МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Институт Технологий и инженерной механики **Кафедра** Материаловедение

УТВЕРЖДАЮ МОГИЛЬНАЯ Е.П.

« 18 » 2023 года

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ «ТЕОРИЯ И ТЕХНОЛОГИЯ УПРОЧНЕНИЯ ПОРОШКОВЫХ МАТЕРИАЛОВ»

По направлению подготовки 22.04.01 Материаловедение и технологии материалов

Магистерская программа: «Функциональные материалы, покрытия»

Лист согласования РПУД

Рабочая программа учебной дисциплины «Теория и технология упрочнения порошковых материалов» по направлению подготовки 22.04.01 Материаловедение и технологии материалов. -13 с.

Рабочая программа учебной дисциплины «Теория и технология упрочнения порошковых материалов» составлена с учетом государственного образовательного стандарта высшего образования по направлению подготовки 22.04.01 Материаловедение и технологии материалов, утвержденного приказом Министерства образования и науки Российской Федерации от 24.04.2018 № 306 редакция с изменениями от 26.11.2020 №1456.

СОСТАВИТЕЛЬ:

комиссии института

Доктор техн. наук, профессор Рябичева Л.А.
Рабочая программа дисциплины утверждена на заседании кафедры материаловедения « 18 » 20 23 г., протокол № 20
Заведующая кафедрой материаловедения Рябичева Л.А.
Переутверждена: «»20 г., протокол №
Рекомендована на заседании учебно-методической комиссии института Технологий и инженерной механики «18» 04 2023 г., протокол № 3
Председатель учебно-методической

Лет Ясуник С.Н.

Структура и содержание дисциплины

1. Цели и задачи дисциплины, её место в учебном процессе

Цель изучения дисциплины — изучить механизм и технологии упрочнения деталей машин, инструмента, штампов, пресс-форм, ножей, фильер, подшипников качения и др. изделий со специальными свойствами поверхности.

Задачи:

- изучить механизмы упрочнения;
- изучить методы поверхностного упрочнения;
- изучить микроструктуру и свойства упрочнённых слоёв детали.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина «Теория и технологии упрочнения порошковых материалов» относится к дисциплинам по выбору 1. Условиями для освоения дисциплины являются знания, умения и навыки, полученные при изучении дисциплин: «Математическое моделирование и современные проблемы наук о материалах и процессах», «Структура и свойства спечённых материалов», «Функциональные материалы и покрытия» и служит основой для написания магистерской диссертации.

3. Требования к результатам освоения содержания дисциплины

Код и наименование	Индикаторы достижений	Перечень планируемых
компетенции	компетенции (по	результатов
	реализуемой дисциплине)	
ПК-6. Способен	ПК-6.1. Организует	Знать методы проведения
организовать проведение	проведение анализа	анализа структуры новых
анализа и анализировать	структуры новых	материалов, адаптировать
структуру новых	материалов, адаптирует	методики исследования
материалов, адаптировать	методики исследования	свойств материалов к
методики исследования	свойств материалов к	потребностям производства и
свойств материалов к	потребностям производства	разрабатывать специальные
потребностям	и разрабатывает	методики
производства и	специальные методики.	Уметь разрабатывать анализ
разрабатывать		структуры новых материалов,
специальные методики.		адаптировать методики
		исследования свойств
		материалов к потребностям
		производства и разрабатывать
		специальные методики
		Владеть навыками разработки
		и анализа структуры новых
		материалов, адаптировать
		методики исследования
		свойств материалов к
		потребностям производства и

	разрабатывать методики	специальные

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

Dur ywofinoù noform	Объем часов (зач. ед.)		
Вид учебной работы	Очная форма	Заочная форма	
Общая учебная нагрузка (всего)	216		
- · · · · ·	(6,0 зач. ед)		
Обязательная аудиторная учебная нагрузка	45		
(всего)			
в том числе:			
Лекции	30		
Семинарские занятия	-		
Практические занятия	15		
Лабораторные работы	-		
Курсовая работа (курсовой проект)	-		
Другие формы и методы организации	-		
образовательного процесса (расчетно-графические			
работы, групповые дискуссии, ролевые игры,			
тренинг, компьютерные симуляции, интерактивные			
лекции, семинары, анализ деловых ситуаций и т.п.)			
Самостоятельная работа студента (всего)	171		
Итоговая аттестация	зачёт		

4.2. Содержание разделов дисциплины

Тема 1. Механизмы упрочнения деталей машин из порошковых материалов

Связь механизмов упрочнения со структурными несовершенствами кристаллов. Четыре основных механизма упрочнения металлических материалов: субструктурное, твердорастворное, поликристаллическое и многофазное упрочнение.

Тема 2. Механические методы поверхностного упрочнения деталей машин из порошковых материалов

Параметры состояния поверхностного слоя деталей машин. Основные виды обработки поверхностным пластическим деформированием. Сущность упрочнения пластическим деформированием. Структура и свойства поверхностного слоя.

Тема 3. Химико-термическая обработка деталей из порошковых материалов

Общие закономерности. Диффузионное насыщение сплавов углеродом и азотом. Ионное азотирование и цементация. Одновременное насыщение

поверхности стали азотом и углеродом. Диффузионное насыщение сплавов металлами и неметаллами. Поверхностная закалка стали.

Тема 4. Методы лазерного, электронно-лучевого, плазменного и детонационного упрочнения деталей машин

Лазерное упрочнение. Механизм упрочнения. Лазерная наплавка. Лазерное оборудование. Электронно-лучевая обработка. Электронно-лучевое оборудование. Влияние лазерного упрочнения на микроструктуру и твёрдость деталей машин.

Методы детонационного и плазменного нанесения покрытия. Механизм упрочнения. Оборудование для детонационного нанесения покрытия. Влияние детонационного и плазменного нанесения покрытия на микроструктуру и твёрдость деталей машин.

Плазменное поверхностное упрочнение деталей. Механизм упрочнения. Оборудование для плазменного упрочнения деталей. Влияние плазменного упрочнения на микроструктуру и твёрдость деталей машин.

Тема 5. Вакуумное ионно-плазменное упрочнение, ионное, магнетронное распыление, ионное легирование

Вакуумное ионно-плазменное упрочнение. Ионное распыление. Магнетронное распыление. Ионное осаждение покрытий. Ионно-диффузионное насыщение. Ионное легирование (имплантация). Изменение микроструктуры и твёрдости деталей машин при упрочнении.

Тема 6. Магнитное упрочнение деталей машин

Методы магнитной обработки. Механизм магнитного упрочнения. Изменение микроструктуры и механических свойств.

Тема 7. Лазерная термическая обработка

Лазерная химико-термическая обработка. Влияние на структуру и свойства.

4.3. Лекции

		Объем часов	
№ п/п	Название темы	Очная форма	Заочная форма
1	Механизмы упрочнения деталей машин из порошковых материалов	6	
2	Механические методы поверхностного упрочнения деталей машин из порошковых материалов	4	
3	Химико-термическая обработка	4	
4	4 Методы лазерного, электронно-лучевого, плазменного и детонационного упрочнения деталей машин		
5	Вакуумное ионно-плазменное упрочнение, ионное, магнетронное распыление, ионное легирование	4	

6	Магнитное упрочнение деталей машин	4	
7	Лазерная термическая обработка	4	
	Итого	30	

4.4. Лабораторные работы учебным планом не предусмотрены

4.5. Практические занятия

N₂	•	Объем	часов
п/п	Название темы	Очная	Заочн.
11/11		форма	форма
1	Механизмы упрочнения деталей машин	2	
2	Дорнование отверстий	2	
3	Обкатка роликом поверхности матрицы	2	
4	Ионное азотирование автомобильных клапанов, технология,	1	
4	структура и свойства.	4	
5	Лазерное упрочнение деталей машин	4	
6	Влияние на структуру и свойств лазерной химико-термической	3	
	обработки	J	
Ито	го:	15	

4.6. Самостоятельная работа студентов

No			Объем	и часов
№ п/п	Название темы	Вид СРС	Очная	Заочная
11/11			форма	форма
1	Механизмы упрочнения деталей машин		30	
2	Механические методы поверхностного упрочнения деталей машин		20	
3	Химико-термическая обработка	изучение	20	
4	Методы лазерного, электронно-лучевого, плазменного и детонационного упрочнения деталей машин Вакуумное ионно-плазменное упрочнение, ионное, магнетронное распыление, ионное легирование	лекционного материала, подготовка к практическим занятиям	26	
6	Магнитное упрочнение деталей машин		20	
7	Лазерная термическая обработка		15	
8	Выполнение индивидуального задания		15	
9	Подготовка к зачёт		10	
Итог	·····		171	

4.7. Курсовые работы/проекты не предусмотрены учебным планом.

5. Образовательные технологии

В процессе обучения для достижения планируемых результатов освоения дисциплины используются следующие образовательные технологии:

- информационно-коммуникационная технология, в том числе визуализация, создание электронных учебных материалов;
- технология коллективного взаимодействия, в том числе совместное решение проблемных задач, ситуаций, кейсов;
- технология проблемного обучения, в том числе в рамках разбора проблемных ситуаций;
- технология развивающего обучения, в том числе постановка и решение задач от менее сложных к более сложным, развивающих компетенции студентов;
- технология адаптивного обучения, в том числе проведение консультаций преподавателя.

6. Учебно-методическое и информационное обеспечение дисциплины:

а) основная литература:

- 1. Физическое металловедение. В 3-х т. 3-е изд., перераб. и доп. / Подред. Р.У. Кана, П. Хаазена. Т.2. Фазовые превращения в металлах и спла-вах и сплавы с особыми физическими свойствами /Пер. с англ. М.: Металлургия, 1987.-624 с.
- 2. Физическое материаловедение: Учебник для вузов: В 6 т. / Под общей ред. Б.А. Калина. Том 1. Физика твердого тела/ Г.Н. Елманов, А.Г.Залужный, В.И. Скрытный, Е.А. Смирнов, В.Н. Яльцев М.: МИФИ,2007. 636 с.
- 3. Физическое материаловедение: Учебник для вузов: В 6 т. / Под общей ред. Б.А. Калина. Том 2. Основы материаловедения/ В.В. Нечаев, Е.А.Смирнов, С.А. Кохтев, Б.А. Калин, А.А. Полянский, В.И. Стаценко М.:МИФИ, 2007. 608 с.

б) Дополнительная литература:

- 4. Мартин Дж., Доэрти Р. Стабильность микроструктуры металлических систем /Пер. с англ. О.А. Алексеева и В.С. Хабарова. М.: Атомиздат, 1978. 280 с.
- 5. Гегузин Я.Е., Кривоглаз М.А. Движение макроскопических включений в твердых телах. М.: Металлургия, 1971. 344 с.
- 6. Структура и механические свойства металлов /М.Л. Бернштейн,В.А. Займовский. М.: Металлургия, 1970. 472 с.

в) методические указания

Методические указания к выполнению практических занятий по дисциплине «Теория и технологии упрочнения порошковых материалов» для студентов, обучающихся по направлению подготовки 22.04.01. Материаловедение и технологии материалов, /Сост.: Л.А. Рябичева. Луганск: Изд-во ЛНУ им. Даля, 2021.

г) Internet-ресурсы:

Министерство образования и науки Российской Федерации — http://минобрнауки.pф/ Федеральная служба по надзору в сфере образования и науки – http://obrnadzor.gov.ru/

Министерство образования и науки Луганской Народной Республики – https://minobr.su

Народный совет Луганской Народной Республики – https://nslnr.su

Портал Федеральных государственных образовательных стандартов высшего образования – http://fgosvo.ru

Федеральный портал «Российское образование» – http://www.edu.ru/

Информационная система «Единое окно доступа к образовательным ресурсам» – http://window.edu.ru/

Федеральный центр информационно-образовательных ресурсов – http://fcior.edu.ru/

Электронные библиотечные системы и ресурсы

Электронно-библиотечная система «Консультант студента» - http://www.studentlibrary.ru/cgi-bin/mb4x

Электронно-библиотечная система «StudMed.ru» – https://www.studmed.ru Информационный ресурс библиотеки образовательной организации Научная библиотека имени А. Н. Коняева – https://www.studmed.ru

7. Материально-техническое обеспечение дисциплины

Освоение дисциплины «Теория и технологии упрочнения порошковых материалов» предполагает использование академических аудиторий, соответствующих действующим санитарным и противопожарным правилам и нормам.

Прочее: рабочее место преподавателя, оснащённое компьютером с доступом в Интернет.

Программное обеспечение:

Функциональное назначение	Бесплатное программное обеспечение	Ссылки
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu
Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx
Браузер	Opera	http://www.opera.com
Почтовый клиент	Mozilla Thunderbird	http://www.mozilla.org/ru/thunderbird
Файл-менеджер	Far Manager	http://www.farmanager.com/download.php
Архиватор	7Zip	http://www.7-zip.org/
Графический редактор	GIMP (GNU Image Manipulation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator
Аудиоплейер	VLC	http://www.videolan.org/vlc/

8. Оценочные средства по дисциплине

Паспорт фонда оценочных средств по учебной дисциплине

«Теория и технологии упрочнения порошковых материалов» Перечень компетенций (элементов компетенций), формируемых в результате освоения учебной дисциплины (модуля) или практики

№ п/ п	Код контрол ируемой компете нции	Формулировка контролируемой компетенции	Индикаторы достижений компетенции (по реализуемой дисциплине)	Контролируемые темы учебной дисциплины, практики	Этапы форми рован ия (семес тр изуче ния
	ПК-6	Способен организовать проведение анализа и анализировать структуру новых материалов, адаптировать методики исследования свойств материалов к потребностям производства и разрабатывать специальные методики.	ПК-6.1. Организует проведение анализа структуры новых материалов, адаптирует методики исследования свойств материалов к потребностям производства и разрабатывает специальные методики.	Тема 1. Механизмы упрочнения деталей машин Тема 2. Механические методы поверхностного упрочнения деталей машин Тема 3 Химико- термическая обработка. Тема 4. Методы лазерного, электронно- лучевого, плазменного и детонационного упрочнения деталей машин Тема 5. Вакуумное ионно-плазменное упрочнение, ионное, магнетронное распыление, ионное легирование Тема 6. Магнитное упрочнение деталей машин	3

	Тема 7. Лазерная термическая обработка	

Показатели и критерии оценивания компетенций, описание шкал оценивания

NC.	TC	TT	П	TC	TT
№	Код	Индикаторы	Перечень	Контролируемые	Наименов
Π/Π	контрол		планируемых	темы учебной	ание
	ируемой		результатов	дисциплины	оценочно
	компете	\ 1			ГО
1	нции	дисциплине)	n	T 1	средства
1	ПК-6	ПК-6.1. Организует	Знать методы	Тема 1.	Сдача
		проведение анализа	проведения анализа	Механизмы	практичск
		структуры новых	структуры новых	упрочнения	их работ,
		материалов, адаптирует	•	деталей машин	вопросы к
		методики исследования	-	Тема 2.	зачёту
		свойств материалов к	методики	Механические	
		потребностям	исследования	методы	
		производства и	свойств материалов	поверхностного	
		разрабатывает	к потребностям	упрочнения	
		специальные методики	производства и	деталей машин	
			разрабатывать	Тема 3 Химико-	
			специальные	термическая	
			методики	обработка.	
			Уметь разрабатывать	Тема 4. Методы	
			анализ структуры	лазерного,	
			новых материалов,	электронно-	
			адаптировать	лучевого,	
			методики	плазменного и	
			исследования	детонационного	
			свойств материалов	упрочнения	
			к потребностям	деталей машин	
			производства и	Тема 5.	
			разрабатывать	Вакуумное	
			специальные	ионно-	
			методики	плазменное	
			Владеть навыками	упрочнение,	
			разработки и анализа	ионное,	
			структуры новых	магнетронное	
			материалов,	распыление,	
			адаптировать	ионное	
			методики	легирование	
			исследования	Тема 6.	
			свойств материалов	Магнитное	
			к потребностям	упрочнение	
			производства и	деталей машин	
			разрабатывать	Тема 7. Лазерная	
			специальные	термическая	
			методики	обработка	

Оценочные средства для промежуточной аттестации (зачёт)

Вопросы к зачёту:

- 1. Механизмы упрочнения деталей машин из порошковых материалов
- 2. Связь механизмов упрочнения со структурными несовершенствами кристаллов.
- 3. Четыре основных механизма упрочнения металлических материалов: субструктурное, твердорастворное, поликристаллическое и многофазное упрочнение.
 - 4. Механические методы поверхностного упрочнения деталей машин
 - 5. Параметры состояния поверхностного слоя деталей машин.
- 6. Основные виды обработки поверхностным пластическим деформированием.
 - 7. Сущность упрочнения пластическим деформированием.
 - 8. Структура и свойства поверхностного слоя.
 - 9. Химико-термическая обработка
 - 10. Диффузионное насыщение сплавов углеродом и азотом.
 - 11. Ионное азотирование и цементация.
 - 12. Одновременное насыщение поверхности стали азотом и углеродом.
 - 13. Диффузионное насыщение сплавов металлами и неметаллами.
 - 14. Поверхностная закалка стали.
- 15. Лазерное упрочнение. Механизм упрочнения порошковых материалов.
 - 16. Лазерная наплавка. Лазерное оборудование.
- 17. Электронно-лучевая обработка. Электронно-лучевое оборудование. 18. Влияние лазерного упрочнения на микроструктуру и твёрдость деталей машин.
- 19. Методы детонационного и плазменного нанесения покрытия. Механизм упрочнения.
 - 20. Оборудование для детонационного нанесения покрытия.
- 21. Влияние детонационного и плазменного нанесения покрытия на микроструктуру и твёрдость деталей машин.
- 22. Плазменное поверхностное упрочнение деталей. Механизм упрочнения.
 - 23. Оборудование для плазменного упрочнения деталей.
- 24. Влияние плазменного упрочнения на микроструктуру и твёрдость деталей машин.
 - 25. Вакуумное ионно-плазменное упрочнение.
 - 26. Ионное распыление.
 - 27. Магнетронное распыление.
 - 28. Ионное осаждение покрытий.
 - 29. Ионно-диффузионное насыщение.
 - 30. Ионное легирование (имплантация).
 - 31. Методы магнитной обработки. Механизм магнитного упрочнения.

- 32. Лазерная термическая обработка
- 33. Лазерная химико-термическая обработка. Влияние на структуру и свойства.

Критерии и шкала оценивания по оценочному средству «зачёт»

Шкала оценивания (интервал баллов)	Критерий оценивания		
зачёт	Студент глубоко и в полном объёме владеет программным материалом. Грамотно, исчерпывающе и логично его излагает в устной или письменной форме. При этом знает рекомендованную литературу, проявляет творческий подход в ответах на вопросы и правильно обосновывает принятые решения, хорошо владеет умениями и навыками при выполнении практических задач.		
зачёт	Студент знает программный материал, грамотно и по сути излагает его в устной или письменной форме, допуская незначительные неточности в утверждениях, трактовках, определениях и категориях или незначительное количество ошибок. При этом владеет необходимыми умениями и навыками при выполнении практических задач.		
зачёт	Студент знает только основной программный материал, допускает неточности, недостаточно чёткие формулировки, непоследовательность в ответах, излагаемых в устной или письменной форме. При этом недостаточно владеет умениями и навыками при выполнении практических задач. Допускает до 30% ошибок в излагаемых ответах.		
незачёт	Студент не знает значительной части программного материала. При этом допускает принципиальные ошибки в доказательствах, в трактовке понятий и категорий, проявляет низкую культуру знаний, не владеет основными умениями и навыками при выполнении практических задач. Студент отказывается от ответов на дополнительные вопросы		

Лист изменений и дополнений

No	Виды дополнений и	Дата и номер протокола	Подпись (с расшифровкой)
п/п	изменений	заседания кафедры (кафедр),	заведующего кафедрой
		на котором были	(заведующих кафедрами)
		рассмотрены и одобрены	
		изменения и дополнения	