МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Институт Технологий и инженерной механики **Кафедра** Материаловедение

УТВЕРЖДАЮ

Директор

Института Технологий и инженерной

механики

Могильная Е.П.

винавог (дочинсе)

2023 года

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ «НАНОТЕХНОЛОГИИ В МАШИНОСТРОЕНИИ»

По направлению подготовки 22.04.01 Материаловедение и технологии материалов

Магистерская программа: «Структурные и фазовые превращения при деформационно-термической обработке»

Лист согласования РПУД

Рабочая программа учебной дисциплины «Нанотехнологии в машиностроении» по направлению подготовки 22.04.01 Материаловедение и технологии материалов. – 16 с.

Рабочая программа учебной дисциплины «Нанотехнологии в машиностроении» составлена с учетом государственного образовательного стандарта высшего образования по направлению подготовки 22.04.01 Материаловедение и технологии материалов, утвержденного приказом Министерства образования и науки Российской Федерации от 24.04.2018 № 306 редакция с изменениями от 26.11.2020 №1456.

CO	CT	A D	ТХТ	TT	TL.
$\cup \cup$	CT	AD.	III	ΣJ	ID.

Доктор техн. наук, профессор Рябичева Л.А.

Рабочая программа дисциплины утверждена на заседании кафедры материаловеде-
ния « <u>1S</u> » <u>0Ч</u> 20 <u>23</u> г., протокол № <u>S</u>
\mathcal{N}
Заведующая кафедрой материаловедения Рябичева Л.А.
Переутверждена: «»20 г., протокол №
Рекомендована на заседании учебно-методической комиссии института Технологий и ин-
женерной механики
« <u>18» 0420_23</u> г., протокол № <u>3</u>
Председатель учебно-методической
комиссии института Ясуник С.Н.
Romitouri morally is

[©] ФГБОУ ВО «ЛГУ им. В. ДАЛЯ», 2023 год

Структура и содержание дисциплины

1. Цели и задачи дисциплины, её место в учебном процессе

Цель изучения дисциплины — освоение методов получения наноматериалов, используемых в современном машиностроении, их свойств и преимуществ перед традиционными материалами; освоение типовых технологий производства деталей.

Задачи:

- изучить современные достижения материаловедения в создании новых наноматериалов и наноструктурированных материалов;
- ознакомиться с применением нанотехнологий в машиностроительном материаловедении.

2. Место дисциплины в структуре ООП ВО

Дисциплина «Нанотехнологии в машиностроении» входит в цикл дисциплин по выбору 1.

Содержание дисциплины является логическим продолжением содержания дисциплин: «Материалы для машиностроительной промышленности», «Общее материаловедение и технологии материалов» и служит основой для выполнения магистерской диссертации.

3. Требования к результатам освоения содержания дисциплины

	, ,	* * * * * * * * * * * * * * * * * * * *
Код и наименование ком-	Индикаторы достижений	Перечень планируемых ре-
петенции	компетенции (по реализуе-	зультатов
	мой дисциплине)	
ОПК-4. Способен нахо-	ОПК-4.1. Разрабатывает, ис-	Знать: методическую, научно-
дить и перерабатывать ин-	пользует, систематизирует и	техническую и технологиче-
формацию, требуемую для	анализирует методическую,	скую литературу для приня-
принятия решений в науч-	научно-техническую и тех-	тия решений в научных иссле-
ных исследованиях и в	нологическую литературу	дованиях и в практической
практической технической	для принятия решений в	технической деятельности
деятельности	научных исследованиях и в	Уметь: использовать, система-
	практической технической	тизировать и анализировать
	деятельности	методическую, научно-техни-
		ческую и технологическую
		литературу для принятия ре-
		шений в научных исследова-
		ниях и в практической техни-
		ческой деятельности
		Владеть: навыками использо-
		вания, систематизации и ана-
		лиза методической, научно-
		технической и технологиче-
		ской литературы для принятия
		решений в научных исследо-
		ваниях и в практической тех-
		нической деятельности

ПК-2. Способен моделировать процессы обработок и прогнозировать результаты их осуществления при различных режимах, в том числе с использованием стандартных пакетов компьютерных программ и средств автоматизированного проектирования

ПК-2.1. Моделирует процессы различных обработок материалов с использованием стандартных пакетов компьютерных программ и средств автоматизированного проектирования.

Знать: методы моделирования процессов различных обработок материалов с использованием стандартных пакетов компьютерных программ и средств автоматизированного проектирования.

Уметь: моделировать процессы различных обработок материалов с использованием стандартных пакетов компьютерных программ и средств автоматизированного проектирования

Владеть: навыками моделирования процессов различных обработок материалов с использованием стандартных пакетов компьютерных программ и средств автоматизированного проектирования

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

Para vivofino i noficera	Объем час	сов (зач. ед.)
Вид учебной работы	Очная форма	Заочная форма
Общая учебная нагрузка (всего)	180	
	(5,0 зач. ед)	
Обязательная аудиторная учебная нагрузка	45	
(всего)		
в том числе:		
Лекции	30	
Семинарские занятия	-	
Практические занятия	15	
Лабораторные работы	-	
Курсовая работа (курсовой проект)	-	
Другие формы и методы организации образователь-	-	
ного процесса (расчетно-графические работы,		
групповые дискуссии, ролевые игры, тренинг, ком-		
пьютерные симуляции, интерактивные лекции, се-		
минары, анализ деловых ситуаций и т.п.)		
Самостоятельная работа студента (всего)	135	
Итоговая аттестация	зачёт	

4.2. Содержание разделов дисциплины

Tema 1. Исторические аспекты нанотехнологий. История развития науки о наноматериалах и нанотехнологиях. Перспективы применения наноматериалов.

- **Тема 2.** Классификация. Виды и способы получения нанообъектов. Классификация нанообъектов. Структура, свойства и способы получения конструкционных наноматериалов. Синтез объёмных наноструктурированных материалов. Фуллерены: строение, свойства. Нанотрубки, нанопроволоки. Структура, свойства, способы получения. Нанокомпозитные, нанопористые, функциональные материалы, ультрадисперсные порошки (УДП). Тонкие плёнки и покрытия. Нанотехнология в инженерии поверхности.
- **Тема 3**. Физико-химические и структурные основы самоорганизации материалов. Синергетическая модель наноструктурных состояний. Синергетика наноструктурирования на этапе эксплуатации. Синергетика наноструктурирования поверхностей твердосплавного инструмента. Наноструктурирование металлов при усталостном нагружении. Эффект сферодинамического деформирования при первичном нанообразовании.
- **Тема 4.** Типовые нанотехнологии производства деталей машин в условиях интенсивных пластических деформаций сдвига. Роль сдвиговых деформаций при выполнении технологического процесса изготовления объемных деталей. Виды деформации в технологическом процессе изготовления деталей. Исходные материалы для получения деталей машин методом сдвига. Технологические особенности наноструктурирования стали при гидроштамповке и ротационной вытяжке. Технологические особенности наноструктурирования титана, меди, алюминия и их сплавов при равноканальном угловом прессовании. Эволюция микроструктуры при интенсивной пластической деформации. Мезомеханика интенсивной пластической деформации. Нанотехнологии процесса упрочнения.
- **Тема 5**. Типовые нанотехнологии производства инструментов. Режущая кромка резца как объект нанотехнологии. Эпиламирование нанотехнология для повышения стойкости инструмента.
- **Тема 6.** Метрология наносостояний. Контроль структуры материала на разном уровне его получения. Образцы, методика приготовления образцов, оборудование. Контроль механических и физических свойств наноматериала. Образцы, методика приготовления образцов, оборудование.
- **Тема 7**. Перспективы развития нанотехнологий. Перспективы развития наноматериалов. Новые технологические процессы изготовления деталей машин из наноматериалов.

4.3. Лекции

№	Название темы		Объем часов	
п/п			Заочная форма	
1	Исторические аспекты нанотехнологий	2		
2	Классификация. Виды и способы получения нанообъектов.	6		
3	Физико-химические и структурные основы самоорганизации материалов	4		
4	Типовые нанотехнологии производства деталей машин в условиях интенсивных пластических деформаций сдвига	6		
5	Типовые нанотехнологии производства инструментов	4		
6	Метрология наносостояний	4		
7	Перспективы развития нанотехнологий	4		
	Итого	30		

4.4. Лабораторные работы учебным планом не предусмотрены

4.5. Практические занятия

	.5. 11 parth teerne sannthn	05	
No		Объем часов	
п/п	Название темы		Заочн.
		форма	форма
1	Изучение видов и способов получения нанообъектов	2	
2	Расчет размеров заготовки и выбор материала для получения	2	
	объемной осесимметричной детали	4	
3	Выбор метода исследования структуры полученной детали.	2	
3	Описание структуры	2	
4	Анализ процессов упрочнения наноматериала. Построение лога-	2	
4	рифмической зависимости прочности от степени деформации	2	
	Технологические особенности наноструктурирования одноком-		
5	понентной системы на основе меди при равноканальном угло-	4	
	вом прессовании		
6	Технологические особенности наноструктурирования бинарной	3	
U	системы медь+титан при равноканальном угловом прессовании	3	
Ито	TO:	15	

4.6. Самостоятельная работа студентов

NC.			Объем часов	
№ п/п	Название темы	Вид СРС	Очная	Заочная
11/11			форма	форма
1	Подготовка к практическим занятиям 1-6	Подготовка к практическим занятиям, самостоятельный поиск источников информации, оформление отчетов	30	
2	Исторические аспекты нанотехнологий		4	

3	Классификация. Виды и способы получения нанообъектов.		6	
4	Физико-химические и структурные основы самоорганизации материалов	Самостоятель- ный поиск ис-	10	
5	Типовые нанотехнологии производства дета- лей машин в условиях интенсивных пласти- ческих деформаций сдвига	точников информации, анализ, структурирование, изуче-	20	
6	Типовые нанотехнологии производства инструментов	ние информа- ции.	20	
7	Метрология наносостояний		10	
8	Перспективы развития нанотехнологий		10	
9	Выполнение индивидуального задания		15	
10	Подготовка к зачету		10	
Итог	TO:		135	

4.7. Курсовые работы/проекты не предусмотрены учебным планом.

5. Образовательные технологии

В процессе обучения для достижения планируемых результатов освоения дисциплины используются следующие образовательные технологии:

- информационно-коммуникационная технология, в том числе визуализация, создание электронных учебных материалов;
- технология коллективного взаимодействия, в том числе совместное решение проблемных задач, ситуаций, кейсов;
- технология проблемного обучения, в том числе в рамках разбора проблемных ситуаций;
- технология развивающего обучения, в том числе постановка и решение задач от менее сложных к более сложным, развивающих компетенции студентов;
- технология адаптивного обучения, в том числе проведение консультаций преподавателя.

6. Учебно-методическое и программно-информационное обеспечение дисциплины

а) основная литература:

1. Солнцев Ю.П., Нанотехнологии и специальные материалы: Учебное пособие для вузов / Солнцев Ю.П., Пряхин Е.И., Вологжанина С.А., Петкова А.П. - 2-е изд., стереотип. - СПб.: ХИМИЗДАТ, 2017. - 336 с. - ISBN 978-5-93808-296-0 - Текст: электронный // ЭБС "Консультант студента": [сайт]. - URL:

http://www.studentlibrary.ru/book/ISBN9785938082960.html (дата обращения: 04.12.2019). Режим доступа : по подписке.

2.Утяшев Ф.З., Теория и практика деформационных методов формирования нанокристаллической структуры в металлах и сплавах / Ф.З. Утяшев, Г.И. Рааб, В.Г. Шибаков, М.М. Ганиев - Казань : Казанский ГМУ, 2016. - 208 с. - ISBN 978-5-00019-658-8 - Текст : электронный // ЭБС "Консультант студента" : [сайт]. - URL : http://www.studentlibrary.ru/book/ISBN9785000196588.html (дата обращения: 04.12.2019). Режим доступа : по подписке.

б) дополнительная литература:

- 1. Валиев Р.З., Александров И.В. Наноструктурные материалы, полученные интенсивной пластической деформацией. М.: Логос, 2000.
- 2. Лякишев Н.П., Алымов М.И., Добаткин СВ. На-номатериалы конструкционного назначения // Конверсии в машиностроении. 2002. № 6.
- 3. Лариков Л.Н. Диффузионные процессы в нанокристаллических материалах // Металлофизика и новейшие технологии. 1995. Т. 17. № 1.
- 4. Теоретические основы первичного нанообразования на основе эффекта сферодинамического деформирования [Текст] / В.Г. Бещеков // Технология машиностроения: Обзорно-аналитический, научно-технический и производственный журнал. М.: Технология машиностроения, 2006. С. 19-22.

в) методические указания:

Методические указания к выполнению практических занятий по дисциплине «Нанотехнологии в машиностроении» для студентов, обучающихся по направлению подготовки 22.04.01. Материаловедение и технологии материалов, /Сост.: Л.А. Рябичева. Луганск: Изд-во ЛНУ им. Даля, 2021.

г) Internet-ресурсы:

Министерство образования и науки Российской Федерации — http://мино-брнауки.pd/

Федеральная служба по надзору в сфере образования и науки – http://obrnadzor.gov.ru/

Министерство образования и науки Луганской Народной Республики – https://minobr.su

Народный совет Луганской Народной Республики – https://nslnr.su

Портал Федеральных государственных образовательных стандартов высшего образования — $\frac{\text{http://fgosvo.ru}}{\text{http://fgosvo.ru}}$

Федеральный портал «Российское образование» – http://www.edu.ru/

Информационная система «Единое окно доступа к образовательным ресурсам» – http://window.edu.ru/

Федеральный центр информационно-образовательных ресурсов – http://fcior.edu.ru/

Электронные библиотечные системы и ресурсы

Электронно-библиотечная система «Консультант студента»

http://www.studentlibrary.ru/cgi-bin/mb4x

Электронно-библиотечная система «StudMed.ru» – https://www.studmed.ru

Информационный ресурс библиотеки образовательной организации Научная библиотека имени А. Н. Коняева – http://biblio.dahluniver.ru/

7. Материально-техническое обеспечение дисциплины

Освоение дисциплины «Нанотехнологии в машиностроении» предполагает использование академических аудиторий, соответствующих действующим санитарным и противопожарным правилам и нормам.

Прочее: рабочее место преподавателя, оснащённое компьютером с доступом в Интернет; микроскопы металлографические МИМ-7; образцы, микрошлифы и оборудование для их подготовки; альбомы микроструктур металлов и металлических сплавов; лабораторные стенды образцов и наглядных пособий кафедры; стандартные шкалы изображений микроструктур по ГОСТ 5639.

Программное обеспечение:

Функциональ- ное назначение	Бесплатное программ- ное обеспечение	Ссылки
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu
Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx
Браузер	Opera	http://www.opera.com
Почтовый кли-ент	Mozilla Thunderbird	http://www.mozilla.org/ru/thunderbird
Файл-менеджер	Far Manager	http://www.farmanager.com/download.php
Архиватор	7Zip	http://www.7-zip.org/
Графический редактор	GIMP (GNU Image Manipulation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator
Аудиоплейер	VLC	http://www.videolan.org/vlc/

8. Оценочные средства по дисциплине Паспорт

фонда оценочных средств по учебной дисциплине «Нанотехнологии в машиностроении»

Перечень компетенций (элементов компетенций), формируемых в результате освоения учебной дисциплины (модуля) или практики

No	Код кон-	Формулировка	Индикаторы	Контролируемые	Этапы
п/	тролиру-	контролируемой	достижений	темы учебной	форми-
П	емой	компетенции	компетенции	дисциплины,	рова-
	компе-		(по реализуемой дисци-	практики	ния
	тенции		плине)		(ce-
			,		местр
					изуче-
					ния
1	ОПК-4.	Способен нахо-	ОПК-4.1. Разрабатывает,	Тема 1. Историче-	3
		дить и перераба-	использует, систематизи-	ские аспекты	
		тывать информа-	рует и анализирует мето-	нанотехнологий	
		цию, требуемую	дическую, научно-техни-	Тема 2. Классифи-	
		для принятия ре-	ческую и технологиче-	кация. Виды и	
		шений в научных	скую литературу для при-	способы получе-	
		исследованиях и в	нятия решений в науч-	ния нанообъектов.	
		практической тех-	ных исследованиях и в	Тема 3. Физико-	
		нической деятель-	практической техниче-	химические и	
		ности	ской деятельности	структурные ос-	
		пости	ской деятельности	новы самооргани-	
				зации материалов	
				Тема 4. Типовые	
				нанотехнологии	
				производства де-	
				талей машин в	
				условиях интен-	
				сивных пластиче-	
				ских деформаций	
	пи э	C=====================================	ПК 2.1. Маже	сдвига	2
2	ПК-2	Способен модели-	ПК-2.1. Моделирует про-	Тема 5. Типовые	3
		ровать процессы	цессы различных обрабо-	нанотехнологии	
		обработок и про-	ток материалов с исполь-	производства ин-	
		гнозировать ре-	зованием стандартных	струментов Тема 6. Метроло-	
		зультаты их осу-	пакетов компьютерных	=	
		ществления при	программ и средств авто-	гия наносостоя- ний	
		различных режи-	матизированного проек-	Тема 7. Перспек-	
		мах, в том числе с	тирования	тивы развития	
		использованием		нанотехнологий	
		стандартных паке-		папотелнологии	
		тов компьютер-			
		ных программ и			
L		r P 11			

	средств автомати-		
	зированного про-		
	ектирования		

Показатели и критерии оценивания компетенций, описание шкал оценивания

тенции	Сдача
1 ОПК-4 ОПК-4.1. Разрабаты- вает, использует, си- стематизирует и ана- лизирует методиче- ческую и технологи- ческую литературу технологий	практиче- ских работ, задания, зачет

2	ПК-2	ПК-2.1. Моделирует	Знать: методы моде-	Тема 5. Типовые	Сдача
	_	процессы различных	лирования процессов	нанотехнологии	практиче-
		обработок материалов	различных обрабо-	производства ин-	ских ра-
		с использованием	ток материалов с ис-	струментов	бот, зада-
		стандартных пакетов	пользованием стан-	1 3	ния, зачёт
		компьютерных про-	дартных пакетов	Тема 6. Метро-	Ź
		грамм и средств авто-	компьютерных про-	логия нанососто-	
		матизированного про-	грамм и средств ав-	яний	
		ектирования	томатизированного		
		<u>-</u>	проектирования.	Тема 7. Перспек-	
			Уметь: моделировать	тивы развития	
			процессы различных	нанотехнологий	
			обработок материа-		
			лов с использова-		
			нием стандартных		
			пакетов компьютер-		
			ных программ и		
			средств автоматизи-		
			рованного проекти-		
			рования		
			Владеть: навыками		
			моделирования про-		
			цессов различных об-		
			работок материалов с		
			использованием		
			стандартных пакетов		
			компьютерных про-		
			грамм и средств ав-		
			томатизированного		
			проектирования		

Оценочные средства для промежуточной аттестации (зачёт)

Вопросы к зачёту:

- 1. История развития науки о наноматериалах и нанотехнологиях.
- 2. Перспективы применения наноматериалов.
- 3. Классификация нанообъектов. Структура, свойства и способы получения конструкционных наноматериалов.
 - 4. Синтез объёмных наноструктурированных материалов.
 - 5. Фуллерены: строение, свойства.
- 6. Нанотрубки, нанопроволоки. Структура, свойства, способы получения.
- 7. Нанокомпозитные, нанопористые, функциональные материалы, ультрадисперсные порошки.
 - 8. Тонкие пленки и покрытия.
 - 9. Нанотехнология в инженерии поверхности.
 - 10. Синергетическая модель наноструктурных состояний.
 - 11. Синергетика наноструктурирования на этапе эксплуатации.

- 12. Синергетика наноструктурирования на этапе производства.
- 13. Синергетика наноструктурирования поверхностей твердосплавного инструмента.
 - 14. Наноструктурирование металлов при усталостном нагружении.
- 15. Эффект сферодинамического деформирования при первичном нанообразовании.
- 16. Роль сдвиговых деформаций при выполнении технологического процесса изготовления объёмных деталей.
- 17. Виды деформации в технологическом процессе изготовления деталей.
- 18. Исходные материалы для получения деталей машин методом сдвига.
- 19. Технологические особенности наноструктурирования стали при гидроштамповке и ротационной вытяжке.
- 20. Технологические особенности наноструктурирования титана, меди, алюминия и их сплавов при равноканальном угловом прессовании. Эволюция микроструктуры при интенсивной пластической деформации.
- 21. Мезомеханика интенсивной пластической деформации. Нанотехнологии процесса упрочнения.
- 22. Режущая кромка резца как объект нанотехнологии. Эпиламирование нанотехнология для повышения стойкости инструмента.
- 23. Контроль структуры материала на разном уровне его получения. Образцы, методика приготовления образцов, оборудование.
- 24. Контроль механических и физических свойств наноматериала. Образцы, методика приготовления образцов, оборудование.
- 25. Перспективы развития наноматериалов. Новые технологические процессы изготовления деталей машин из наноматериалов.

Критерии и шкала оценивания по оценочному средству - зачёт

Шкала оценивания	Критерий оценивания
(интервал баллов)	түттүүш одошолин
5	Ответ представлен на высоком уровне (студент в полном объёме осветил рассматриваемую проблематику, привёл аргументы в пользу своих суждений, владеет профильным понятийным (категориальным) аппаратом и т.п.)
4	Ответ представлен на среднем уровне (студент в целом осветил рассматриваемую проблематику, привёл аргументы в пользу своих суждений, допустив некоторые неточности и т.п.)
3	Ответ представлен на низком уровне (студент допустил существенные неточности, изложил материал с ошибками, не владеет в достаточной степени профильным категориальным аппаратом и т.п.)
2	Ответ представлен на неудовлетворительном уровне или не представлен (студент не готов, не выполнил задание и т.п.)

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)
		рассмотрены и одобрены	
		изменения и дополнения	