МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Институт технологий и инженерной механики Кафедра материаловедения (наименование кафедры)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по учебной дисциплине

Сплавы с особыми свойствами

22.03.01 Материаловедение и технологии материалов

Материаловедение в машиностроении Композиционные и порошковые материалы, покрытия

Разработчик: доцент <u>Могиль</u> Могильная Е. П.
ФОС рассмотрен и одобрен на заседании кафедры материаловедения
от « <u>//</u> 8»
Заведующий кафедрой материаловеденияРябичева Л.А.

Луганск 2025 г.

Комплект оценочных материалов по дисциплине «Сплавы с особыми свойствами»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа

Выберите один правильный ответ

- 1. Какой из перечисленных сплавов не относится к сплавам с особыми свойствами?
 - А) жаропрочный
 - Б) износостойкий
 - В) магнитный

Правильный ответ: Б

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

- 2. Какое превращение происходит в стали при нагреве ее выше критической точки A_1 ?
 - А) перлита в аустенит
 - Б) феррита в цементит
 - В) аустенита в мартенсит

Правильный ответ: А

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

- 3. Как называются элементы, специально вводимые в сталь для получения требуемых свойств, строения и структуры?
 - А) примеси
 - Б) раскислители
 - В) легирующие

Правильный ответ: В

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

- 4.Из каких фаз состоит структура перлита?
- А) феррита и цементита
- Б) цементита и аустенита
- В) аустенита и мартенсита

Правильный ответ: А

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

- 5. Какой из перечисленных сплавов относится к коррозионностойким?
- **A)** 30ΧΓCA
- Б) Р9
- B) 08X13

Правильный ответ: В

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

- 6. Какой из перечисленных сплавов относится к жаропрочным? A) P6M5 Б) 25Х1МФ B) 40X13 Правильный ответ: Б Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7 7. Какой из перечисленных сплавов относится к жаростойким? A) 20X13 Б) 15Х28 B) 45 Правильный ответ: Б Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7 8. Какой из перечисленных сплавов относится к магнитным? А) ШХ15 Б) 55 B) 50XHC Правильный ответ: В Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7 9. Какой из перечисленных сплавов относится к немагнитным? A) X13HO4 Б) У8 B) 20 Правильный ответ: А Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7 10. Какой из перечисленных сплавов относится к кавитационно-стойким? A) 5XHM Б) 30Х10Г10 B) 12X18H9T Правильный ответ: Б Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7
 - 11. Какую структуру должна иметь кавитационно-стойкая сталь?
 - А) ферритную
 - Б) аустенитную
 - В) мартенситную

Правильный ответ: В

- 12. Какой из перечисленных сплавов относится к сплавам для криогенной техники?
 - A) 45
 - Б) 10Х14Г14Н4Т
 - В) ШХ15

Правильный ответ: Б

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

Задания закрытого типа на установление соответствия

Установите правильное соответствие.

Каждому элементу левого столбца соответствует только один элемент правого столбца.

1. Сопоставьте марку стали с структурным классом

	Марка стали		Структурный класс		
1)	40X13	A)	мартенсито-ферритный		
2)	08X13	Б)	ферритный		
3)	12X17	B)	мартенситный		

Правильный ответ:

1	2	3
В	A	Б

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

2. Сопоставьте марку стали с структурным классом

	Марка стали		Структурный класс
1)	12X18H9	A)	Аустенито-мартенситный
2)	08X22H6T	Б)	аустенитный
3)	07X16H6	B)	аустенито-ферритный

Правильный ответ:

1	2	3
Б	В	A

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

3. Сопоставьте марку стали с классом по назначению

	Марка стали		Класс по назначению
1)	12X13	A)	жаропрочная
2)	40X18H25C2	Б)	жаростойкая
3)	15X25T	B)	коррозионно-стойкая

Правильный ответ:

1	2	3
В	A	Б

4. Сопоставьте марку стали с классом по назначению:

	Марка стали		Класс по назначению
1)	ЭИ12	A)	для криогенной техники
2)	Х13Ю4	Б)	магнитная
3)	09Г2СД	B)	немагнитная

Правильный ответ:

1	2	3
Б	В	A

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

Задания закрытого типа на установление правильной последовательности

Установите правильную последовательность.

Запишите правильную последовательность букв слева направо

- 1. Установите правильную последовательность этапов разработки технологии термической обработки
 - А) контроль твердости
 - Б) выбор вида термической обработки
 - В) определение температурного режима термической обработки
 - Γ) определение температур критических точек

Правильный ответ: Б, Г, В, А

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

- 2. Установите правильную последовательность технологического процесса термической обработки
 - А) назначение режимов окончательной термической обработки
 - Б) исследование качества заготовки детали
 - В) назначение режимов предварительной термической обработки
 - Г) контроль качества готовой детали

Правильный ответ: Б, В, А, Г

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

- 3. Установите правильную последовательность этапов разработки маршрутной технологии изготовления детали
 - А) термическая обработка
 - Б) контроль качества готовой детали
 - В) получение заготовки детали
 - Г) механическая обработка детали

Правильный ответ: В, Г, А, Б

•	4. Установите правильную последовательность этапов проведения
терми	ческой обработки изделия
-	А) охлаждение детали
-	Б) нагрев печи до заданной температуры
-	В) загрузка деталей в печь
	Г) выдержка детали при заданной температуре
	Правильный ответ: Б, В, Г, А
	Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7
	5. Установите правильную последовательность технологии проведения
закалк	си
	А) закалка
	Б) отжиг нормализационный
-	В) контроль твердости
	Г) отпуск низкий
	Правильный ответ: Б, А, Г, В
-	Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7
!	Задания открытого типа
,	Задания открытого типа на дополнение
	Напишите пропущенное слово (словосочетание).
	1. Разрушение под действием растягивающих напряжений и коррозионной называется
-	Правильный ответ: коррозионное растрескивание
	Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7
-	компетенции (индикаторы). ОПК-5, ОПК-0, ПК-/
	2. Коррозионностойкие стали склонны к хрупкому разрушению,
связан	нному с Правильный ответ: выделением карбидов, образованием мартенсита и
-	дочением
-	Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7
	3. Легирующие элементы могут находиться в стали в виде
	Правильный ответ: твердых растворов и химических соединений
	Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7
•	4. Легирующие элементы отличаются друг от друга
	Правильный ответ: строением атомно-кристаллической решетки,
отнош	пением к углероду в стали, влиянием на положение критических точек
железа	
-	Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

5. Способ	ность сталей	и сплавов н	выдерживать мех	анические н	агрузки при
высоких темп	ературах в	течение	определенного	времени	называется
 Правильн	ый ответ: жар	опрочност	Ь		
Компетен	ции (индикат	оры): ОПК-	-3, ОПК-6, ПК-7		
6. Сопрот	ивление стале	ей и сплаво	в окислению при	и высоких т	емпературах
называют					
Правильн	ый ответ: жар	остойкості	ью		
Компетен	ции (индикат	оры): ОПК-	-3, ОПК-6, ПК-7		
7. Интенс	ивность нама	гничиваних	я сплава называет	гся	
Правильн	ый ответ: маг	нитной про	оницаемостью		
Компетен	ции (индикат	оры): ОПК-	-3, ОПК-6, ПК-7		
8. Напряж того, чтобы его			должна быть пр я	иложена к	образцу для
Правильн	ый ответ: коэ	рцитивной	силой		
Компетен	ции (индикат	оры): ОПК-	-3, ОПК-6, ПК-7		
Задания с	открытого ти	іпа с краті	сим свободным с	ответом	

Дайте ответ на вопрос

1. На какие группы делятся магнитные сплавы? Правильный ответ: магнитотвердые и магнитомягкие

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

2. Какой термической обработке подвергают жаропрочные аустенитные стали с карбидным упрочнением?

Правильный ответ: закалка при температурах $1050-1200~^{0}$ С в воде, масле или на воздухе и старение при температурах $600-850^{0}$ С

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

3. Какие стали относятся к коррозионностойким?

Правильный ответ: стали, обладающие высоким сопротивлением электрохимической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой, морской и др. сред)

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

4. Какой термической обработке подвергаются аустенитные коррозионностойкие стали?

Правильный ответ: закалке в воде при температуре 1050-1100⁰С для уменьшения склонности к межкристаллитной коррозии

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

5. Какой термической обработке подвергаются ферритный коррозионностойкие стали?

Правильный ответ: отжиг проводят при температуре 760-780⁰C с охлаждением в воде или на воздухе с целью придания максимальной стойкости против межкристаллитной коррозии

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

6. Для чего предназначены жаропрочные аустенитные стали?

Правильный ответ: для работы при температурах 650-750^оС и довольно высоких уровнях напряжений. Их используют для изготовления ответственных деталей энергомашиностроения

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

7. Как называется процесс, заключающийся в нагреве закаленного сплава ниже температуры критических точек, при котором происходит распад пересыщенного твердого раствора с целью уменьшения неравновесности структуры?

Правильный ответ: отпуск

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

8. Как называется бездиффузионное превращение переохлажденного аустенита?

Правильный ответ: мартенситное, мартенситным Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

Задания открытого типа с развернутым ответом

Дайте ответ на вопрос

1. Какой основной легирующий элемент коррозионностойких сталей? Время выполнения - 10 мин.

Критерии оценивания: полное содержательное соответствие приведенному ниже пояснению:

Основным легирующим элементом коррозионностойких сталей является хром. Он должен присутствовать в стали в количестве, не менее 12%. На поверхности хромистой стали в естественных и окислительных условиях образуется тонкая окисная пленка хрома Cr_2O_3 , которая и предохраняет металл от коррозии.

2. Какие легирующие элементы содержатся в жаропрочных сталях? Время выполнения — 15 мин.

Критерии оценивания: полное содержательное соответствие приведенному ниже пояснению:

Эти стали, содержат большое количество хрома и никеля, а также добавки других элементов. Хром придает стали жаропрочность благодаря образующейся на поверхности изделия плотной окисной пленки Cr_2O_3 и образует карбиды комплексного типа (Cr, W, Fe) $_{23}C_6$. Никель вводится в сталь для получения аустенитной структуры, так как он расширяет γ -область. Хром, вольфрам и молибден повышают температуру рекристаллизации и жаропрочность стали. Высокая жаропрочность этих сталей обеспечивается содержанием 0,3-0,5%С и дополнительным введением карбидообразующих элементов W, W0, W1, W1, W2, которые связывают часть углерода в специальные карбиды и упрочняют матрицу.

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

3. От чего зависит уровень жаропрочности и термическая стабильность аустенитных жаропрочных сталей?

Время выполнения - 15 мин.

Критерии оценивания: полное содержательное соответствие приведенному ниже пояснению:

От температуры старения. При низких температурах(500-600°С) выделение карбидных фаз протекает медленно, образуются высокодисперсные частицы, прочностные свойства при изотермической выдержке непрерывно возрастают. С повышением температуры старения скорость процессов выделения и коагуляции возрастает, достигается определенный максимум упрочнения, положение которого зависит от состава сплава. Чем сложнее карбидные фазы по составу и чем легирование аустенит, тем больше эффект упрочнения при старении и медленнее развиваются процессы разупрочнения.

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

4. Какие фазы являются упрочняющими в аустенитных жаропрочных сталях?

Время выполнения – 10 мин.

Критерии оценивания: полное содержательное соответствие приведенному ниже пояснению:

Упрочняющими карбидными фазами в аустенитных сталях являются карбиды ванадия и ниобия (VC, Nb), а также карбиды хрома (типа $Me_{23}C_6$ и Me_7C_3), являющихся сложными карбидами переменного состава, в которых в широком интервале концентраций растворены Fe, Ni, W, V и Mo.

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

5. Что такое предел длительной прочности? Время выполнения – 10 мин.

Критерии оценивания: полное содержательное соответствие приведенному ниже пояснению:

Напряжение, вызывающее разрушение металла за определенное время испытания при постоянной температуре. Метод испытания заключается в доведении образца до разрушения под действием постоянной растягивающей нагрузки при постоянной температуре.

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

6. Что такое предел ползучести?

Время выполнения – 5 мин.

Критерии оценивания: полное содержательное соответствие приведенному ниже пояснению:

Напряжение, которое вызывает за установленное время испытания при данной температуре заданное удлинение образца или заданную скорость деформации.

Компетенции (индикаторы): ОПК-3, ОПК-6, ПК-7

7. В чем заключается мартенситное превращение, какова его особенность и отличие от перлитного превращения?

Время выполнения – 10 мин.

Критерии оценивания: полное содержательное соответствие приведенному ниже пояснению:

Мартенситное превращение заключается в закономерной перестройке решетки $Fe_{\gamma}(C) \to Fe_{\alpha}(C)$, при которой атомы смещаются по отношению к соседним на расстояния, не превышающие межатомные. Особенность мартенситного превращения состоит в том, что углерод остается в твердом растворе, т.е. образуется однофазная структура. Мартенситное превращение отличается от других большой скоростью зарождения и роста кристаллов, наличием поверхностного рельефа.

Экспертное заключение

Представленный фонд оценочных средств (далее – ФОС) по дисциплине «Сплавы с особыми свойствами» соответствует требованиям ФГОС ВО.

Предлагаемые формы и средства текущего и промежуточного контроля адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 22.03.01 Материаловедение и технологии материалов.

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины представлены в полном объеме.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанный и представленный для экспертизы фонд оценочных средств рекомендуется к использованию в процессе подготовки обучающихся по указаниому направлению.

Председатель учебно-методической комиссии института технологий и инженерной механики

Леу- Ясуник С.Н.

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (ка- федр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)