РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Институт Технологий и инженерной механики **Кафедра** Материаловедение

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ «НОВЫЕ ТЕХНОЛОГИИ УПРОЧНЕНИЯ МАТЕРИАЛОВ»

По направлению подготовки 22.04.01 Материаловедение и технологии материалов

Магистерская программа: «Структурные и фазовые превращения при деформационно-термической обработке»

Лист согласования РПУД

Рабочая программа учебной дисциплины «Новые технологии упрочнения материалов» по направлению подготовки 22.04.01 Материаловедение и технологии материалов. — 13 с.

Рабочая программа учебной дисциплины «Новые технологии упрочнения материалов» составлена с учетом государственного образовательного стандарта высшего образования по направлению подготовки 22.04.01 Материаловедение и технологии материалов, утвержденного приказом Министерства образования и науки Российской Федерации от 24.04.2018 № 306 редакция с изменениями от 26.11.2020 №1456.

\sim	_	00	n .	-	T T/	nn -	TT
('(()	(" I	΄ Δ	\mathbf{H}	14.	H	ПЬ:
·	•	· ·			rı	1 /	11).

Доктор техн. наук, профессор Рябичева Л.А.

Рабочая программа дисциплины утверждена на заседании кафедры материаловедения «18» _ 04 _ 2025 г., протокол № 9
Заведующая кафедрой материаловедения Рябичева Л.А.
Переутверждена: «»20 г., протокол №
Рекомендована на заседании учебно-методической комиссии института Технологий и ин-
женерной механики « <u>18</u> » <u>04</u> 20 <u>23</u> г., протокол № <u>3</u> .
Председатель учебно-методической комиссии института Ясуник С.Н.

Структура и содержание дисциплины

1. Цели и задачи дисциплины, её место в учебном процессе

Цель изучения дисциплины — изучить механизм и технологии упрочнения деталей машин, инструмента, штампов, пресс-форм, ножей, фильер, подшипников качения и др. изделий со специальными свойствами поверхности.

Задачи:

- изучить механизмы упрочнения;
- изучить методы поверхностного упрочнения;
- изучить микроструктуру и свойства упрочнённых слоёв детали.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина «Новые технологии упрочнения материалов» относится к части, формируемой участниками образовательных отношений Условиями для освоения дисциплины являются знания, умения и навыки, полученные при изучении дисциплин: «Физическая химия», «Физика», «Математическое моделирование и современные проблемы наук о материалах и процессах» и служит основой для написания магистерской диссертации.

3. Требования к результатам освоения содержания дисциплины

Код и наименование ком-	Индикаторы достижений	Перечень планируемых ре-
петенции	компетенции (по реализуе-	зультатов
	мой дисциплине)	
ПК-6. Способен организо-	ПК-6.1. Организует прове-	Знать методы проведения ана-
вать проведение анализа и	дение анализа структуры но-	лиза структуры новых матери-
анализировать структуру	вых материалов, адаптирует	алов, адаптировать методики
новых материалов, адап-	методики исследования	исследования свойств матери-
тировать методики иссле-	свойств материалов к по-	алов к потребностям произ-
дования свойств материа-	требностям производства и	водства и разрабатывать спе-
лов к потребностям произ-	разрабатывает специальные	циальные методики
водства и разрабатывать	методики.	Уметь разрабатывать анализ
специальные методики.		структуры новых материалов,
		адаптировать методики иссле-
		дования свойств материалов к
		потребностям производства и
		разрабатывать специальные
		методики
		Владеть навыками разработки
		и анализа структуры новых
		материалов, адаптировать ме-
		тодики исследования свойств
		материалов к потребностям
		производства и разрабатывать
		специальные методики

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

Pur vivoluoj pologija		сов (зач. ед.)
Вид учебной работы	Очная форма	Заочная форма
Общая учебная нагрузка (всего)	216	
	(6,0 зач. ед)	
Обязательная аудиторная учебная нагрузка	60	
(всего)		
в том числе:		
Лекции	30	
Семинарские занятия	-	
Практические занятия	30	
Лабораторные работы	-	
Курсовая работа (курсовой проект)	-	
Другие формы и методы организации образователь-	-	
ного процесса (расчетно-графические работы,		
групповые дискуссии, ролевые игры, тренинг, ком-		
пьютерные симуляции, интерактивные лекции, се-		
минары, анализ деловых ситуаций и т.п.)		
Самостоятельная работа студента (всего)	156	
Итоговая аттестация	экзамен	

4.2. Содержание разделов дисциплины

Тема 1. Механизмы упрочнения деталей машин

Связь механизмов упрочнения со структурными несовершенствами кристаллов. Четыре основных механизма упрочнения металлических материалов: субструктурное, твердорастворное, поликристаллическое и многофазное упрочнение.

Тема 2. Механические методы поверхностного упрочнения деталей машин

Параметры состояния поверхностного слоя деталей машин. Основные виды обработки поверхностным пластическим деформированием. Сущность упрочнения пластическим деформированием. Структура и свойства поверхностного слоя.

Тема 3. Химико-термическая обработка

Общие закономерности. Диффузионное насыщение сплавов углеродом и азотом. Ионное азотирование и цементация. Одновременное насыщение поверхности стали азотом и углеродом. Диффузионное насыщение сплавов металлами и неметаллами. Поверхностная закалка стали.

Тема 4. Методы лазерного, электронно-лучевого, плазменного и детонационного упрочнения деталей машин

Лазерное упрочнение. Механизм упрочнения. Лазерная наплавка. Лазерное оборудование. Электронно-лучевая обработка. Электронно-лучевое оборудование. Влияние лазерного упрочнения на микроструктуру и твёрдость деталей машин.

Методы детонационного и плазменного нанесения покрытия. Механизм упрочнения. Оборудование для детонационного нанесения покрытия. Влияние детонационного и плазменного нанесения покрытия на микроструктуру и твёрдость деталей машин.

Плазменное поверхностное упрочнение деталей. Механизм упрочнения. Оборудование для плазменного упрочнения деталей. Влияние плазменного упрочнения на микроструктуру и твёрдость деталей машин.

Тема 5. Вакуумное ионно-плазменное упрочнение, ионное, магнетронное распыление, ионное легирование

Вакуумное ионно-плазменное упрочнение. Ионное распыление. Магнетронное распыление. Ионное осаждение покрытий. Ионно-диффузионное насыщение. Ионное легирование (имплантация). Изменение микроструктуры и твёрдости деталей машин при упрочнении.

Тема 6. Магнитное упрочнение деталей машин

Методы магнитной обработки. Механизм магнитного упрочнения. Изменение микроструктуры и механических свойств.

Тема 7. Лазерная термическая обработка

Лазерная химико-термическая обработка. Влияние на структуру и свойства.

4.3. Лекшии

	Название темы		часов
№ п/п			Заочная форма
1	Механизмы упрочнения деталей машин	6	
2	Механические методы поверхностного упрочнения деталей машин	4	
3	Химико-термическая обработка	4	
4	Методы лазерного, электронно-лучевого, плазменного и детонационного упрочнения деталей машин	4	
5	Бакуумное ионно-плазменное упрочнение, ионное, магнетронное распыление, ионное легирование		
6	Магнитное упрочнение деталей машин		
7	Лазерная термическая обработка		
	Итого	30	

4.4. Лабораторные работы учебным планом не предусмотрены

4.5. Практические занятия

№	Название темы		часов
п/п		Очная форма	Заочн. форма
1	Механизмы упрочнения деталей машин	4	
2	Дорнование отверстий	4	
3	Обкатка роликом поверхности матрицы	4	
4	Ионное азотирование автомобильных клапанов, технология, структура и свойства.	6	
5	Лазерное упрочнение деталей машин	6	
6	Влияние на структуру и свойств лазерной химико-термической обработки	6	
Ито	ro:	30	

4.6. Самостоятельная работа студентов

No			Объем часов	
п/п	Название темы	Вид СРС	Очная	Заочная
			форма	форма
1	Механизмы упрочнения деталей машин		30	
2	Механические методы поверхностного упрочнения деталей машин		20	
3	Упрочнения деталеи машин Химико-термическая обработка	изучение лекци-	20	
4	Методы лазерного, электронно-лучевого, плазменного и детонационного упрочнения деталей машин	онного материала, подготовка к практическим	26	
5	Вакуумное ионно-плазменное упрочнение, ионное, магнетронное распыление, ионное легирование	занятиям	15	
6	Магнитное упрочнение деталей машин		20	
7	Лазерная термическая обработка		15	
8	Подготовка к экзамену		10	
Итог	TO:		156	

4.7. Курсовые работы/проекты не предусмотрены учебным планом.

5. Образовательные технологии

В процессе обучения для достижения планируемых результатов освоения дисциплины используются следующие образовательные технологии:

- информационно-коммуникационная технология, в том числе визуализация, создание электронных учебных материалов;
- технология коллективного взаимодействия, в том числе совместное решение проблемных задач, ситуаций, кейсов;
- технология проблемного обучения, в том числе в рамках разбора проблемных ситуаций;

- технология развивающего обучения, в том числе постановка и решение задач от менее сложных к более сложным, развивающих компетенции студентов;
- технология адаптивного обучения, в том числе проведение консультаций преподавателя.

6. Учебно-методическое и информационное обеспечение дисциплины:

а) основная литература:

- 1. Физическое металловедение. В 3-х т. 3-е изд., перераб. и доп. / Подред. Р.У. Кана, П. Хаазена. Т.2. Фазовые превращения в металлах и спла-вах и сплавы с особыми физическими свойствами /Пер. с англ. М.: Металлургия, 1987. 624 с.
- 2. Физическое материаловедение: Учебник для вузов: В 6 т. / Под общей ред. Б.А. Калина. Том 1. Физика твердого тела/ Г.Н. Елманов, А.Г.Залужный, В.И. Скрытный, Е.А. Смирнов, В.Н. Яльцев М.: МИФИ,2007. 636 с.
- 3. Физическое материаловедение: Учебник для вузов: В 6 т. / Под общей ред. Б.А. Калина. Том 2. Основы материаловедения/ В.В. Нечаев, Е.А.Смирнов, С.А. Кохтев, Б.А. Калин, А.А. Полянский, В.И. Стаценко М.:МИФИ, 2007. 608 с.

б) Дополнительная литература:

- 4. Мартин Дж., Доэрти Р. Стабильность микроструктуры металлических систем /Пер. с англ. О.А. Алексеева и В.С. Хабарова. М.: Атомиздат, 1978. 280 с.
- 5. Гегузин Я.Е., Кривоглаз М.А. Движение макроскопических включений в твердых телах. М.: Металлургия, 1971. 344 с.
- 6. Структура и механические свойства металлов /М.Л. Бернштейн,В.А. Займовский. М.: Металлургия, 1970. 472 с.

в) методические указания

Методические указания к выполнению практических занятий по дисциплине «Новые технологии упрочнения материалов» для студентов, обучающихся по направлению подготовки 22.04.01. Материаловедение и технологии материалов, /Сост.: Л.А. Рябичева. Луганск: Изд-во ЛНУ им. Даля, 2021.

г) Internet-ресурсы:

Министерство образования и науки Российской Федерации — http://muhoбphayku.pd/ Федеральная служба по надзору в сфере образования и науки — http://obrnadzor.gov.ru/ Министерство образования и науки Луганской Народной Республики — https://minobr.su

Народный совет Луганской Народной Республики – https://nslnr.su

Портал Федеральных государственных образовательных стандартов высшего образования – $\frac{\text{http://fgosvo.ru}}{\text{http://fgosvo.ru}}$

Федеральный портал «Российское образование» – http://www.edu.ru/

Информационная система «Единое окно доступа к образовательным ресурсам» – http://window.edu.ru/

Федеральный центр информационно-образовательных ресурсов – http://fcior.edu.ru/

Электронные библиотечные системы и ресурсы

Электронно-библиотечная система «Консультант студента» - http://www.studentlibrary.ru/cgi-bin/mb4x

Электронно-библиотечная система «StudMed.ru» – https://www.studmed.ru

Информационный ресурс библиотеки образовательной организации

Научная библиотека имени А. Н. Коняева – http://biblio.dahluniver.ru/

7. Материально-техническое обеспечение дисциплины

Освоение дисциплины «Новые технологии упрочнения материалов» предполагает использование академических аудиторий, соответствующих действующим санитарным и противопожарным правилам и нормам.

Прочее: рабочее место преподавателя, оснащённое компьютером с доступом в Интернет.

Программное обеспечение:

Функциональ- ное назначение	Бесплатное программ- ное обеспечение	Ссылки
Офисный пакет Libre Office 6.3.1		https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu
Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx
Браузер	Opera	http://www.opera.com
Почтовый кли- ент	Mozilla Thunderbird	http://www.mozilla.org/ru/thunderbird
Файл-менеджер	Far Manager	http://www.farmanager.com/download.php
Архиватор	7Zip	http://www.7-zip.org/
Графический ре- дактор	GIMP (GNU Image Manipulation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator
Аудиоплейер	VLC	http://www.videolan.org/vlc/

8. Оценочные средства по дисциплине

Паспорт

фонда оценочных средств по учебной дисциплине «Новые технологии упрочнения материалов» Перечень компетенций (элементов компетенций), формируемых в результате освоения учебной дисциплины (модуля) или практики

№ π/ π	Код кон- тролиру- емой компе- тенции	Формулировка контролируемой компетенции	Индикаторы достижений компетенции (по реализуемой дисци- плине)	Контролируемые темы учебной дис- циплины, практики	Этапы фор- миро- вания (се- местр изуче- ния
1	ПК-6	Способен организовать проведение анализа и анализировать структуру новых материалов, адаптировать методики исследования свойств материалов к потребностям производства и разрабатывать специальные методики.	ПК-6.1. Организует проведение анализа структуры новых материалов, адаптирует методики исследования свойств материалов к потребностям производства и разрабатывает специальные методики.	Тема 1. Механизмы упрочнения деталей машин Тема 2. Механические методы поверхностного упрочнения деталей машин Тема 3 Химико-термическая обработка. Тема 4. Методы лазерного, плазменного и детонационного упрочнения деталей машин Тема 5. Вакуумное ионно-плазменное упрочнение, ионное, магнетронное распыление, ионное легирование Тема 6. Магнитное упрочнение деталей машин Тема 7. Лазерная термическая обработка	3

Показатели и критерии оценивания компетенций, описание шкал оценивания

№ π/π	Код контро- лируе- мой компе- тенции	Индикаторы достижений компетенции (по реализуемой дисциплине)	Перечень планируемых результатов	Контролируемые темы учебной дисциплины	Наимено- вание оценоч- ного средства
1	ПК-6	ПК-6.1. Организует проведение анализа структуры новых материалов, адаптирует методики исследования свойств материалов к потребностям производства и разрабатывает специальные методики	Знать методы проведения анализа структуры новых материалов, адаптировать методики исследования свойств материалов к потребностям производства и разрабатывать специальные методики Уметь разрабатывать анализ структуры новых материалов, адаптировать методики исследования свойств материалов к потребностям производства и разрабатывать специальные методики Владеть навыками разработки и анализа структуры новых материалов, адаптировать методики исследования свойств материалов к потребностям производства и разрабатывать специальные методики	Тема 1. Механизмы упрочнения деталей машин Тема 2. Механические методы поверхностного упрочнения деталей машин Тема 3 Химикотермическая обработка. Тема 4. Методы лазерного, электронно-лучевого, плазменного и детонационного упрочнения деталей машин Тема 5. Вакуумное ионно-плазменное упрочнение, ионное, магнетронное распыление, ионное легирование Тема 6. Магнитное упрочнение деталей машин Тема 7. Лазерная термическая обработка	Сдача практических работ, вопросы к экзамену

Оценочные средства для промежуточной аттестации (экзамен)

Вопросы к экзамену:

- 1. Механизмы упрочнения деталей машин
- 2. Связь механизмов упрочнения со структурными несовершенствами кристаллов.
- 3. Четыре основных механизма упрочнения металлических материалов: субструктурное, твердорастворное, поликристаллическое и многофазное упрочнение.
 - 4. Механические методы поверхностного упрочнения деталей машин
 - 5. Параметры состояния поверхностного слоя деталей машин.
- 6. Основные виды обработки поверхностным пластическим деформированием.
 - 7. Сущность упрочнения пластическим деформированием.
 - 8. Структура и свойства поверхностного слоя.
 - 9. Химико-термическая обработка
 - 10. Диффузионное насыщение сплавов углеродом и азотом.
 - 11. Ионное азотирование и цементация.
 - 12. Одновременное насыщение поверхности стали азотом и углеродом.
 - 13. Диффузионное насыщение сплавов металлами и неметаллами.
 - 14. Поверхностная закалка стали.
 - 15. Лазерное упрочнение. Механизм упрочнения.
 - 16. Лазерная наплавка. Лазерное оборудование.
- 17. Электронно-лучевая обработка. Электронно-лучевое оборудование. 18. Влияние лазерного упрочнения на микроструктуру и твёрдость деталей машин.
- 19. Методы детонационного и плазменного нанесения покрытия. Механизм упрочнения.
 - 20. Оборудование для детонационного нанесения покрытия.
- 21. Влияние детонационного и плазменного нанесения покрытия на микроструктуру и твёрдость деталей машин.
- 22. Плазменное поверхностное упрочнение деталей. Механизм упрочнения.
 - 23. Оборудование для плазменного упрочнения деталей.
- 24. Влияние плазменного упрочнения на микроструктуру и твёрдость деталей машин.
 - 25. Вакуумное ионно-плазменное упрочнение.
 - 26. Ионное распыление.
 - 27. Магнетронное распыление.
 - 28. Ионное осаждение покрытий.
 - 29. Ионно-диффузионное насыщение.
 - 30. Ионное легирование (имплантация).
 - 31. Методы магнитной обработки. Механизм магнитного упрочнения.
 - 32. Лазерная термическая обработка

33. Лазерная химико-термическая обработка. Влияние на структуру и свойства.

Критерии и шкала оценивания по оценочному средству «экзамен»

Шкала оценивания (интервал баллов)	Критерий оценивания
5	Ответ дан на высоком уровне (студент в полном объёме осветил рассматриваемую проблематику, привёл аргументы в пользу своих суждений, владеет профильным понятийным (категориальным) аппаратом и т.п.)
4	Ответ дан на среднем уровне (студент в целом осветил рассматриваемую проблематику, привёл аргументы в пользу своих суждений, допустив некоторые неточности и т.п.)
3	Ответ дан на низком уровне (студент допустил существенные неточности, изложил материал с ошибками, не владеет в достаточной степени профильным категориальным аппаратом и т.п.)
2	Ответ дан на неудовлетворительном уровне или не представлен (студент не готов, не выполнил задание и т.п.)

Лист изменений и дополнений

No	Виды дополнений и	Дата и номер протокола	Подпись (с расшифровкой)
п/п	изменений	заседания кафедры (кафедр),	заведующего кафедрой
		на котором были	(заведующих кафедрами)
		рассмотрены и одобрены	
		изменения и дополнения	