МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Институт Технологий и инженерной механики **Кафедра** Материаловедение

УТВЕРЖДАЮ:

Директор

Института Технологий и инженерной

механики

Могильная Е.П.

(подпись)

2023 года

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«ТЕРМОДИНАМИКА НЕРАВНОВЕСНЫХ ПРОЦЕССОВ»

По направлению подготовки 22.03.01 Материаловедение и технологии материалов

Профили: «Материаловедение в машиностроении»

«Композиционные и порошковые материалы, покрытия»

Лист согласования РПУД

Рабочая программа учебной дисциплины «Термодинамика неравновесных процессов» по направлению подготовки 22.03.01 Материаловедение и технологии материалов. – 24 с.

Рабочая программа учебной дисциплины «Термодинамика неравновесных процессов» составлена с учетом Федерального государственного образовательного стандарта высшего образования по направлению подготовки 22.03.01 Материаловедение и технологии материалов, утвержденного приказом Министерства науки и высшего образования Российской Федерации от 02.06.2020 года № 701 с изменениями и дополнениями от 30.03.2023 года.

СОСТАВИТЕЛЬ:

Доктор техн. наук, профессор Рябичева Л.А.
Рабочая программа дисциплины утверждена на заседании кафедры материаловедения « $\underline{\ell 8}$ » 20 $\underline{\ell 3}$ г., протокол № $\underline{\ell 8}$
Заведующая кафедрой материаловедения Рябичева Л.А.
Переутверждена: «»20 г., протокол №
Рекомендована на заседании учебно-методической комиссии института Технологий и инженерной механики **Comparison** **Compari
« <u>l8</u> » <u>04</u> 20 <u>23</u> г., протокол № <u>3</u> .
Председатель учебно-методической комиссии института Ясуник С.Н.

[©] Рябичева Л.А., 2023 год

[©] ФГБОУ ВО «ЛГУ им. В. ДАЛЯ», 2023 год

Структура и содержание дисциплины

1. Цели и задачи дисциплины, ее место в учебном процессе

Цель изучения дисциплины - освоение систематизированных знаний о кинетике процессов, протекающих в условиях локального равновесия, о термодинамике в реакционноспособных системах, в высокодисперсных системах, а также фазовые переходы в металлических системах.

Задачи:

- овладение современными концепциями в области термодинамики неравновесных процессов;
- применение законов неравновесной термодинамики к анализу процессов кристаллизации и плавления металлических систем;
 - анализ фазовых переходов в двойных и тройных металлических системах.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина «Термодинамика неравновесных процессов» относится к обязательной части модуля профессиональных дисциплин подготовки бакалавров. Необходимыми условиями для освоения дисциплины являются знания, полученные при изучении дисциплин «Неорганическая и органическая химия», и служит основой для освоения дисциплин «Теория и технология термической и химико-термической обработки», «Теория и технология композиционных материалов», «Теория и технология порошковых материалов», «Теория и технология нанесения покрытий».

3. Требования к результатам освоения содержания дисциплины

TC	TT V	П
Код и наименование компе-	Индикаторы достижений компе-	Перечень планируемых резуль-
тенции	тенции (по реализуемой дисци-	татов
	плине)	
ПК.3. Способен обеспечивать контроль качества изделий после несложных и сложных процессов	плине) ПК-3.1. Применяет периодический контроль соблюдения технологической дисциплины в термическом производстве	знать: периодический контроль соблюдения технологической дисциплины в термическом производстве уметь: выполнять периодический контроль соблюдения технологической дисциплины в термическом производстве владеть: методами периодический контроль соблюдения технологической дисциплины в
	THE 2.2	термическом производстве
	ПК-3.2.	знать: методик контроля из-
	Осуществляет разработку мето-	делий, изготовленных в неслож-
	дик контроля изделий, изготов-	ных и сложных процессах тер-
	ленных в несложных и сложных	мического производства

	процессах термического произ-	уметь: разрабатывать мето-
	водства	дики контроля изделий, изготов-
		ленных в несложных и сложных
		процессах термического произ-
		водства
		владеть: навыками разра-
		ботки методик контроля изде-
		лий, изготовленных в неслож-
		ных и сложных процессах тер-
		мического производства
	ПК-3.3.	знать: причины брака после
	Выявляет причины брака после	несложных и сложных процес-
	несложных и сложных процес-	сов термического производства
	сов термического производства	уметь: выявить причины
	терин теского производства	брака после несложных и слож-
		ных процессов термического
		производства
		владеть: навыками причины
		брака после несложных и слож-
		ных процессов термического
		производства
ПК-5.	ПК-5.1.	знать: основные положения
Способен участвовать во	Участвует в сборе и обобщении	сбора и обобщения информации
внедрении несложных и слож-	информации о новых видах обо-	о новых видах технологиях в
ных новых видов техники и	рудовании и технологиях в тер-	термическом производстве
технологий термической об-	мическом производстве.	уметь: выполнять сбор и
работки	_	обобщение информации о новых
		видах технологий в термическом
		производстве
		владеть: информацией о но-
		вых видах технологий в терми-
		ческом производстве.
	ПК-5.2.	знать: основы разработки
	Участвует в разработке предло-	предложений по внедрению в
	жений по внедрению в произ-	производство несложных и
	водство несложных и сложных	сложных новых видов оборудо-
	новых видов оборудования и	вания и технологий термиче-
	технологий термического произ-	ского производства
	водства	уметь: разрабатывать предло-
		жения по внедрению в производ-
		ство несложных и сложных но-
		вых видов технологий термиче-
		ского производства
		владеть: информацией по раз-
		работки предложений по внедре-
		нию в производство несложных
		и сложных новых видов обору-
		дования и технологий термиче-
		ского производства
		ского производства

ПК-5.3. Участвует в разработке методик испытаний и исследования изделий новых видов техники и технологий термической обработки	знать: методики испытаний и исследования изделий новых видов техники и технологий термической обработки
	1
лий новых видов техники и тех-	мической обработки
нологий термической обработки	уметь: разрабатывать мето-
	дики испытаний и исследования
	изделий новых видов техники и
	технологий термической обра-
	ботки
	владеть: методиками испыта-
	ний и исследования изделий но-
	вых видов техники и технологий
	термической обработки

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

	Объем часов (зач. ед.)		
Вид учебной работы	Очная форма	Заочная форма	
Общая учебная нагрузка (всего)	144	144	
	(4 зач. ед)	(4 зач. ед)	
Обязательная аудиторная учебная нагрузка (всего) в том	85	10	
числе:			
Лекции	51	6	
Семинарские занятия	-	-	
Практические занятия	34	4	
Лабораторные работы	-	-	
Курсовая работа	-	-	
Самостоятельная работа студента (всего)	59	134	
Итоговая аттестация	зачет	зачет	

4.2. Содержание разделов дисциплины

Tema 1. Вводная лекция. Цели и задачи дисциплины. Общие понятия и определения. Основы термодинамики неравновесных процессов.

Тема 2. Основные понятия и постулаты химической термодинамики.

Статистическая термодинамика. Термодинамическая система. Термодинамические параметры. Свойство аддитивности. Равновесное состояние. Термодинамический процесс. Необратимые процессы. Функции состояния. Уравнения состояния.

Тема 3. Первый и второй законы термодинамики.

Дополнительные термодинамические функции. Термохимия в металлургии. Понятие энтальпии. Понятие энтропии.

Тема 4. Некоторые общие вопросы термодинамики фазовых равновесий.

Фазовые равновесия в однокомпонентной системе. Равновесие при химических реакциях. Термодинамические свойства растворов. Процессы смешивания. Свойства регулярных растворов.

Тема 5. Термодинамическое обоснование фазовых диаграмм. Равновесие в реакциях между растворами, правило фаз Гиббса.

Тема 6. Металлические сплавы

Основные сведения о сплавах. Фаза. Физико-химическая или металлическая система. Твердые растворы. Упорядоченные твердые растворы (сверхструктуры). Химические соединения. Механические смеси. Промежуточные фазы.

Тема 7. Диаграммы состояния двойных систем.

Общие сведения о диаграммах состояния двойных систем. Диаграмма состояния системы с неограниченной растворимостью компонентов. Общая характеристика диаграммы. Кристаллизация сплавов. Правило отрезков. Ликвация.

- **Тема 8.** Диаграммы состояния с точками экстремума на кривых линии ликвидуса и солидуса. Связь между свойствами и диаграммой состояния. Общая характеристика диаграммы. Кристаллизация сплавов. Правило отрезков. Связь между свойствами и диаграммой состояния.
- **Тема 9**. Диаграммы состояния систем с упорядоченными твердыми растворами. Кристаллизация сплавов. Правило отрезков. Связь между свойствами и диаграммой состояния.
- **Тема 10.** Диаграммы состояния системы с бинодальной кривой. Кристаллизация сплавов. Правило отрезков. Связь между свойствами и диаграммой состояния.
- **Тема 11.** Диаграммы состояния системы эвтектического типа с отсутствием растворимости компонентов в твердом состоянии.

Общая характеристика диаграммы. Механизм эвтектической кристаллизации и строение эвтектик. Кристаллизация сплавов. Правило отрезков. Связь между свойствами и диаграммой состояния.

- **Тема 12.** Диаграммы состояния системы эвтектического типа с образованием граничных твёрдых растворов. Характеристика диаграммы. Кристаллизация сплавов и их структура. Связь между свойствами и диаграммой состояния. Ликвация в сплавах с ограниченной растворимостью компонентов в твёрдом состоянии.
- **Тема 13.** Диаграммы состояния систем эвтектического типа с различной ограниченной растворимостью в твердом состоянии. Характеристика диаграммы. Кристаллизация сплавов и их структура. Связь между свойствами и диаграммой состояния.

Диаграмма состояния системы эвтектического типа с ретроградной кривой солидус. Характеристика диаграммы. Кристаллизация сплавов и их структура. Связь между свойствами и диаграммой состояния.

Тема 14. Диаграмма состояния системы перитектического типа с образованием граничных твёрдых растворов.

Характеристика диаграммы. Кристаллизация сплавов и их структура. Связь между свойствами и диаграммой состояния.

Тема 15. Диаграммы состояния систем перитектического типа с различной растворимостью в твёрдом состоянии. Характеристика диаграммы. Кристаллизация сплавов и их структура. Связь между свойствами и диаграммой состояния.

Тема 16. Диаграммы состояния систем с промежуточными фазами

Диаграммы состояния систем с конгруэнтно-плавящейся промежуточной фазой. Характеристика диаграммы. Кристаллизация сплавов и их структура. Связь между свойствами и диаграммой состояния.

Тема 17. Диаграммы состояния систем с инконгруэнтно-плавящейся промежуточной фазой. Характеристика диаграммы. Кристаллизация сплавов и их структура. Связь между свойствами и диаграммой состояния.

Диаграммы состояния систем с промежуточными фазами, образующимися по реакциям в твердом состоянии. Характеристика диаграммы. Кристаллизация сплавов и их структура. Связь между свойствами и диаграммой состояния.

Тема 18. Диаграммы состояния систем с полиморфными промежуточными фазами. Характеристика диаграммы. Кристаллизация сплавов и их структура. Связь между свойствами и диаграммой состояния.

Диаграммы состояния систем с упорядоченными промежуточными фазами. Характеристика диаграммы. Кристаллизация сплавов и их структура. Связь между свойствами и диаграммой состояния.

- **Тема 19.** Метод геометрической термодинамики. Общие представления о диаграммах состояния. Термодинамический потенциал. Анализ диаграмма состояния двухкомпонентных систем с использованием метода геометрического потенциала
- **Тема 20.** Фазовые диаграммы тройных систем. Геометрические основы изображения диаграмм тройных систем. Концентрационный треугольник. Трехмерная пространственная модель. Политермические проекции поверхностей ликвидуса. Изотермические сечения тройных фазовых диаграмм.
- **Тема 21.** Диаграмма состояния систем с неограниченной растворимостью в жидком и твердом состоянии. Характеристика. Проекция диаграммы. Изотермические разрезы. Политермические разрезы. Фазовые превращения в сплавах.

Тема 22. Диаграмма состояния систем с трехфазным моноваринтным равновесием. Характеристика. Проекция диаграммы. Изотермические разрезы. Политермические разрезы. Фазовые превращения в сплавах.

Тема 23. Диаграмма состояния систем с трехфазным эвтектическим равновесием. Характеристика. Проекция диаграммы. Изотермические разрезы. Политермические разрезы. Фазовые превращения в сплавах.

4.3. Лекции

No		Объем часов	
п/п	Название темы	Очная форма	Заочная форма
1	Вводная лекция. Цели и задачи дисциплины. Общие понятия и определения. Основы термодинамики неравновесных процессов	2	1
2	Основные понятия и постулаты химической термодинамики	2	
3	Первый и второй законы термодинамики.	2	
4	Некоторые общие вопросы термодинамики фазовых равновесий.	2	
5	Термодинамическое обоснование фазовых диаграмм.	2	
6	Металлические сплавы	2	1
7	Диаграммы состояния двойных систем. Общая характеристика.	2	1
8	Диаграммы состояния с точками экстремума на кривых линии ликвидуса и солидуса.	2	1
9	Диаграммы состояния систем с упорядоченными твердыми растворами.	2	
10	Диаграммы состояния системы с бинодальной кривой. Кри-		1
11	Диаграммы состояния системы эвтектического типа с отсутствием растворимости компонентов в твердом состоянии.	2	
12	Диаграммы состояния системы эвтектического типа с образованием граничных твёрдых растворов	2	
13	Диаграммы состояния систем эвтектического типа с различной ограниченной растворимостью в твердом состоянии.	2	1
14	Диаграмма состояния системы перитектического типа с образованием граничных твёрдых растворов.	2	
15	Диаграммы состояния систем перитектического типа с различной растворимостью в твёрдом состоянии. Характеристика диаграммы. Кристаллизация сплавов и их структура. Связь между свойствами и диаграммой состояния.	2	
16	Диаграммы состояния систем с промежуточными фазами	2	
17	Диаграммы состояния систем с инконгруэнтно-плавящейся промежуточной фазой	2	

18	Диаграммы состояния систем с полиморфными промежуточными фазами.	2	
19	19 Метод геометрической термодинамики		
20	Фазовые диаграммы тройных систем. Геометрические основы изображения диаграмм тройных систем	4	
21	Диаграмма состояния систем с неограниченной растворимостью в жидком и твердом состоянии	4	
22	Диаграмма состояния систем с трехфазным моновариантным состоянием	4	
Ито	го:	51	6

4.4. Практические занятия

№	Название темы	Объем	часов
п/п		Очная форма	Заочная форма
1	Термодинамическое обоснование фазовых диаграмм.	2	2
2	Анализ диаграммы состояния с неограниченной растворимостью в твердом и жидком состоянии.	4	-
3	Анализ диаграммы состояния системы эвтектического типа с отсутствием растворимости компонентов в твердом состоянии	4	-
4	Анализ диаграммы состояния системы перитектического типа с образованием граничных твёрдых растворов	4	
5	Анализ диаграммы состояния систем с промежуточными фазами	4	-
6	Фазовые диаграммы тройных систем. Геометрические основы изображения диаграмм тройных систем	6	2
7	Анализ диаграмма состояния систем с неограниченной растворимостью в жидком и твердом состоянии	6	-
8	Анализ диаграмма состояния систем с трехфазным эвтектическим равновесием.	4	
Итог	70:	34	4

4.5. Лабораторные работы
Лабораторные работы не предусмотрены учебным планом

4.6. Самостоятельная работа студентов

№ п/п		Вид СРС	Объем часов	
	Название темы		Очная форма	Заочная форма
1	Термодинамика фазовых превращений.	Изучение лекционного материала, Подготовка к практическому занятию №1	4	16

2	Анализ фазовых превращений в двойных сплавах с неограниченной растворимостью компонентов в жидком и твёрдом состояниях Подготовка к практическому занятию №2		4	16
3	Анализ фазовых превращений в двойных сплавах с полной растворимостью компонентов в жидком состоянии и ограниченной растворимостью в твёрдом состоянии (с эвтектическим превращением)	Подготовка к практическому занятию №3	4	16
4	Анализ фазовых превращений в двойных сплавах с полной растворимостью компонентов в жидком состоянии и ограниченной растворимостью в твёрдом состоянии (с перитектическим превращением)	Подготовка к практическому занятию №4	8	16
5	Анализ фазовых превращений в двойных сплавах с ограниченной растворимостью компонентов в жидком и твёрдом состояниях	Подготовка к практическому занятию №5	8	17
6	Фазовые диаграммы тройных систем. Геометрические основы изображения диаграмм тройных систем	Подготовка к практическому занятию №6	8	17
7	Анализ диаграмма состояния систем с неограниченной растворимостью в жидком и твердом состоянии	Подготовка к практическому занятию №7	4	17
8	Анализ диаграмма состояния систем с трехфазным эвтектическим равновесием.	Подготовка к практическому занятию №8	4	17
Итог	ro:		59	134

4.7. Курсовой проект/работа

Учебным планом не предусмотрено

5. Образовательные технологии

В процессе обучения для достижения планируемых результатов освоения дисциплины используются следующие образовательные технологии:

- традиционные объяснительно-иллюстративные технологии, которые обеспечивают доступность учебного материала для большинства студентов, системность, отработанность организационных форм и привычных методов, относительно малые затраты времени;
- информационно-коммуникационные технологии, в том числе визуализация, создание электронных учебных материалов;
- использование электронных образовательных ресурсов при подготовке к лекциям, практическим и лабораторным занятиям;
- технология проблемного обучения, в том числе в рамках разбора проблемных ситуаций;

– технология развивающего обучения, в том числе постановка и решение задач от менее сложных к более сложным, развивающих компетенции студентов.

В рамках перечисленных технологий основными методами обучения являются: самостоятельная работа; проблемное обучение.

6. Учебно-методическое и программно-информационное обеспечение дисциплины:

а) основная литература:

- 1.Осинцев О.Е., Диаграммы состояния двойных и тройных систем. Фазовые равновесия в сплавах: учеб. пособие/ Осинцев О.Е. М.: Машиностроение, 2009. 352 с. ISBN 978-5-94275-459-4 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN 9785942754594.html (дата обращения: 17.04.2020). Режим доступа: по подписке.
- 2.Лилеев А.С., Фазовые равновесия и структурообразование : Сб. задач / Лилеев А.С., Малютина Е.С. М. : МИСиС, 2009. 33 с. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/Misis_335.html (дата обращения: 17.04.2020). Режим доступа : по подписке.

б) дополнительная литература

- 1. Захаров А.М. Диаграммы состояния двойных и тройных систем. М.: Металлургия, 1990. 240 с.
- 2. Агеев Е.П. Неравновесная термодинамика в вопросах и ответах. М.: Изд-во МЦМНО, 2005. 324 с.
- $3.\Phi$ изическое металловедение / под ред. Р.У. Кана, П. Хаазена. В 2 т. М.: Металлургия, 1987. 624 с.
- 4. Диаграммы состояния двойных металлических систем: Справочник. В 3 т.: / под общ. ред. Н.П. Лякишева. М.: Машиностроение. 2001.

в) методические рекомендации:

1. Методические рекомендации к выполнению практических занятий по дисциплине «Термодинамика неравновесных процессов» для студентов, обучающихся по направлению подготовки 22.03.01. Материаловедение и технологии материалов. /Сост.: Л.А. Рябичева. Луганск: Изд-во ЛНУ им. Даля, 2020.

г) интернет-ресурсы:

Министерство образования и науки Российской Федерации – http://минобрнауки.pф/

Федеральная служба по надзору в сфере образования и науки – http://obrnadzor.gov.ru/

Портал Федеральных государственных образовательных стандартов высшего образования – $\underline{\text{http://fgosvo.ru}}$

Федеральный портал «Российское образование» – http://www.edu.ru/

Информационная система «Единое окно доступа к образовательным ресурсам» – http://window.edu.ru/

 Φ едеральный центр информационно-образовательных ресурсов — $\underline{\text{http://fcior.edu.ru/}}$

ГОСТы и стандарты – https://standartgost.ru/

Электронные библиотечные системы и ресурсы

Электронно-библиотечная система «StudMed.ru» – https://www.studmed.ru

Информационный ресурс библиотеки образовательной организации

Научная библиотека имени А. Н. Коняева – http://biblio.dahluniver.ru/

Электронные библиотечные системы и ресурсы

Электронно-библиотечная система «StudMed.ru» – https://www.studmed.ru

7. Материально-техническое обеспечение дисциплины

Реализация программы дисциплины требует наличия аудиторий и лаборатории. Лекционные занятия: комплект электронных презентаций/слайдов, аудитория, оснащенная презентационной техникой (мультимедиапроектор, экран, компьютер/ноутбук).

Практические занятия: компьютерный класс, презентационная техника (проектор, экран, компьютер/ноутбук).

Рабочее место преподавателя, оснащенное компьютером с доступом в Интернет, рабочие места студентов по количеству обучающихся, оснащенные компьютерами с доступом в Интернет, предназначенные для работы в электронной образовательной среде.

Программное обеспечение:

Функциональное назначение	Бесплатное программное обеспечение	Ссылки
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu
Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx
Браузер	Opera	http://www.opera.com
Почтовый клиент	Mozilla Thunderbird	http://www.mozilla.org/ru/thunderbird
Файл-менеджер	Far Manager	http://www.farmanager.com/download.php
Архиватор	7Zip	http://www.7-zip.org/
Графический редак- тор	GIMP (GNU Image Manipu- lation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator
Аудиоплеер	VLC	http://www.videolan.org/vlc/

8. Оценочные средства по дисциплине

Паспорт оценочных средств по учебной дисциплине «Термодинамика неравновесных процессов»

Перечень компетенций (элементов компетенций), формируемых в результате освоения учебной дисциплины

№ п/п	Код контролируемой	Формулировка контролируемой	Индикаторы до- стижений компе-	Контролируемые темы	Этапы формирования
	компетенции	компетенции	тенции (по реа-	учебной	(семестр
			лизуемой дисци-	дисциплины,	изучения)
			плине)	практики	
1	ПК-3.	Способен обес-	ПК-3.1.	Тема 1.	4
		печивать кон-	Применяет периодический кон-	Вводная лекция. Тема 2.	
		троль качества изделий после	троль соблюде-	Основные поня-	
		несложных и	ния технологиче-	тия и постулаты	
		сложных процес-	ской дисци-	химической тер-	
		сов	плины в терми-	модинамики.	
			ческом произ-	Тема 3.	
			водстве	Первый и второй	
				законы термоди-	
				намики.	
				Тема 4.	
				Некоторые об-	
				щие вопросы	
				термодинамики	
				фазовых равновесий.	
			ПК-3.2.	Тема 2.	4
			Осуществляет	Основные поня-	4
			разработку мето-	тия и постулаты	
			дик контроля из-	химической тер-	
			делий, изготов-	модинамики.	
			ленных в не-	Тема 3. Первый и	
			сложных и слож-	второй законы	
			ных процессах	термодинамики.	
			термического		
			производства	—	,
			ПК-3.3.	Тема 6.	4
			Выявляет при-	Металлические	
			чины брака по-	сплавы Тема 5.	
			сле несложных и сложных про-	Тема 5. Термодинамиче-	
			цессов термиче-	ское обоснование	
			ского производ-	фазовых диа-	
			ства	грамм.	

2.	ПК-5	Способен участ-	ПК-5.1.	Тема 7.	4
		вовать во внедре-	Участвует в	Диаграммы со-	•
		нии несложных и	сборе и обобще-	стояния двойных	
		сложных новых	нии информации	систем. Общая	
		видов техники и	о новых видах	характеристика.	
		технологий тер-	оборудовании и	Тема 8.	
		мической обра-	технологиях в	Диаграммы со-	
		ботки	термическом	стояния с точ-	
			производстве	ками экстремума	
			1 7	на кривых линии	
				ликвидуса и со-	
				лидуса.	
			ПК-5.2. Участ-	Тема 9 - 18.	4
			вует в разработке	Диаграммы	
			предложений по	двойных систем	
			внедрению в		
			производство не-		
			сложных и слож-		
			ных новых видов		
			оборудования и		
			технологий тер-		
			мического про-		
			изводства		
			ПК-5.3.	Тема 19-23.	4
			Участвует в раз-	Диаграммы	
			работке методик	тройных систем	
			испытаний и ис-		
			следования изде-		
			лий новых видов		
			техники и техно-		
			логий термиче-		
			ской обработки		

Показатели и критерии оценивания компетенций, описание шкал оценивания

No	Код	Индикаторы	Перечень	Контролируе-	Наименование
Π/Π	контролируе-	достижений	планируемых	мые темы учеб-	оценочного
	мой компетен-	компетенции	результатов	ной	средства
	ции	(по реализуемой		дисциплины	
		дисциплине)			
1.	ПК.3.	ПК-3.1.	знать: периодиче-	Тема 1.	Вопросы для
	Способен обес-	Применяет пе-	ский контроль со-	Вводная лек-	сдачи практи-
	печивать кон-	риодический	блюдения технологи-	ция.	ческих заня-
	троль качества	контроль со-	ческой дисциплины в	Тема 2.	тий, зачета
	изделий после	блюдения тех- нологической	термическом произ-	Основные по-	
	несложных и	дисциплины в	водстве	нятия и посту-	
	сложных про-	термическом	уметь: выполнять	латы химиче-	
	цессов	производстве	периодический кон-	ской термоди-	
		-	троль соблюдения	намики.	
			технологической		

		т 2	
ПК-3.2.	дисциплины в термическом производстве владеть: методами периодический контроль соблюдения технологической дисциплины в термическом производстве	Тема 3. Первый и второй законы термодинамики. Тема 4. Некоторые общие вопросы термодинамики фазовых равновесий.	
Осуществляет разработку методик контроля изделий, изготовленных в несложных и сложных процессах термического производства	знать: методик контроля изделий, изготовленных в несложных и сложных процессах термического производства уметь: разрабатывать методики контроля изделий, изготовленных в несложных и сложных процессах термического производства владеть: навыками разработки методик контроля изделий, изготовленных в несложных и сложных процессах термического производства	Тема 2. Основные понятия и постулаты химической термодинамики. Тема 3. Первый и второй законы термодинамики.	
ПК-3.3. Выявляет причины брака после несложных и сложных процессов термического производства	знать: причины брака после несложных и сложных процессов термического производства уметь: выявить причины брака после несложных и сложных процессов термического производства владеть: навыками причины брака после несложных и сложных и сложных и сложных процессов термического производства	Тема 6. Металлические сплавы Тема 5. Термодинамическое обоснование фазовых диаграмм.	

2.	ПК-5.	ПК-5.1.	знать: основные	Тема 7.	Вопросы для
۷.	Способен участ-		положения сбора и		*
	· · · · · · · · · · · · · · · · · · ·	•	<u> </u>	Диаграммы	сдачи практи-
	вовать во внедре-	-	обобщения информа-	состояния	ческих заня-
	нии несложных и	* *	ции о новых видах	двойных си-	тий, зачета
	сложных новых		технологиях в терми-	стем. Общая	
	видов техники и	1.0	ческом производстве	характери-	
	технологий тер-		уметь: выполнять	стика.	
	мической обра-	_	сбор и обобщение	Тема 8.	
	ботки	ческом произ-	информации о новых	Диаграммы	
		водстве.	видах технологий в	состояния с	
			термическом произ-	точками экс-	
			водстве	тремума на	
			владеть: информа-	кривых линии	
			цией о новых видах	ликвидуса и	
			технологий в терми-	солидуса.	
			ческом производ-		
			стве.		
		ПК-5.2.	знать: основы раз-	Тема 9 - 18.	
		Участвует в	работки предложе-	Диаграммы	
		разработке	ний по внедрению в	двойных си-	
		предложений	производство не-	стем	
		по внедрению в	сложных и сложных		
		производство	новых видов обору-		
		несложных и	дования и техноло-		
		сложных новых	гий термического		
		видов оборудо-	производства		
		вания и техно-	уметь: разрабаты-		
		логий термиче-	вать предложения по		
		ского произ-	внедрению в произ-		
		водства	водство несложных и		
			сложных новых ви-		
			дов технологий тер-		
			мического производ-		
			ства		
			владеть: информа-		
			цией по разработки		
			предложений по		
			внедрению в произ-		
			водство несложных и		
			сложных новых ви-		
			дов оборудования и		
			технологий термиче-		
			ского производства		
			ского производства		

ПК-5.3.	знать: методики	Тема 19-23.
Участвует в		Диаграммы
разработке ме-		тройных си-
тодик испыта-	вых видов техники и	стем
ний и исследо-	технологий термиче-	
вания изделий	<u> </u>	
новых видов	уметь: разрабаты-	
техники и тех-	вать методики испы-	
нологий терми-		
ческой обра-	ния изделий новых	
ботки	видов техники и тех-	
	нологий термиче-	
	ской обработки	
	владеть: методи-	
	ками испытаний и	
	исследования изде-	
	лий новых видов тех-	
	ники и технологий	
	термической обра-	
	ботки	

Задания для практических занятий

Занятие 1. Термодинамическое обоснование фазовых диаграмм.

Задание. Определить тип образующихся твердых растворов (замещения или внедрения) и характер растворимости (ограниченная или неограниченная) в двух заданных системах.

Контрольные вопросы

- 1. Что такое термодинамической системой
- 2. Какими параметрами характеризуется термодинамической системой
- 3. Что такое гомогенная и гетерогенная системы?
- 4. Что такое фаза?
- 5. Что такое физико-химическая система?
- 6. Что такое равновесное состояние системы?
- 7. Чему равна свободная энергия при равновесном состоянии системы?
- 8. Что такое компонент?
- 9. Объясните правило фаз Гиббса.
- 10. В каких координатах строится фазовая диаграмма?
- 11. Что такое твердый раствор?
- 12. Объясните твердый раствор внедрения и замещения.
- 13. Объясните условия образования твердых растворов неограниченной растворимости.
- 14. Что такое химическое соединение в сплавах?
- 15. Особенности химических соединений.
- 16. Что такое механическая смесь?
- 17. Между какими компонентами образуется механическая смесь?
- 18. Объясните заданную термодинамическую систему, какую решетку имеет образующийся твердый раствор, тип твердого раствора, характер растворимости.

Занятие 2. Анализ диаграммы состояния с неограниченной растворимостью в твердом и жилком состоянии

Задание. Изобразить диаграмму фазового равновесия системы Cu-Ni. Выполнить ее анализ согласно общему заданию для концентрации сплава.

Контрольные вопросы

- 1. Начертить диаграмму фазового равновесия с неограниченной растворимостью в жидком и твердом состоянии.
 - 2. Определить число степеней свободы для заданного преподавателем сплава.
 - 3. Построить кривую охлаждения (нагрева) для заданного преподавателем сплава.
 - 4. Расставить все фазы.
- 5. Определить количество и состав фаз, или структурных составляющих для заданной преподавателем температуры.

Занятие 3. Анализ диаграммы состояния системы эвтектического типа с отсутствием растворимости компонентов в твердом состоянии

Задание. Начертить диаграмму фазового равновесия системы Pb-Sn или Sn-Zn (по заданию преподавателя). Выполнить ее анализ согласно общему заданию для концентрации сплава, указанного преподавателем.

Контрольные вопросы

- 1. Начертить диаграмму фазового равновесия с ограниченной растворимостью компонентов в жидком и твёрдом состоянии.
 - 2. Определить число степеней свободы для заданного преподавателем сплава.
 - 3. Расставить все фазы.
 - 4. Построить кривую охлаждения (нагрева) для заданного преподавателем сплава.
- 5. Определить количество и состав фаз, или структурных составляющих для заданной преподавателем температуры.

Занятие 4. Анализ диаграммы состояния системы перитектического типа с образованием граничных твёрдых растворов

Задание. Начертить диаграмму фазового равновесия системы Ag-Pt. Выполнить ее анализ согласно общему заданию для концентрации сплава, указанного преподавателем.

Контрольные вопросы

- 1. Начертить диаграмму фазового равновесия с ограниченной растворимостью компонентов в твердом состоянии и наличием перитектического превращения/
 - 2. Определить число степеней свободы для заданного преподавателем сплава.
 - 3. Расставить все фазы.
 - 4. Построить кривую охлаждения (нагрева) для заданного преподавателем сплава.
- 5. Определить количество и состав фаз, или структурных составляющих для заданной преподавателем температуры.

Занятие 5. Анализ диаграммы состояния систем с промежуточными фазами

Задание. Начертить диаграмму фазового равновесия системы Bi-Li. Выполнить ее анализ согласно общему заданию для концентрации сплава, указанного преподавателем

Контрольные вопросы

- 1. Начертить диаграмму фазового равновесия с ограниченной растворимостью компонентов в жидком и твёрдом состоянии.
 - 2. Определить число степеней свободы для заданного преподавателем сплава.
 - 3. Расставить все фазы.
 - 4. Построить кривую охлаждения (нагрева) для заданного преподавателем сплава.
- 5. Определить количество и состав фаз, или структурных составляющих для заданной преподавателем температуры.

Занятие 6. Анализ фазовых превращений в двойных сплавах с наличием химического соединения

Задание. Начертить диаграмму фазового равновесия системы Ir-Re. Выполнить ее анализ согласно общему заданию для концентрации сплава, указанного преподавателем.

Контрольные вопросы

- 1. Начертить диаграмму фазового равновесия с ограниченной растворимостью компонентов в жидком и твёрдом состоянии.
 - 2. Определить число степеней свободы для заданного преподавателем сплава.
 - 3. Расставить все фазы.
 - 4. Построить кривую охлаждения (нагрева) для заданного преподавателем сплава.
- 5. Определить количество и состав фаз, или структурных составляющих для заданной преподавателем температуры.

Занятие 7. Анализ фазовых превращений в двойных сплавах при наличии полиморфных превращений у отдельных компонентов и в случаях перитектоидного и эвтектоидного превращений

Задание. Начертить диаграмму фазового равновесия системы Au-La. Выполнить ее анализ согласно общему заданию для концентрации сплава, указанного преподавателем.

Контрольные вопросы

- 1. Начертить диаграмму фазового равновесия с ограниченной растворимостью компонентов в жидком и твёрдом состоянии.
 - 2. Определить число степеней свободы для заданного преподавателем сплава.
 - 3. Расставить все фазы.
 - 4. Построить кривую охлаждения (нагрева) для заданного преподавателем сплава.
- 5. Определить количество и состав фаз, или структурных составляющих для заданной преподавателем температуры.

Занятие 8. Анализ диаграмма состояния систем с трехфазным эвтектическим равновесием

Задание. Начертить диаграмму фазового равновесия системы железо-цементит. Выполнить ее анализ согласно заданию для концентрации сплава.

Контрольные вопросы

- 1. Начертить диаграмму фазового равновесия с ограниченной растворимостью компонентов в жидком и твёрдом состоянии.
 - 2. Определить число степеней свободы для заданного преподавателем сплава.
 - 3. Расставить все фазы.
 - 4. Построить кривую охлаждения (нагрева) для заданного преподавателем сплава.
- 5. Определить количество и состав фаз, или структурных составляющих для заданной преподавателем температуры.

Критерии и шкала оценивания по оценочному средству «практические занятия»

Шкала оценивания (интервал баллов)	Критерии оценивания	
5	Обучающийся полностью и правильно выполнил задание. Показал отличные знания, умения и владения навыками применения их при ре-	
	шении задач в рамкахусвоенного учебного материала. Работа оформлена аккуратно в соответствии с предъявляемыми требованиями	
4	Обучающийся выполнил задание с небольшими неточностями. Пока- зал хорошие знания, умения и владения навыками применения их при решении задач в рамках освоенного учебного материала. Есть недо- статки в оформлении работы	
3	Обучающийся выполнил задание с существенными неточностями. Показал удовлетворительные знания, умения и владения навыками применения их при решении задач	

2	Обучающийся выполнил задание неправильно. При выполнении обу-
	чающийся продемонстрировал недостаточный уровень знаний, уме-
	ний и владения ими прирешении задач в рамках усвоенного учебного
	материала

Оценочные средства для промежуточной аттестации (зачет)

Тест №1

1. Построить диаграмму состояния, если известно, что компоненты неограниченно растворимы в жидком состоянии, нерастворимы в твердом состоянии и образуют неустойчивое химическое соединение A_2B (30%B). В системе имеются

перитектическая реакция: $\mathcal{K}_{50\%A} + A \xleftarrow{630^{\circ}\text{C}} \rightarrow A_2B$; и эвтектическая реакция: $\mathcal{K}_{30\%A} \xleftarrow{430^{\circ}\text{C}} \rightarrow A_2B + B$. Температуры плавления: $A - 1130^{\circ}\text{C}$, $B - 950^{\circ}\text{C}$.

2. Дать полный анализ диаграммы Bi-Li и объяснить характер изменения свойств в заданной системе по закону H.C. Курнакова. Для сплава с концентрацией второго компонента 60% построить кривую охлаждения и описать формирование структуры сплава при кристаллизации. С помощью правила отрезков определить концентрацию и количество фаз в заданном сплаве при температуре 650^{0} C и количество структурных составляющих при температуре 20^{0} C.

Тест №2

1. Построить диаграмму состояния, если известно, что компоненты неограниченно растворимы в жидком состоянии, а в твердом состоянии образуют твердые растворы ограниченной концентрации. В системе имеется перитектическая реакция

$$\mathcal{K}_{10\%B} + \beta_{25\%A} \xleftarrow{750^{\circ}\text{C}} \alpha_{45\%A}$$
. Температуры плавления: $A - 450^{\circ}\text{C}$, $B - 1050^{\circ}\text{C}$.

2. Дать полный анализ диаграммы La-Pb и объяснить характер изменения свойств в заданной системе по закону H.C. Курнакова. Для сплава с концентрацией второго компонента 55% построить кривую нагрева и описать формирование структуры сплава при кристаллизации. С помощью правила отрезков определить концентрацию и количество фаз в заданном сплаве при температуре 1000^{0} C и количество структурных составляющих при температуре 20^{0} C.

Тест №3

1. Построить диаграмму состояния, если известно, что компоненты неограниченно растворимы в жидком состоянии, не растворимы в твердом состоянии и образуют устойчивое химическое соединение A₂B (40%B). В системе имеются две эвтектические реакции:

$$\mathcal{K}_{10\%B} \xleftarrow{850^{\circ}C} A + A_2B;$$

 $\mathcal{K}_{30\%A} \xleftarrow{450^{\circ}C} A_2B + B.$

Температуры плавления: $A - 1130^{\circ}$ C, $B - 1100^{\circ}$ C, $A_2B - 1200^{\circ}$ C.

2. Дать полный анализ диаграммы Sn-Bi и объяснить характер изменения свойств в заданной системе по закону H.C. Курнакова. Для сплава с концентрацией второго компонента 70% построить кривую охлаждения и описать формирование структуры сплава при кристаллизации. С помощью

правила отрезков определить концентрацию и количество фаз в заданном сплаве при температуре 160^{0} С и количество структурных составляющих при температуре 20^{0} С.

Тест №4

1. Построить диаграмму состояния, если известно, что компоненты неограниченно растворимы в жидком состоянии, не растворимы в твердом состоянии и образуют устойчивое химическое соединение A₂B (30%B). В системе имеются две эвтектические реакции:

$$\mathcal{K}_{20\%B} \xleftarrow{600^{\circ}C} A + A_2B;$$

$$\mathcal{K}_{40\%A} \xleftarrow{500^{\circ}C} A_2B + B.$$
 Температуры плавления: A — 935 $^{\circ}$ C, B — 780 $^{\circ}$ C, A₂B - 1000 $^{\circ}$ C.

2. Дать полный анализ диаграммы Mg-Ge и объяснить характер изменения свойств в заданной системе по закону H.C. Курнакова. Для сплава с концентрацией второго компонента 15% построить кривую охлаждения и описать формирование структуры сплава при кристаллизации. С помощью правила отрезков определить концентрацию и количество фаз в заданном сплаве при температуре 700^{0} C и количество структурных составляющих при температуре 20^{0} C.

Тест №5

1. Построить диаграмму состояния, если известно, что компоненты неограниченно растворимы в жидком состоянии и нерастворимы в твердом состоянии. В системе имеется эвтектическая реакция:

$$\mathcal{K}_{32\%B} \leftarrow \stackrel{252^{\circ}C}{\longrightarrow} A + B$$
..
Температуры плавления: $A - 327^{\circ}C$, $B - 650^{\circ}C$.

2. Дать полный анализ диаграммы Ir-Re и объяснить характер изменения свойств в заданной системе по закону Н.С. Курнакова. Для сплава с концентрацией второго компонента 35% построить кривую охлаждения и описать формирование структуры сплава при кристаллизации. С помощью правила отрезков определить концентрацию и количество фаз в заданном сплаве при температуре 1600^{0} С и количество структурных составляющих при температуре 20^{0} С.

Тест №6

1. Построить диаграмму состояния, если известно, что компоненты неограниченно растворимы в жидком состоянии, не растворимы в твердом состоянии и образуют неустойчивое химическое соединение AB₂ (70%B). В системе имеются

перитектическая реакция:
$$\mathcal{K}_{50\%B} + B \leftarrow \frac{1000^{\circ}\text{C}}{\longrightarrow} AB_2$$
; и эвтектическая реакция: $\mathcal{K}_{30\%B} \leftarrow \frac{700^{\circ}\text{C}}{\longrightarrow} A + AB_2$. Температуры плавления: $A - 950^{\circ}\text{C}$, $B - 1300^{\circ}\text{C}$.

2. Дать полный анализ диаграммы Au-La и объяснить характер изменения свойств в заданной системе по закону H.C. Курнакова. Для сплава с концентрацией второго компонента 90% построить кривую нагрева и описать формирование структуры сплава при кристаллизации. С помощью правила отрезков определить концентрацию и количество фаз в заданном сплаве при температуре 600^{0} С и количество структурных составляющих при температуре 20^{0} С.

Тест №7

1. Построить диаграмму состояния, если известно, что компоненты неограниченно растворимы в жидком состоянии, а в твердом состоянии образуют твердый раствор на основе компонента А и устойчивое химическое соединение AB₂ (60%B). В системе имеются две эвтектические реакции:

$$\mathcal{K}_{25\%B} \xleftarrow{500^{\circ}C} \alpha_{5\%B} + AB_2;$$

 $\mathcal{K}_{10\%A} \xleftarrow{700^{\circ}C} AB_2 + B.$

Растворимость компонента B в A при 20° C составляет 1%. Температуры плавления: A -750° C, B -950° C, AB₂ - 1200° C.

2. Дать полный анализ диаграммы Au-Pb и объяснить характер изменения свойств в заданной системе по закону H.C. Курнакова. Для сплава с концентрацией второго компонента 75% построить кривую охлаждения и описать формирование структуры сплава при кристаллизации. С помощью правила отрезков определить концентрацию и количество фаз в заданном сплаве при температуре 230^{0} С и количество структурных составляющих при температуре 20^{0} С.

Тест №8

1. Построить диаграмму состояния, если известно, что компоненты неограниченно растворимы в жидком состоянии и нерастворимы в твердом состоянии. В системе имеется эвтектическая реакция:

$$\mathcal{K}_{20\%B} \xleftarrow{-50^{\circ}\text{C}} A + B.$$
. Температуры плавления: A -100^{0}C , B -250^{0}C .

2. Дать полный анализ диаграммы Na-Sb и объяснить характер изменения свойств в заданной системе по закону H.C. Курнакова. Для сплава с концентрацией второго компонента 37% построить кривую нагрева и описать формирование структуры сплава при кристаллизации. С помощью правила отрезков определить концентрацию и количество фаз в заданном сплаве при температуре 600^{0} С и количество структурных составляющих при температуре 20^{0} С.

Критерии и шкала оценивания по оценочному средству «зачет»

Шкала оценивания (интервал баллов)	Критерий оценивания			
Зачет сдан на высо-	Студент глубоко и в полном объёме владеет программным материалом.			
ком уровне	Грамотно, исчерпывающе и логично его излагает в устной или пись-			
	менной форме. При этом знает рекомендованную литературу, прояв-			
	ляет творческий подход в ответах на вопросы и правильно обосновы-			
	вает принятые решения, хорошо владеет умениями и навыками при вы-			
	полнении практических задач.			
Зачет сдан на сред-	Студент знает программный материал, грамотно и по сути излагает его			
нем уровне	в устной или письменной форме, допуская незначительные неточности			
	в утверждениях, трактовках, определениях и категориях или незначи-			
	тельное количество ошибок. При этом владеет необходимыми умени-			
ями и навыками при выполнении практических задач.				

Зачет сдан на низ-	Студент знает только основной программный материал, допускает не-
ком уровне	точности, недостаточно чёткие формулировки, непоследовательность
	в ответах, излагаемых в устной или письменной форме. При этом не-
	достаточно владеет умениями и навыками при выполнении практиче-
	ских задач. Допускает до 30% ошибок в излагаемых ответах.
Зачет сдан на не-	Студент не знает значительной части программного материала. При
удовлетворитель-	этом допускает принципиальные ошибки в доказательствах, в трак-
ном уровне	товке понятий и категорий, проявляет низкую культуру знаний, не вла-
71	деет основными умениями и навыками при выполнении практических
	задач. Студент отказывается от ответов на дополнительные вопросы

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифров- кой) заведующего кафед- рой (заведующих кафед- рами)