темы учебной	формирования
$/\Pi$	компетенции	компетенции	дисциплины	(семестр
				изучения)
	ОПК-1	способность	Тема 1.	1
		использовать	Линейная алгебра	(начальн
		положения, законы и		ый)
		методы естественных	Тема 2.	1
		наук и математики	Аналитическая	(начальн
		для решения задач	геометрия	ый)
		инженерной	Тема 3.	1, 2
		деятельности	Математический	(начальн
			анализ	ый)
			Тема 4.	2
			Комплексный анализ	(начальн
				ый)
			Тема 5.	2
			Дифференциальные	(начальн
			уравнения	ый)
			Тема 6.	3
			Теория рядов	(начальн
				ый)
			Тема 7.	3
			Кратные и	(начальн
			поверхностные	ый)
			интегралы	
			Тема 8.	3
			Теория поля	(начальн
				ый)

Показатели и критерии оценивания компетенций, описание шкал оценивания

	Код	Показатель		Контролир	Наименов
	контролируемой	оценивания (знания,		уемые темы	ание оценочного
$/\Pi$	компетенции	умения, навыки)		учебной	средства
				дисциплины	
	ОПК-1	знать: основные понятия		Тема 1,	Фронталь
		и методы		Тема 2,	ные и
		математического		Тема 3,	индивидуальные
		анализа, в части		Тема 4,	опросы;
		дифференциального и		Тема 5,	контрольные

интегрального	Тема 6,	работы;
исчисления, теории	Тема 7,	индивидуальные
рядов; теории линейной	Тема 8	/домашние
алгебры; аналитической	1 cma	задания; экзамен
геометрии; теории		задання, экзамен
дифференциальных		
уравнений; основные		
алгоритмы типовых		
численных методов		
решения математических		
задач.		
уметь: использовать		
методы математического		
анализа, аналитической		
геометрии, линейной		
алгебры, теории		
функций комплексного		
переменного;		
использовать основные		
приёмы обработки		
1 -		
экспериментальных		
данных.		
владеть навыками:		
математическими		
понятиями и символами		
для выражения		
количественных и		
качественных		
отношений,		
математическими		
методами и алгоритмами		
в приложениях к		
техническим наукам.		

Фонды оценочных средств по дисциплине «Математика»

Вопросы для фронт альных и индивидуальных опросов:

Тема 1. Линейная алгебра.

- 1. Какие системы линейных алгебраических уравнений называются определенными, неопределенными, несовместными?
- 2. Какой является квадратная система линейных алгебраических уравнений, если ее определитель равен нулю?
- 3. Какой должна быть система линейных алгебраических уравнений, чтобы ее можно было решать методом Крамера?
- 4. Система линейных алгебраических уравнений решается методом Гаусса. Как узнать, что она определенная, неопределенная, несовместная?
 - 5. Что такое матрица? Какими могут быть матрицы?
 - 6. Какие матрицы можно перемножать? Как они перемножаются?
 - 7. Что такое определитель второго порядка?

- 8. Что такое определитель третьего порядка?
- 9. Что такое минор элемента a_{ij} определителя?
- 10. Что такое алгебраическое дополнение элемента a_{ij} определителя?
- 11. Что значит разложить определитель по элементам строки или столбца?
- 12. Какая матрица называется обратной по отношению к данной квадратной матрице?
- 13. Как записать крамеровскую систему линейных алгебраических уравнений в матричной форме?
- 14. Как построить обратную матрицу для данной квадратной матрицы с определителем, отличным от нуля?
 - 15. Что такое вектор? его длина? орт вектора?
 - 16. Сформулируйте свойства операции сложения векторов.
 - 17. При каких условиях: 1) $|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}|$? 2) $|\vec{a} + \vec{b}| = |\vec{a}| |\vec{b}|$?
- 18. Какие несколько векторов называются линейно зависимыми? линейно независимыми?
- 19. Как геометрически располагаются пара или тройка векторов линейно зависимых векторов?
- 20. Что такое базис некоторого множества векторов? координаты вектора в выбранном базисе?
- 21. Сформулируйте правило сложения двух векторов, заданных разложениями в некотором базисе.
- 22. Сформулируйте понятие прямоугольного базиса и прямоугольной декартовой системы координат.
- 23. Что такое скалярное, векторное и смешанное произведение х векторов? Как их вычислять? Перечислите их свойства и геометрический смысл.

Тема 2. Аналитическая геометрия.

- 24. Что такое алгебраическая линия? Сформулируйте теорему об инвариантности порядка алгебраической линии.
- 25. Напишите равенства, выражающие условия параллельности и перпендикулярности двух прямых на плоскости.
 - 26. Почему плоскости и только они называются поверхностями 1-го порядка?
- 27. Что такое эллипс? Сформулируйте свойство фокальных радиусов точки эллипса. Найдите координаты центра симметрии, полуоси.
- 28. Какие прямые называются асимптотами гиперболы? Напишите уравнения асимптот гиперболы $4x^2 9y^2 = 36$.
- 29. Прямая L задана уравнением с угловым коэффициентом y = kx + b. Поясните геометрический смысл k и b.
- 30. Прямые L_1 и L_2 заданы уравнениями $L_1: y = k_1 x + b_1$, $L_2: y = k_2 x + b_2$. Напишите условия параллельности и перпендикулярности этих прямых.
 - 31. Как геометрически объяснить, что система уравнений

$$\begin{cases}
A_1 x + B_1 y + C_1 = 0 \\
A_2 x + B_2 y + C_2 = 0
\end{cases}$$

является несовместной? совместной и неопределённой? совместной и определенной?

- 32. При каком условии плоскость и прямая в пространстве параллельны? перпендикулярны?
 - 33. Напишите условие перпендикулярности прямых в пространстве.
- 34. Напишите общее уравнение плоскости. Каков геометрический смысл коэффициентов уравнения?

- 35. Напишите уравнение плоскости, проходящей через 3 заданные точки $M_1(x_1;y_1;z_1), M_2(x_2;y_2;z_2), M_3(x_3;y_3;z_3)$.
- 36. Запишите уравнение плоскости, проходящей через данную точку $M_0(x_0; y_0; z_0)$ перпендикулярно вектору $\vec{n} = (A; B; C)$.
- 37. Что такое эллипсоид? Какими линиями являются его сечения координатными плоскостями в прямоугольной декартовой системе координат?
- 38. В каком случае эллипсоид называется эллипсоидом вращения? При вращении какой фигуры и вокруг какой оси он образуется?
- 39. Какой симметрией обладают однополостный и двуполостный гиперболоиды, параболоиды и почему?
- 40. Написать уравнения линий, образующихся в сечении координатными плоскостями гиперболоидов и параболоидов, заданных каноническими уравнениями. Нарисовать эти линии.

Тема 3. Математический анализ.

- 41. Какое числовое множество называется ограниченным сверху?
- 42. Какое числовое множество называется ограниченным снизу?
- 43. Какое числовое множество называется ограниченным снизу?
- 44. Что называется точной верхней границей числового множества?
- 45. Что называется точкой нижней границей числового множества?
- 46. Что называется модулем действительного числа?
- 47. При каких условиях |x + y| = |x| + |y|.
- 48. При каких условиях |x + y| = -|x| + |y|.
- 49. Напишите неравенства, связывающие модуль суммы и разности двух чисел с суммой и разностью их модулей.
 - 50. Изобразите график функции y = sign x.
 - 51. Изобразите график функции y = [x] целая часть числа x.
- 52. Сформулируйте теорему о пределе ограниченной монотонной функции(последовательности).
 - 53. Дайте определение понятия $\lim_{x\to a} f(x) = A$ на языке $\delta \varepsilon$.
- 54. Дайте определение понятия $\lim_{x \to a} f(x) = A$, используя понятие бесконечно малой функции при $x \to a$.
 - 55. Сформулируйте теорему о сжатой переменной.
 - 56. Сформулируйте теорему о предельном переходе в неравенстве.
- 57. Сформулируйте теорему об ограниченности функции, имеющей предел при $x \to a$.
- 58. Сформулируйте теоремы о пределах суммы, произведения и частного функций.
 - 59. Сформулируйте определение понятия $\lim_{x\to a+} f(x) = A$ на языке $\delta \varepsilon$.
 - 60. Сформулируйте определение понятия $\lim_{x \to a^-} f(x) = A$ на языке $\delta \varepsilon$.
 - 61. Дайте определение понятия $\lim_{x \to +\infty} f(x) = A$.
 - 62. Дайте определение понятия $\lim_{x \to -\infty} f(x) = A$.
 - 63. Дайте определение понятия $\lim_{x\to\infty} f(x) = A$.
 - 64. Напишите первый замечательный предел и пределы, связанные с ним.
 - 65. Напишите второй замечательный предел и пределы, связанные с ним.
 - 66. Дайте определение понятия $\lim_{x \to \infty} f(x) = +\infty$.

- 67. 27. Дайте определение понятия $\lim_{x \to a} f(x) = \infty$.
- 68. Используя определение производной, найдите y'(4), если $y = \sqrt{x}$.
- 69. Геометрический смысл производной. Напишите уравнение касательной к графику функции $y = \arctan x$ в точке x = 1.
 - 70. Найдите углы, под которыми пересекаются линии $x^2 + y^2 = 8$, $y^2 = 2x$.
- 71. Приведите пример функции, график которой имеет в некоторой точке вертикальную касательную.
 - 72. Найдите $f'_{-}(1)$ и $f'_{+}(1)$, если $f(x) = |x 1|e^x$. Существует ли f'(1)?
 - 73. Найдите y'_x , если: a) $y = \ln(x + \sqrt{a^2 + x^2})$; б) $y = \arctan th(x)$.
- 74. Что можно сказать о дифференцируемости суммы функций f(x) + g(x) в точке $x = x_0$ если, в этой точке: а) функция f(x) дифференцируема, а функция g(x) не дифференцируема? б) обе функции f(x) и g(x) не дифференцируемы?
- 75. Используя определение, покажите, что функция $y = x^2 2x$ дифференцируема в точке x = 2 и найдите её дифференциал в этой точке.
- 76. Является ли непрерывность функции в данной точке достаточным условием дифференцируемости? Ответ обосновать с помощью примера.
 - 77. Для каких функций дифференциал равен приращению? Приведите пример.
- 78. Сформулируйте, в чём состоит геометрический и физический смысл дифференциала.
 - 79. Что понимается под инвариантностью формы первого дифференциала?
- 80. Используя формулу для вычисления дифференциала, найдите dy, если $y = x \cdot \sin x + \cos x$.
- 81. Пусть $y = \sin x$, $x = \cos t$ Какие из следующих равенств справедливы: $dy|_{t=\frac{\pi}{a}} = 0$; $dy|_{t=\frac{\pi}{a}} = dx$; $dy|_{t=\frac{\pi}{a}} = -dt$?
 - 82. Может ли существовать $f''(x_0)$, если не существует $f'(x_0)$?
 - 83. Найдите $f^{(n)}(x)$, если $f(x) = \ln x \cdot x$.
- 84. Вычислите, используя правило Лопиталя: a) $\lim_{x\to 0} \frac{x \cdot \cos x \sin x}{x^3}$; б) $\lim_{x\to +0} x^{\frac{2}{4+\ln x}}$.
- 85. Напишите формулу Тейлора для функции f(x) с остаточным членом в форме: а) Пеано; б) Лагранжа.
 - 86. Разложите функцию $f(x) = \ln \cos x$ по формуле Маклорена до членов с x^4 .
- 87. С помощью формулы Маклорена или канонических разложений получите приближённую формулу (ограничиваясь членами порядка x^2) для функций: а) $y = \sqrt{1+x}$, $x \to 0$, |x| < 1; б) $y = \ln(1+3x)$, $x \to 0$, |x| < 1/3.
 - 88. Найдите числа a и b такие, что $\lim_{x\to 0} \frac{e^{ax} \sqrt{1+bx}}{x^2} = 1$.
- 89. Исследуйте функции и постройте их графики: a) $y = \frac{(x-2)^2(x+4)}{4}$; б) $y = \frac{x}{x^2-4}$; в) $y = \sqrt[3]{1-x^2}$.
- 90. Какой из конусов, описанных около данного шара радиуса R, имеет наименьший объем?
- 91. Какая функция называется первообразной по отношению к функции f(x), заданной на данном промежутке?
- 92. Чем отличаются две первообразные функции для одной и той же функции на одном и том же промежутке?
 - 93. В чем состоит свойство линейности для неопределенного интеграла?

- 94. Запишите формулу интегрирования по частям в неопределенном интеграле.
- 95. Какую подстановку нужно выполнить для рационализации интеграла $\int R(\sqrt[3]{x},\sqrt[4]{x}) dx$?
- 96. Укажите рационализирующую подстановку для интеграла $\int R \left(x, \sqrt[n]{\frac{\alpha x + \beta}{\gamma x + \delta}} \right) dx$.
 - 97. Какой интеграл называется неберущимся?
 - 98. Сформулируйте достаточное условие существования первообразной.
 - 99. Чему равен $\int F'(x) dx$? $\int dF(x)$?
 - 100. Чему равна производная неопределенного интеграла?
- 101. Покажите, что функции $F_1(x) = -\frac{1}{2}\cos 2x$; $F_2(x) = \sin^2 x$ являются первообразными одной и той же функции на числовой оси.
- 102. Докажите справедливость формулы для табличного интеграла $\int x^n dx$; $(n \neq -1)$.
 - 103. Докажите справедливость формулы для табличного интеграла $\int \frac{dx}{x^2+x^2}$.
 - 104. Вычислите интеграл $\int \frac{dx}{x^2+px+q}$; $\left(q-\frac{p^2}{4}>0\right)$, сведя его к табличному.
 - 105. Вычислите интеграл $\int \frac{dx}{x^2 + px + q}$; $\left(q \frac{p^2}{4} < 0\right)$, сведя его к табличному.
 - 106. Вычислите интеграл $\int \frac{dx}{\sqrt{x^2 + px + q}}$, сведя его к табличному.
 - 107. Вычислите с помощью интегрирования по частям $\int x \cdot \sin ax \, dx$.
- 108. Запишите интегральную сумму, составленную для функции f(x) на промежутке [a; b]. Объясните смысл величин, входящих в формулу.
- 109. Какой геометрический смысл имеет определенный интеграл $\int_a^b f(x) dx$, где f(x)- непрерывная неотрицательная функция?
- 110. Сформулируйте достаточные условия интегрируемости функции f(x) на конечном промежутке [a, b].
 - 111. Какая функция называется интегрируемой на промежутке [a, b]?
 - 112. Чему равен $\int_{a}^{b} F'(x) dx$? $\int_{a}^{b} dF(x)$?
- 113. Сформулируйте необходимое условие интегрируемости функции на промежутке [a, b].
- 114. Чему равен определенный интеграл от нечетной функции по симметричному промежутку [-a;a]?
- 115. Если пределы интегрирования поменять местами, то как изменится величина интеграла? Выразите это свойство формулой.
 - 116. Сформулируйте свойство линейности определенного интеграла.
- 117. Сформулируйте свойство, связывающее знаки функции и определенного интеграла на промежутке [a, b].
- 118. Сформулируйте свойство об интегрировании неравенства между функциями на промежутке [a, b].
 - 119. Сформулируйте свойство об оценке модуля определенного интеграла.
- 120. Сформулируйте теорему о среднем для определенного интеграла от непрерывной функции.
 - 121. Запишите формулу Ньютона Лейбница.
- 122. Приведите геометрическую интерпретацию теоремы о среднем для определенного интеграла.

- 123. Что такое среднее (интегральное) значение функции f(x) на промежутке [a, b]?
- 124. Сформулируйте определение несобственного интеграла 1-го рода с бесконечным верхним пределом от непрерывной функции.
- 125. Сформулируйте определение несобственного интеграла 1-го рода с бесконечным нижним пределом от непрерывной функции.
 - 126. Какой несобственный интеграл называется абсолютно сходящимся?
- 127. Укажите, для каких значений параметра p интеграл $\int_{a}^{+\infty} \frac{dx}{x^{p}}$, (a > 0) является сходящимся, а для каких значений расходящимся
- 128. Запишите формулы, выражающие свойство линейности для несобственного интеграла с бесконечным верхним пределом.
- 129. Сформулируйте признак сравнения в конечной форме на примере несобственных интегралов 1-го рода с бесконечным верхним пределом.
 - 130. Что такое полный дифференциал функции z = f(x, y)?
- 131. Запишите формулу, определяющую частную производную функции z = f(x, y) по переменной у в точке $M_0(x_0, y_0)$.
 - 132. Какая функция двух аргументов называется дифференцируемой?
- 133. Запишите формулу, выражающую полный дифференциал функции z = f(x, y) через её частные производные.
- 134. Запишите формулу, выражающую второй полный дифференциал функции z = f(x, y) через её частные производные.
- 135. Как соотносятся между собой свойства непрерывности и дифференцируемости функции двух переменных?
 - 136. Какая функция z = f(x, y) называется непрерывной в точке $M_0(x_0, y_0)$?
- 137. Как определяется евклидово расстояние $\rho(M_1, M_2)$ между двумя точками $M(x_1^{(1)}, \dots, x_m^{(1)})$ и $M(x_1^{(2)}, \dots, x_m^{(2)})$ m-мерного пространства?
 - 138. Какая точка множества Е называется внутренней? граничной?
 - 139. Что такое δ -окрестность точки $M_0(x_1^{(0)}, x_2^{(0)}, \dots, x_m^{(0)})$?
 - 140. Какое множество Е называется ограниченным? замкнутым? связным?
- 141. Сформулируйте определение предела функции f(M) = f(x,y) в точке $M_0(x_0,y_0)$.
- 142. Сформулируйте теорему о равенстве вторых смешанных производных функции z = f(x, y).
- 143. Как соотносятся между собой свойства дифференцируемости и существования первых частных производных функции z = f(x, y)?
 - 144. Сформулируйте определение производной функции
 - 145. u = f(M) = f(x, y, z) по направлению вектора \vec{l} .
- 146. Запишите формулу, выражающую производную функции u = f(x, y, z) по направлению вектора $\overline{l^0} = (\cos\alpha, \cos\beta, \cos\gamma)$ через частные производные функции u.
- 147. Запишите формулу, связывающую **grad** и производную $\frac{\partial u}{\partial t}$ в заданной точке скалярного поля u.
- 148. Как связаны направления наибольшего роста функции u = f(x, y, z) с вектором grad u в рассматриваемой точке M(x, y, z)?
 - 149. Выразите $\max \frac{\partial u}{\partial t}$ и $\min \frac{\partial u}{\partial t}$ через grad u в заданной точке скалярного поля u.

- 150. Запишите формулу для производной $\frac{\partial z}{\partial y}$ сложной функции z = z(u, v), u = u(x, y), v = v(x, y).
- 151. Запишите формулу для производной $\frac{dy}{dx}$ неявной функции, заданной уравнением F(x,y) = 0.
- 152. Запишите формулы для производных $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ неявной функции, заданной уравнением: F(x, y, z) = 0.
- 153. Сформулируйте определение локального максимума (локального минимума) функции z = f(x, y) в точке $M_0(x_0, y_0)$.
- 154. Сформулируйте необходимые условия, а также достаточные условия экстремума функции z = f(x, y).
- 155. Сформулируйте правило отыскания наибольшего и наименьшего значений функции z = f(x, y) в ограниченной замкнутой области.
 - 156. Что такое стационарная точка функции z = f(x, y)?
- 157. Сформулируйте определение условного максимума функции u = f(M) при связи $\varphi(M) = 0$ (рассмотрите случай двух или трех переменных).
- 158. Сформулируйте необходимые условия условного экстремума функции u = f(M) при связи $\varphi(M) = 0$ по методу Лагранжа (рассмотрите случай двух или трех переменных).
- 159. Сформулируйте теорему Вейерштрасса об ограниченности функции, непрерывной в замкнутой ограниченной области.
- 160. Сформулируйте теорему Вейерштрасса о существовании наибольшего и наименьшего значений функции, непрерывной в замкнутой ограниченной области.

Тема 4. Комплексный анализ.

- 161. Дайте определение множества **С** комплексных чисел. Какие геометрические интерпретации этого множества вам известны?
- 162. Пусть $z_1=1+i,\ z_2=-4+3i.$ Найти $z_1+z_2,\ z_1-z_2,\ (z_1+z_2)\ (z_1-z_2),$ $\frac{z_1}{z_2}$
 - 163. Что называют модулем комплексного числа z = x + iy?
- 164. Что называют аргументом комплексного числа z = x + iy, $z \neq 0$? Что такое тригонометрическая форма этого числа?
- 165. Числа $z_1 = 1 i\sqrt{3}$, $z_2 = (1 i)/(1 + i)$, $z_3 = 1 + \cos(\pi/7) + i\sin(\pi/7)$ записать в тригонометрической форме.
- 166. Используя формулу Муавра, записать в алгебраической форме числа $z_1 = \left((1+i\sqrt{3})/(1-i)\right)^{20}, z_2 = (1+i)^5/(1-i)^3.$
 - 167. Найти все значения следующих выражений: a) $\sqrt{-1+i\sqrt{3}}$; б) $\sqrt[4]{2\sqrt{3}+2i}$.
- 168. $z_1 = 1 i\sqrt{3}$, $z_2 = \sqrt{3} + i$. Записать в алгебраической форме числа $z_1 \cdot \bar{z}_2$; $(\bar{z}_1/z_2)^2$.
 - 169. Числа z_1 , z_2 и z_3 записать в показательной форме.
- 170. Что такое корень алгебраического многочлена $P_n(z)$? Что называют кратностью корня? Определите кратность корня a=1 многочлена $P_4(z)=z^4-(2-i)z^3+(3+2i)z^2-(4+i)z+2$.

- 171. Числа $a_1 = 1$, $a_2 = -i$, $a_3 = 2i$ все попарно различные корни многочлена P(z), причем a_1 корень кратности 2, а a_2 и a_3 простые корни. Запишите разложение P(z) на линейные множители, если его старший коэффициент $p_0 = 1$; найдите его другие коэффициенты.
- 172. В чем состоит свойство корней вещественного многочлена? Число $a_1 = -1 + i$ является корнем многочлена $P_4(z) = z^4 + 4z^3 + 11z^2 + 14z + 10$; найти остальные корни $P_4(z)$, записать его разложение на вещественные множители первой и второй степени.
 - 173. Что такое рациональная алгебраическая дробь? Приведите примеры.
- 174. Какую рациональную дробь называют правильной? неправильной? Дробь $\frac{z^5}{z^4+5z^2+4}$ представьте в виде суммы алгебраического многочлена и правильной дроби.
- 175. Какие дроби называют элементарными рациональными алгебраическими дробями? Дробь $1/(x^3+1)$ разложите в сумму элементарных дробей.

Тема 5. Дифференциальные уравнения.

- 176. Каков геометрический смысл уравнения y'=f(x,y). Написать уравнение касательной к интегральной кривой уравнения $y'=x^2y^2$ в точке $M_0(1, 2)$.
- 177. Дайте определение изоклины дифференциального уравнения y'=f(x,y). Изоклины уравнения $y'=x^2/y$ есть: А) окружности; В) прямые; С) параболы; D) гиперболы; E) эллипсы; F) нет прав. ответа.
- 178. Дано уравнение $y' = x^2 2x + y$. Напишите уравнение линии возможных точек экстремумов его интегральных кривых. Сделайте чертёж.
- 179. Сформулируйте теорему Коши для уравнения y' = f(x, y). Пусть Ω область, в которой выполнены её условия этого уравнения. Какие из последующих утверждений справедливы: А) его интегральные кривые могут иметь разрывы 1-го рода в Ω ; В) интегральные кривые могут иметь угловой экстремум в Ω ; С) интегральные кривые могут пересекаться в Ω ; D) интегральные кривые могут быть прямыми линиями; Е) нет правильного утверждения? Ответ обосновать.
 - 180. Решите задачу Коши: $(1 + y^2)dx + xydy = 0$; y(1)=1.
 - 181. Найдите все решения уравнения $xy' = y + \sqrt{y^2 x^2}$.
 - 182. Найдите общие решения (интегралы) уравнений:
 - 183. a) $xy'-2y=x^3\cos x$; 6) $3y'+y=1/y^2$; B) $(x^3+xy^2)dx+(x^2y+y^3)dy=0$.
- 184. Найдите все линии, у которых отрезок касательной между точкой касания и осью абсцисс делится пополам в точке пересечения с осью ординат. Указание: Используйте уравнение касательной к кривой.
- 185. Сформулируйте теорему Коши для уравнения y'' = f(x, y, y'). Каков геометрический смысл начальных условий y(0) = -1, y'(0) = 1 для этого уравнения? Изобразите приближенно интегральную кривую в окрестности начальной точки, считая для определенности y'' > 0 в этой окрестности.
- 186. Найти значение α , при котором функция $y = x^2$ является решением уравнения $x(x-1)y'' (2x-1)y' + \alpha y = 0$.
- 187. Дано уравнение: $\mathbf{y''}^3 + \mathbf{x}\mathbf{y''} = 2\mathbf{y'}$. С помощью какой подстановки можно понизить его порядок? Напишите общий вид таких уравнений.
- 188. Найдите общие решения уравнений методом понижения порядка: а) $y''=\ln x$; б) $y''=\frac{yy}{x}+x$.
 - 189. Решите задачу Коши: $yy''=(y')^2-(y')^3$; y(1)=1, y'(1)=1.

- 190. Как с помощью фундаментальной системы решений $y_1(x)$, ..., $y_n(x)$ записать общее решение уравнения L[y] = 0? Почему нулевое решение не может входить в фундаментальную систему решений уравнения L[y] = 0?
- 191. Дано уравнение: $y'' 5y' + \alpha y = 0$. При каком значении α число 3 будет корнем его характеристического уравнения? Найти общее решение данного дифференциального уравнения при найденном значении α .
- 192. Линейное однородное дифференциальное уравнение 3-го порядка с постоянными коэффициентами имеет частные решения: 1, $\sin 3x$. Это уравнение может иметь вид: A) y''' 9y = 0; B) y''' 9y' = 0; C) y''' + 9y = 0; D) y''' + 9y' = 0; E) нет правильного ответа.
- 193. Решите линейное уравнение $y'' 2y' + y = e^x/x$ методом вариации произвольных постоянных.
- 194. Найдите общее решение линейного неоднородного уравнения методом неопределённых коэффициентов: $y''-y=2e^x-x^2$.
- 195. Найдите частное решение линейного неоднородного уравнения $y''+y=4e^x$, удовлетворяющее начальным условиям y(0)=4, y'(0)=-3, методом неопределённых коэффициентов.
 - 196. Найдите общее решение системы дифференциальных уравнений

$$\begin{cases} \frac{dx}{dt} = 2x + y, \\ \frac{dy}{dt} = 3x + 4y. \end{cases}$$

197. Точка с массой m движется прямолинейно. На неё действует сила, пропорциональная кубу времени, истекшему от момента, когда скорость была равна v (коэффициент пропорциональности равен k). Кроме того, на точку действует сила сопротивления среды, пропорциональная произведению скорости и времени (коэффициент пропорциональности равен k_1). Найдите зависимость скорости от времени. Указание: примените 2-й закон Ньютона.

Тема 6. Теория рядов.

- 198. Дайте понятие числового ряда, его суммы. Найдите сумму ряда $\sum_{n=1}^{\infty} (7/8)^n$.
- 199. Сформулируйте необходимый признака сходимости числового ряда. С его помощью покажите, что ряд $\sum_{n=1}^{\infty} (1+1/n)^n$ расходится.
- 200. Используя простейшие свойства числовых рядов найдите сумму ряда $\sum_{n=1}^{\infty} \left(\frac{1}{3^n} \frac{1}{4^n}\right)$.
- 201. Даны ряды с положительными членами: $\sum_{n=1}^{\infty} a_n$ (1) и $\sum_{n=1}^{\infty} b_n$ (2), $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \frac{1}{2}$. С помощью признаков сходимости знакоположительных рядов установите какое из нижеследующих утверждений справедливо: А) ряд (2) сходится, если $b_n = na_n$; В) ряд (2) расходится, если $b_n > a_n$, $n \ge 10$; С) ряд (2) расходится, если $b_n = 3^n a_n$; D) ряд (2) сходится, если $\lim_{n\to\infty} b_n = 1$.
- 202. Что такое знакочередующийся ряд? знакопеременный ряд? абсолютная и условная сходимость знакопеременного ряда? Сформулируйте признак Лейбница. Какие из перечисленных ниже рядов условно сходятся: А) $\sum_{n=2}^{\infty} \frac{\cos \pi n}{n \ln n}$; В) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$; С)

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

- 203. Дайте понятие функционального ряда, его области сходимости. Найдите области сходимости функциональных рядов: а) $\sum_{n=1}^{\infty} \frac{2^n}{(x+3)^n}$; б) $\sum_{n=1}^{\infty} \frac{1}{n^{\sqrt{x}}}$; в) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^x}$; г) $\sum_{n=1}^{\infty} n^{1+x-x^2}$.
- 204. Дайте понятие мажорируемого функционального ряда. Найдите все значения x, при которых ряд $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ сходится абсолютно.
- 205. Сформулируйте свойства мажорируемых функциональных рядов. Можно ли почленно дифференцировать ряд $\sum_{n=1}^{\infty} \frac{\sin n^2 x}{n^2+1}$? Ответ обосновать.
- 206. Что такое степенной ряд? Ряд $\sum_{n=1}^{\infty} a_n x^n$ расходится в точке $x_0 = -2$. С помощью теоремы Абеля установите, какое из следующих утверждений справедливо: А) этот ряд сходится абсолютно в точке $x_1 = -1$; В) этот ряд сходится в точке $x_2 = 0$; С) этот ряд расходится в точке $x_3 = 3$; D) нет правильного ответа.
- 207. Найдите области сходимости степенных рядов: а) $\sum_{n=1}^{\infty} \frac{x^n}{n^2 \, 2^n}$; б) $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n \, 3^n}$; в) $\sum_{n=1}^{\infty} \frac{(x-1)^{2n}}{n \, 4^n}$.
- 208. Что значит разложить функцию в степенной ряд? Зависят ли коэффициенты такого разложения от способа его получения? Ряды Тейлора и Маклорена. Разложив в ряд Маклорена функцию $f(x) = x/(1+x^2)$, найдите $f^{(2n+1)}(0)$.
- 209. Разложите функцию в ряд по степеням x и укажите область сходимости полученного ряда: а) e^{-x^2} ; б) $\ln (x^2 + 3x + 2)$; в) $\int_0^x \frac{\sin 2t}{t} dt$.
- 210. Разложите функцию y=tg x в ряд Тейлора по степеням $(x-\pi/4)$, выписав первые 3 члена, отличные от нуля.
- 211. Вычислите приближённо с точностью до 10^{-3} , оценив погрешность по признаку Лейбница для знакочередующегося ряда: $\int_0^{0.5} e^{-x^2} dx$.
- 212. Выпишите два первых, отличных от нуля члена разложения в ряд по степеням x решения уравнения y''=2xy'+4y, удовлетворяющего начальным условиям y(0)=0, y'(0)=1.
- 213. Какие из следующих пар функций f(x) и g(x) ортогональны на промежутке [-1,1]: а) f(x)=x и $g(x)=x^3-1$; б) f(x)=x и $g(x)=x^2-1$; в) $f(x)=x^2$ и $g(x)=x^2-1$?
- 214. Сформулируйте условия Дирихле разложимости функции в ряд Фурье на промежутке $[-\pi,\pi]$.
- 215. Напишите формулы для коэффициентов ряда Фурье функции f(x), разложенной в этот ряд в промежутках: а) $[-\pi_{\iota}\pi]$; б) $[-l_{\iota}l]$.
- 216. Напишите ряд Фурье нечётной функции f(x), заданной на промежутке $[-\pi,\pi]$.
- 217. Функция f(x) в промежутке $[0,\pi]$ разложена в ряд Фурье а) по косинусам; б) по синусам. Напишите формулы для коэффициентов обоих рядов.
- 218. Функция $f(x) = -1 x^2$ в промежутке [-2,0] разложена в ряд Фурье по синусам. Напишите формулы для коэффициентов ряда. Постройте график суммы этого ряда.
- 219. Разложите в ряд Фурье функцию y=|x| в промежутках: а) [$-\pi$; π]; б) [0; 2π]; в) [-1; 1]. Постройте графики функции и сумм этих рядов.

220. Разложите в ряд Фурье функцию $y = \frac{\pi}{4} - \frac{x}{2}$ в промежутке [0; π]: а) по синусам; б) по косинусам. Постройте графики функции и сумм рядов.

Тема 7. Кратные и поверхностные интегралы.

- 221. Интегрируема ли функция 1/(x-y) по квадрату $0 \le x \le 1$, $0 \le y \le 1$?
- 222. Не вычисляя интеграла $\iint_D \ln(1-\sin(x+y))dxdy$, установите его знак, если $D = \{(x,y): x \ge 0, y \ge 0, x+y \le \pi/6\}$.
- 223. Сведите двойной интеграл $\iint_D f(x,y) dxdy$ к повторному двумя способами, если: a) (D) область, ограниченная линиями $y = 3x^2$, y = 6 3x; б) (D) трапеция с вершинами (-1, 4), (5, 4), (1, 1), (4, 1).
- 224. Измените порядок интегрирования в интеграле: $\int_{-2}^{-1} dx \int_{-\sqrt{-x^2-2x}}^{0} f(x,y) dy + \int_{-1}^{0} dx \int_{x}^{0} f(x,y) dy$ и.
- 225. Найдите среднее значение f(x,y) = x + 2yпо прямоугольнику, ограниченному прямыми x = 1, y = 2 и осями координат.
- 226. Изобразите на плоскости 0xy образ фигуры $G' = \{(r, \phi): 2 \le r \le 3, \ 0 \le \phi \le \pi/4\}$ при отображении $x = r\cos\phi$, $y = r\sin\phi$. Является ли это отображение взаимно однозначным?
- 227. Найдите площадь фигуры, ограниченной линиями: a) xy = 4, x + y = 5; б) $(x^2 + y^2) = 8xy$, $x^2 + y^2 = 1$ $(x^2 + y^2 \le 1)$.
- 228. Найдите объём тела, ограниченного поверхностями $z = \ln (1 + x^2 + y^2)$, z = 0, $x^2 + y^2 = 2$.

Критерии и шкала оценивания по оценочному средству «фронтальный и индивидуальный опрос»

индивидуальный опрос»				
Шкала	Критерий оценивания			
оценивания				
отлично (5)	Студент глубоко и в полном объёме владеет			
	программным материалом. Грамотно, исчерпывающе и логично			
	его излагает в устной или письменной форме. При этом знает			
	рекомендованную литературу, проявляет творческий подход в			
	ответах на вопросы и правильно обосновывает принятые			
	решения, хорошо владеет умениями и навыками при			
	выполнении практических задач.			
хорошо (4)	Студент знает программный материал, грамотно и по			
	сути излагает его в устной или письменной форме, допуская			
	незначительные неточности в утверждениях, трактовках,			
	определениях и категориях или незначительное количество			
	ошибок. При этом владеет необходимыми умениями и			
	навыками при выполнении практических задач.			
удовлетворите	Студент знает только основной программный материал,			
льно (3)	допускает неточности, недостаточно чёткие формулировки,			
	непоследовательность в ответах, излагаемых в устной или			
	письменной форме. При этом недостаточно владеет умениями и			
	навыками при выполнении практических задач. Допускает до			
	30% ошибок в излагаемых ответах.			
неудовлетвор	Студент не знает значительной части программного			
ительно (2)	материала. При этом допускает принципиальные ошибки в			
	доказательствах, в трактовке понятий и категорий, проявляет			
	низкую культуру знаний, не владеет основными умениями и			
	навыками при выполнении практических задач. Студент			

Типовые вариант ы конт рольных работ :

Тема 1. Линейная алгебра.

Вариант № 0

1. Решить систему линейных уравнений методом Крамера

$$\begin{cases} 3x_1 + 2x_2 + x_3 = 5 \\ 2x_1 + 3x_2 + x_3 = 1 \\ 2x_1 + x_2 + 3x_3 = 11 \end{cases}$$

2. Вычислить определитель

3. Решить систему линейных уравнений матричным методом

$$\begin{cases} 1x_1 - 2x_2 + 3x_3 = 6 \\ 2x_1 + 3x_2 - 4x_3 = 20 \\ 3x_1 - 2x_2 - 5x_3 = 6 \end{cases}$$

4. Найти матрицу, обратную к данной

$$\begin{pmatrix} 2 & 1 & 1 \\ 5 & 1 & 3 \\ 2 & 1 & 2 \end{pmatrix}$$

5. Решить систему линейных уравнений методом Гаусса

$$\begin{cases} 4x_1 - 3x_2 + 2x_3 = 9 \\ 2x_1 + 5x_2 - 3x_3 = 4 \\ 5x_1 + 6x_2 - 2x_3 = 18 \end{cases}$$

Тема 2. Аналитическая геометрия.

Вариант № 0

Даны координаты вершин пирамиды *АВСD*:

$$A = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} \qquad B = \begin{pmatrix} 6 \\ 1 \\ -1 \end{pmatrix} \qquad C = \begin{pmatrix} 4 \\ 8 \\ -9 \end{pmatrix} \qquad D = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$$

Найти:

- 1) длины ребер *AB*, *AC*, *AD*.;
- 2) угол между ребрами АВ и АС;
- 3) угол между ребром *AD* и основанием *ABC*;
- 4) Вычислить площадь основания АВС;
- 5) Вычислить объем пирамиды *АВСD*;
- 6) Зная объём пирамиды и площадь её основания ABC, найти высоту h пирамиды ABCD;

- 7) Найти уравнение плоскости основания ABC, которая проходит через точки A, B и C.
- 8) Составить канонические уравнения прямой, которая проходит через вершину **D** перпендикулярно к плоскости основания **Q**;
 - 9) Найти точку K пересечения полученной прямой с плоскостью основания Q;
- 10) Найти расстояние от вершины D пирамиды до плоскости основания Q и сравнить полученный результат с длиной вектора DK.

Тема 3. Математический анализ («Введение в математический анализ», семестр 1).

Вариант № 0

1. Найти область определения заданных функций.

$$y = \sqrt{\frac{x+2}{1-3x}} + \frac{1}{x^2}$$
 $y = \frac{\ln(1+x)}{x-1}$

2. Найти пределы.

$$\lim_{x \to \infty} \frac{3x^5 + 2x^4 - 3x + 1}{2x^3 + 4x^2 + 3x - 8} \qquad \lim_{x \to 3} \frac{2x^2 - 7x + 3}{x^2 - 8x + 15}$$

3. Используя замечательные пределы, вычислить:

$$\lim_{x \to 0} \frac{1 - \cos 3x}{3x^2} \qquad \qquad \lim_{x \to \infty} \left(\frac{3x + 3}{3x + 5}\right)^{2x + 4}$$

4. Найти пределы, используя эквивалентные бесконечно малые функции.

$$\lim_{\alpha \to 0} \frac{\ln(1+3\alpha^2)}{\alpha^3 - 5\alpha^2} \qquad \qquad \lim_{\alpha \to 0} \frac{(e^{5\alpha} - 1)}{\alpha}$$

5. Исследовать функцию на непрерывность, найти точки разрыва функции и установить их характер. Сделать схематический чертеж.

$$f(x) = 2^{\frac{1}{x-3}} + 1$$

$$\begin{cases} x+4; & x < -1 \\ x^2 + 2; & -1 \le x < 1 \\ 2x; & x \ge 1 \end{cases}$$

Тема 3. Математический анализ («Неопределенный интеграл», семестр 2).

Вариант № 0

1. Найти неопределенный интеграл, используя таблицу и его основные свойства.

$$\int \left(x^{3/4} + 5x\sqrt{x} + \sqrt[8]{x} - \frac{1}{\sqrt[8]{x^2}}\right) dx \qquad \qquad \int \frac{4dx}{x-4}$$

2. Найти неопределенный интеграл, используя метод формирования специального выражения под знаком дифференциала.

$$\int (x^2 - 3)^4 2x dx \qquad \int \sqrt{x^2 - 3x + 5} (2x - 3) dx$$

3. Найти неопределенный интеграл, используя метод замены переменных и метод интегрирования по частям

$$\int \left(4^{2x} - x^2 5^{x^3}\right) dx \qquad \qquad \int \frac{\ln x}{x^2} dx$$

4. Найти неопределенный интеграл от дробно-рациональной функции

$$\int \frac{(8x^3 + 2x^2 + 4x - 1)dx}{x - 1} \int \frac{12}{x^2 + 7x + 15} dx$$

5. Найти неопределенный интеграл от тригонометрических функций

$$\int \sin 2x \cdot \cos 4x dx \qquad \qquad \int \cos \frac{2 - 5x}{3} \sin \frac{\pi}{3} dx$$

Тема 3. Математический анализ («Определенный интеграл», семестр 2).

Вариант № 0

1. Вычислить определенный интеграл:

$$\int_{0}^{1} \frac{x^2 + 1}{(x^3 + 3x + 1)^2} dx$$

2. Вычислить площадь фигуры, ограниченную линиями:

$$y = x^{2},$$

$$y = 2 - x^{2}$$

$$\begin{cases} x = 8\cos^{3}t \\ y = 2\sin^{3}t' \end{cases}$$

$$0 \le t \le \frac{\pi}{2}$$

$$0 \le t \le \frac{\pi}{2}$$

3. Вычислить длину дуги кривой:

$$y = -\ln(\cos x), \qquad \begin{cases} x = 3(t - \sin t) \\ y = 3(1 - \cos t)' \end{cases} \qquad \rho = 2\cos\varphi,$$

$$0 \le x \le \frac{\pi}{6} \qquad \frac{\pi}{2} \le t \le \pi \qquad 0 \le \varphi \le \frac{\pi}{3}.$$

4. Вычислить объем (задача а) и площадь поверхности вращения (задача б) тела, полученного вращением заданной фигуры вокруг оси 0x:

a)
$$y = x^3$$
, $y = \sqrt{x}$.
6) $y = 1 - x$;
 $x = 0$; $x = 1$

5. Вычислить несобственный интеграл или установить его расходимость

$$\int_{0}^{\infty} xe^{-x^{2}} dx$$

Тема 5. Дифференциальные уравнения.

Вариант № 0

1. Найти общее решение или решить задачу Коши для дифференциальных уравнений с разделяющимися переменными:

$$xy' - y\ln y = 0$$

$$y' = 2\sqrt{y},$$

$$y(0) = 1.$$

2. Найти общее решение или решить задачу Коши для однородных дифференциальных уравнений первого порядка.

$$xy^2y' - (x^3 + y^3) = 0;$$
 $ydx + 2(\sqrt{xy} - x)dy = 0$
 $y(1) = 1$

3. Найти общие решения линейных дифференциальных уравнений первого порядка:

$$y' + tgxy = -\cos x; y' + \frac{2y}{x} = \frac{e^{-x^2}}{x}.$$

4. Найти общее решение или решить задачу Коши для дифференциальных уравнений второго порядка, допускающих понижение порядка

$$y'' - \cos 6x = \frac{2}{\sqrt{x}};$$
 $y'' - \frac{2x}{x^2 + 1}y' = 0;$

5. Найти решения линейных дифференциальных уравнений второго порядка с постоянными коэффициентами

$$y'' + 2y' = 0;$$

$$y'' - 2y' - 3y = e^{4x};$$

Тема 6. Теория рядов.

Вариант № 0

1. Запишите формулу общего члена ряда.

$$\frac{2}{3} + \frac{4}{9} + \frac{6}{27} + \frac{8}{81} + \dots$$

2. Доказать расходимость ряда, пользуясь необходимым признаком сравнения.

$$\sum_{n=1}^{\infty} \frac{3^n}{2n}$$

3.Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов.

$$\sum_{n=1}^{\infty} \frac{3^n \cdot n!}{n^n}$$

$$\sum_{n=1}^{\infty} \frac{1}{2^n} \left(\frac{n+1}{n} \right)^{n^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)\ln^{5}(n+1)}$$

4. Исследовать ряды на абсолютную сходимость.

$$\sum_{n=1}^{\infty} (-1)^n \frac{3n+1}{7n^2-2}$$

5. Найти интервал сходимости степенного ряда.

$$\sum_{n=1}^{\infty} \frac{n}{5^n} (x+2)^n$$

Тема 7. Кратные и поверхностные интегралы.

Вариант № 0

1. Изменить порядок интегрирования в повторном интеграле и сделать чертеж области интегрирования

$$\int_{-1}^{0} dx \int_{-8x^{2}}^{-2x+6} f(x,y)dy$$

$$\int_{-2}^{-1} dy \int_{-\sqrt{2+y}}^{0} f dx + \int_{-1}^{0} dy \int_{-\sqrt{-y}}^{0} f dx$$

2. Вычислить двойной интеграл по области D

$$\iint_{D} (12x^{2}y^{2} + 16x^{3}y^{3}) dx dy; \qquad \iint_{D} y e^{xy/2} dx dy;$$

$$D: x = 1, y = x^{2}, y = -\sqrt{x}.$$

$$D: y = \ln 2, y = \ln 3, x = 2, x = 4.$$

3. Вычислить интегралы, перейдя от декартовых координат к полярным:

$$\int_{0}^{1} dx \int_{0}^{\sqrt{1-x^{2}}} \sqrt{\frac{1-x^{2}-y^{2}}{1+x^{2}+y^{2}}} dy$$

4. С помощью двойного интеграла вычислить площадь плоских фигур, ограниченных данными линиями

$$y^2 - 2y + x^2 = 0,$$

 $y = 3/x, y = 4e^x, y = 3, y = 4.$
 $y^2 - 4y + x^2 = 0,$
 $y = x/\sqrt{3}, y = \sqrt{3}x.$

5. Пластинка **D** задана неравенствами, μ - поверхностная плотность. Найти массу пластинки.

$$\begin{aligned} D: & x = 1, y = 0, y^2 = 4x (y \ge 0); & D: & x^2 + y^2/4 \le 1; \\ \mu & = 7x^2 + y. & \mu = y^2. \end{aligned}$$

6. Найти координаты центра тяжести плоских однородных пластин, ограниченных заданными линиями

$$x^2 + y^2 = 4$$
, $x \ge 0$, $y \ge 0$

7. Вычислить тройной интеграл по области V

$$\iiint_{V} 2y^{2}e^{xy} dxdydz; \qquad \iiint_{V} xdxdydz;
V \begin{cases} x = 0, y = 1, y = x, \\ z = 0, z = 1, \end{cases} \qquad V: y = 10x, y = 0, x = 1, z = xy, z = 0.$$

8. С помощью тройного интеграла найти объем тела, ограниченного заданными поверхностями

$$y = 16\sqrt{2x}, y = \sqrt{2x},$$
 $x^2 + y^2 = 2y,$ $z = 0, x + z = 2.$ $z = 5/4 - x^2, z = 0.$

Критерии и шкала оценивания по оценочному средству «контрольная работа»

Шкала	1	Критерий оценивания		
оценивания				
5		Контрольная работа выполнена на высоком уровне		
		(правильные ответы даны на 90-100% вопросов/задач)		
4		Контрольная работа выполнена на среднем уровне		
		(правильные ответы даны на 75-89% вопросов/задач)		
3		Контрольная работа выполнена на низком уровне		
		(правильные ответы даны на 50-74% вопросов/задач)		
2		Контрольная работа выполнена на		
		неудовлетворительном уровне (правильные ответы даны		
		менее чем на 50%)		

Типовые варианты индивидуальных заданий:

Семестр 1.

Вариант № 0

1. Даны координаты вершин треугольника АВС:

$$A(-8; -3); B(4; -12); C(8; 10).$$

Необходимо найти:

- длину стороны AB;
- уравнение сторон *АВ* и *ВС* и их угловые коэффициенты;
- угол ψ между прямыми AB и BC в радианах;
- уравнение высоты *CD* и ее длину;
- уравнение медианы AE и координаты точки Kпересечения этой медианы с высотой CD;
- уравнение прямой L, которая проходит через точку K параллельно к стороне AB;
- координаты точки $F(x_F, y_F)$, которая находится симметрично точке A относительно прямой CD.
- 2. Дано: точка A(2; 5) и прямая y = 1. Необходимо составить уравнение геометрического места точек, равноудаленных от заданной токи $A(x_A, y_A)$ и прямой y = d.

Полученное уравнение привести к простейшему виду и построить график кривой.

3. Заданы две системы линейных уравнений. Решить первую систему методом Крамера. Полученный при решении первой системы результат проверить с помощью метода обратной матрицы. Вторую систему решить с помощью метода Гаусса.

$$\begin{cases} 3x_1 + 2x_2 - 1x_3 = 11, \\ 4x_1 - 1x_2 + 4x_3 = -10, \\ 1x_1 + 3x_2 - 2x_3 = 9 \end{cases} \begin{cases} 1x_1 + 2x_2 - 1x_3 = 1, \\ 3x_1 + 5x_2 - 1x_3 = 1, \\ 4x_1 + 7x_2 - 2x_3 = 2 \end{cases}$$

4. Даны координаты вершин пирамиды *АВСD*:

$$A(2; -3; 1), B(6; 1; -1), C(4; 8; -9), D(2; -1; 2).$$

Необходимо:

Записать векторы \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} в ортонормальной системе $\{\vec{\imath}_i, \vec{\jmath}_i, \vec{k}\}$ и найти модули этих векторов.

- Найти угол между векторами \overline{AB} и \overline{AC} .
- Найти проекцию вектора \overline{AD} на вектор \overline{AB} .
- Вычислить площадь грани *АВС*.
- Найти объем пирамиды *АВСD*.
 - 5. Даны координаты четырех точек:

$$A(-3; -2; -4), B(-4; 2; -7), C(5; 0; 3), M(-1; 3; 0).$$

Необходимо:

- Составить уравнение плоскости Q, которая проходит через точки A, B и C.
- Составить канонические уравнения прямой, которая проходит через точку M перпендикулярно к плоскости Q.
- Найти точки пересечения полученной прямой с плоскостью **Q** и с координатными плоскостями **XOY**, **XOZ**, **YOZ**.

Найти расстояние от точки M до плоскости Q.

6. Вычислить следующие пределы (не пользуясь правилом Лопиталя).

о. Вы ислить следующие пределы (не пользухов правилом логитали).					
$\lim_{x \to \infty} \frac{x^3 - 2x^2 + 3}{4x^2 + 3x + 2}$	$\lim_{x \to \infty} \frac{x^2 + 2}{3x^2 + 2x - 1}$	$\lim_{x \to 2} \frac{2x^2 - 3x - 2}{x^2 + 3x + 10}$			
$\lim_{x \to -1} \frac{3x^2 + 8x + 5}{3x^2 + 9x + 6}$	$\lim_{x \to -3} \frac{\sqrt{x+4}-1}{x^2-9}$	$\lim_{x \to 7} \frac{2 - \sqrt{x - 3}}{x^2 - 49}$			
$\lim_{x\to 0}\frac{1-\cos 4x}{x^2};$	$\lim_{x\to 0} \frac{\sin 3x}{tg2x}$	$\lim_{x\to 0} (1+4x)^{\frac{2}{x}}$			
	$\lim_{x\to 0} \left(\frac{x-1}{x+3}\right)^{x+2}$				

7. Заданную функцию y = f(x) исследовать на непрерывность и выяснить характер точек разрыва. Сделать схематический график

$$f(x) = 4^{\frac{1}{2-x}}$$

$$f(x) = \begin{cases} x^2, & \text{если } x < 0 \\ \lg \frac{x}{2}, & \text{если } 0 \le x \le \frac{\pi}{2} \\ 1, & \text{если } x > \frac{\pi}{2} \end{cases}$$

8. Найти первую производную $\mathbf{y'}_{x}$ заданных функций:

$y = \frac{2(3x^3 + 4x^2 - x - 2)}{15\sqrt{x+1}}$	$y = x - \ln\left(2 + e^x + 2\sqrt{e^{2x} + e^x + 1}\right)$
$y = \arctan\left(\frac{\operatorname{tg} x - \operatorname{ctg} x}{\sqrt{2}}\right)$	$y = \sin\sqrt{3} + \frac{1}{3} \cdot \frac{\sin^2 3x}{\cos 6x}$

9. Найти первую производную y'_{x} заданных функций:

$$y = (\operatorname{arctg} x)^{(1/2)\ln(\operatorname{arctg} x)}$$

$$y = x \cdot e^{y}$$

$$\begin{cases} x = \frac{3t^2 + 1}{3t^3}, \\ y = \sin\left(\frac{t^3}{3} + t\right) \end{cases}$$

10. Дана функция y = f(x) и два значения аргумента x_1 и x_2 . Необходимо найти приближенное значение данной функции при $x = x_2$, используя ее значение при $x = x_1$ и заменяя прирост Δy функции y = f(x) соответствующим дифференциалом dy:

$$y = \sqrt[8]{3x^2 + 8x - 16};$$
 $y = \cos(x);$ $x_1 = 4; x_2 = 3,94$ $x_1 = 60^\circ; x_2 = 63^\circ.$

11. Выполнить полное исследование заданных функций и построить их графики:

$$y = \frac{x^3 + 4}{x^2}$$
 $y = \frac{e^{2x}}{2x}$ $y = x^3 - 3x^2 + 3$

- 12. Используя методы дифференциального вычисления, решить следующие физические задачи:
 - 1. При подготовке к экзамену студент за t дней изучает $\left(\frac{t}{t+k}\right)$ -ю часть курса и забывает $(\alpha \cdot t)$ -ю часть. Сколько дней нужно потратить на подготовку, чтобы была изучена максимальная часть курса? Решить задачу при условии, что $k = 3\alpha = 1/48$.
 - 2. Тело массой $m_0 = 3000$ кг падает с высоты H метров и теряет массу (сгорает) пропорционально времени падения. Коэффициент пропорциональности k = 100 кг/с. Считая, что начальная скорость $V_0 = 0$, ускорение g = 10 м/с, найти наибольшую кинетическую энергию тела. Решить задачу при условии, что H = 1805 м.

Семестр 2.

Вариант № 0

1. Вычислить неопределенные интегралы:

1. 22. mounts moonly advisable miles punish				
$\int \frac{7x^3 + 40x - 96}{2x^4 + 5x^3 - 12x^2} dx$	$\int \frac{dx}{x\sqrt{x^2 - 16}};$	$\int x^2 \cos 4x dx.$		

2. Вычислить определенный интеграл:

$$\int_{0}^{3} \frac{4x dx}{\sqrt[8]{(3x-8)^2} - 2\sqrt[8]{3x-8} + 4}.$$

3. Вычислить площадь фигуры, ограниченной параболами:

$$y = \frac{x^2}{2} - x + 1$$

$$y = -\frac{x^2}{2} + 3x + 6$$

4. Вычислить несобственный интеграл, или установить его расходимость:

$$\int_{1}^{\infty} \frac{dx}{x^2 + 4x + 13}.$$

5. Исследовать функцию
$$z = f(x, y)$$
 на экстремум:_

$$z = xy - x^2 - 2y^2 + x + 10y - 8.$$

6. Найти общее решение (общий интеграл) дифференциального уравнения:

$$y' = \frac{8x + 5y}{5x - 2y}.$$

7. Дано дифференциальное уравнение второго порядка, которое допускает понижение порядка. Найти частное решение, которое удовлетворяет заданным начальным условиям.

$$xy'' - y' - x^2 = 0, y(1) = \frac{4}{3}, y'(1) = 3.$$

8. Задано линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Найти частное решение, которое удовлетворяет приведенным начальным условиям.

$$y'' - 2y' - 8y = 16x^2 + 2$$
, $y(0) = 0$, $y'(0) = 5$.

9 Решить систему уравнений и найти частные решения, которые удовлетворяют приведенным начальным условиям.

$$\begin{cases} \frac{dx}{dt} = 2x + y, \\ \frac{dy}{dt} = x + 2y, \\ x(0) = 1, y(0) = 3. \end{cases}$$

Семестр 3.

Вариант № 0

1. Исследовать на сходимость числовой ряд:

$$\sum_{n=1}^{\infty} \frac{1}{2^n} \left(\frac{2n+1}{2n-1}\right)^{n^2} \qquad \sum_{n=2}^{\infty} \frac{1}{n \ln^2(3n+1)}.$$

2. Исследовать на абсолютную и условную сходимость числовой ряд

$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot n}{2^n}$$

3. Найти область сходимости функционального ряда

$$\sum_{n=1}^{\infty} \frac{(n-2)^3(x+3)^{2n}}{2n+3}.$$

4. Вычислить интеграл

$$\int\limits_{0}^{0,1}e^{-6x^{2}}dx$$

с точностью до 0,001.

5. Найти первые четыре ненулевые члена разложения в ряд решения дифференциального уравнения

$$y'' + 2y' - xy = x^2$$
, $y(0) = 0$, $y'(0) = 1$.

6. Изменить порядок интегрирования

$$\int_{-2}^{-1} dy \int_{-\sqrt{2+y}}^{0} f dx + \int_{-1}^{0} dy \int_{-\sqrt{-y}}^{0} f dx .$$

7. С помощью двойного интеграла найти площадь фигуры, ограниченной линиями

$$y = 3/x$$
, $y = 4e^x$, $y = 3$, $y = 4$.

8. С помощью тройного интеграла найти объем тела, ограниченного поверхностями

$$x^2 + y^2 = 2y$$
, $z = 5/4 - x^2$, $z = 0$.

$$V:64(x^2+y^2)=z^2, \qquad x^2+y^2=4, \qquad y=0, \qquad z=0 \ (y\geq 0, \qquad z\geq 0);$$

$$\mu=\frac{5(x^2+y^2)}{4}.$$

- 10. Найти работу силы $\vec{F} = (x^2 2y)\vec{i} + (y^2 2x)\vec{j}$, при перемещении вдоль линии L: отрезок MN, от точки M(-4; 0) к точке N(0; 2).
- 11. Найти поток векторного поля $\vec{F} = x\vec{\imath} + y\vec{\jmath} + z\vec{k}$, через часть плоскости P: x+y+z=1, размещенную в первом октанте (нормаль образует острый угол с осью OZ).
- 12. Найти поток векторного поля $\vec{F} = (e^z + 2x)\vec{i} + e^x\vec{j} + e^y\vec{k}$ через замкнутую поверхность **5**: x + y + z = 1, x = 0, y = 0, z = 0 (нормаль внешняя).

Критерии и шкала оценивания по оценочному средству «индивидуальные задания»

Шкала	Критерий оценивания
оценивания (интервал	
баллов)	
Зачтено	Правильно решены 90-100% заданий
Не зачтено	Правильно решены менее 90% заданий

Оценочные средст ва для промежут очной ат т ест ации (экзамен)

Типовой билет. Семестр 1.

произведения векторов.	г балл
Решить систему линейных алгебраических урав $ \begin{cases} 3x_1+4x_2+2x_3=8\\ 2x_1-4x_2-3x_3=-1\\ x_1+5x_2+x_3=0 \end{cases} $	
Заданы координаты вершин $A_1(3;1;4), A_2(-1;6;1), A_3(-1;1;6)$. Найти: а) векторы $\vec{c} = \overrightarrow{A_1 A_2}$ и $\vec{d} = \overrightarrow{A_1 A_3}$; б) длины векторов \vec{c} и \vec{d} ; в) скалярное произведение векторов \vec{c} \vec{d} ; д) угол между векторами \vec{c} и \vec{d} ;	треугольника 1 балл
е) векторное произведение $\vec{c} \times \vec{d}$; ж) площадь треугольника $A_1A_2A_3$. Найти производную $y = (x^2 + x + 1) \cdot \operatorname{tg}(2x)$	1 балл
Провести полное исследование функции и постј. $y = \frac{e^{2(x+1)}}{2(x+1)}$	роить график 1 балл
Утверждено на заседании кафедры ПМ, протокол Заведующий кафедрой	№ om 201 г. доц. Малый В.В.
Лектор	доц. Малый В.В.
Типовой билет. Семестр 2.	
Билет № 0	
Часть I. Теоретический вопрос. (Полностью раскрытый вопрос оценивается в 1 балл 1. Понятие первообразной	п).

Часть II. Задание начального уровня сложности. (Правильно выполненное задание оценивается в 2 балла).

- 1. Найти решения уравнений
- Вычислить неопределенный интеграл

$$y'' + 3y' = 0.$$

$$\int (x^2 + 2x + 3) dx$$

Часть III. Задание базового уровня сложности.

(Правильно выполненное задание оценивается в 1 балл).

3. Проинтегрировать рациональную дробь
$$\int \frac{(2x+16)dx}{(x+1)(x^2+4x+13)} dx$$

4. Для функции $u = 5x^2y - 3xy + x^3$ найти градиент и производную в точке A по направлению вектора $\vec{s} = \overrightarrow{AB}$: A(1;2;-1), B(3;-1;0).

Часть IV. Задание повышенного уровня сложности.

(Правильно выполненное задание – 1 балл).

1. Найти решения уравнений

$$y'' + 3y' = 3xe^{-3x};$$

Утверждено на заседании кафедры ПМ, протокол № от 201 г.

Заведующий кафедрой

доц. Малый

B.B.

доц. Малый

Лектор

B.B.

Типовой билет. Семестр 3.

Билет № 0

Сходимость и сумма ряда. Необходимое условие сходимости.

балл

Исследовать на сходимость ряд

1

2

балла

$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 5n - 7}$$
$$\sum_{n=1}^{\infty} \frac{(n+1)! \ 2^n}{(n+1)^n}$$

Изменить порядок интегрирования. Область интегрирования 1 изобразить на чертеже балл

$$\int_{0}^{2} dx \int_{\frac{1}{4}x^{2}}^{2\sqrt{x}} f(x,y) dy$$

Вычислить криволинейный интеграл вдоль кривой $m{L}$, при изменении параметра от $m{t_1}$ до $m{t_2}$:

$$\int\limits_{L}dx+dy;$$
 где $L:\ y=-\sqrt{2-t};\ t_{1}=1,\ t_{2}=2$

Критерии и шкала оценивания по оценочному средству промежуточный контроль (экзамен)

Шкала оценивания	Критерий оценивания
отлично (5)	Студент глубоко и в полном объёме владеет
	программным материалом. Грамотно, исчерпывающе и
	логично его излагает в устной или письменной форме. При
	этом знает рекомендованную литературу, проявляет
	творческий подход в ответах на вопросы и правильно
	обосновывает принятые решения, хорошо владеет умениями
	и навыками при выполнении практических задач.
хорошо (4)	Студент знает программный материал, грамотно и по
	сути излагает его в устной или письменной форме, допуская
	незначительные неточности в утверждениях, трактовках,
	определениях и категориях или незначительное количество
	ошибок. При этом владеет необходимыми умениями и
	навыками при выполнении практических задач.
удовлетворительно	Студент знает только основной программный
(3)	материал, допускает неточности, недостаточно чёткие
	формулировки, непоследовательность в ответах, излагаемых
	в устной или письменной форме. При этом недостаточно
	владеет умениями и навыками при выполнении
	практических задач. Допускает до 30% ошибок в излагаемых
	ответах.
неудовлетворитель	Студент не знает значительной части программного
но (2)	материала. При этом допускает принципиальные ошибки в
	доказательствах, в трактовке понятий и категорий, проявляет
	низкую культуру знаний, не владеет основными умениями и
	навыками при выполнении практических задач. Студент
	отказывается от ответов на дополнительные вопросы

Лист изменений и дополнений

	Виды дополнений	Дата и номер	Подпись (с
	и изменений	протокола заседания	расшифровкой)
$/\Pi$		кафедры (кафедр), на	заведующего кафедрой
		котором были	(заведующих кафедрами)
		рассмотрены и одобрены	
		изменения и дополнения	

Экспертное заключение

Представленный фонд оценочных средств (далее - Φ OC) по дисциплине «Математика» соответствует требованиям Φ ГОС ВО.

Предлагаемые формы и средства текущего и промежуточного контроля адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 22.03.01 Материаловедение и технологии материалов.

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины представлены в полном объеме.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ΦOC .

Разработанный и представленный для экспертизы фонд оценочных средств рекомендуется к использованию в процессе подготовки обучающихся, по указанному направлению.

Председатель учебно-методической комиссии факультета компьютерных систем и информационных технологий

Op

Н.Н. Ветрова