МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля»

Институт транспорта и логистики Кафедра «Подъемно-транспортная техника»

УТВЕРЖДАЮ

Директор института транспорта и

логистики

Быкадоров В.В.

2023 г.

(// » TO E UHCTUT

MOLINCINKY 1 5 5 5 1

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ»

По направлению подготовки 23.03.03 Эксплуатация транспортнотехнологических машин и комплексов

Профиль «Автомобили и автомобильное хозяйство»

Луганск 2023

Лист согласования РПУД

Рабочая программа учебной дисциплины «Сопротивление материалов» по специальности 23.03.03 Эксплуатация транспортно-технологических машин и комплексов – 29 с.

Рабочая программа учебной дисциплины «Сопротивление материалов» составлена с учетом Федерального государственного образовательного стандарта высшего образования по специальности 23.03.03 Эксплуатация транспортно-технологических машин и комплексов, утвержденного приказом Министерства образования и науки Российской Федерации от 7 августа 2020 года № 916.

СОСТАВИТЕЛИ:

канд.техн.наук, доц., доцент В.А.Коструб, старший преподаватель Л.М.Вербская.

Рабочая программа дисциплины утверждена на заседании кафедры «Подъемнотранспортная техника» « $\frac{1}{2}$ » $\frac{1}{2}$ г., протокол № $\frac{1}{2}$
Заведующий кафедрой «Подъемно-транспортная техника» В.А.Коструб Переутверждена: «»20 г., протокол №
Согласована
Директор института транспорта и логистики В.В.Быкадоров
Переутверждена: «»20 г., протокол №
Рекомендована на заседании учебно-методической комиссии института транспорта и логистики «½» _ 0 √ _ 20 2 3 года, протокол № $\underline{\&}$.
Председатель учебно-методической комиссии института транспорта и логистики <i>Ellbal</i> Е.И. Иванова

[©] Коструб В.А., Вербская Л.М. 2023 год © ГОУ ВПО ЛНР «ЛНУ им.В.ДАЛЯ», 2023 год

СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

1. Цели и задачи дисциплины, ее место в учебном процессе

Цель преподавания дисциплины — научить студентов методам расчетов и испытаний элементов машиностроительных конструкций на прочность и жесткость на различные деформации при статическом и динамическом нагружении.

Задачи:

- знать методы расчета различных элементов машиностроительных конструкций при основных видах деформаций и их комбинациях как на прочность, так и на жесткость при статическом и динамическом нагружении, включая циклические нагрузки.
- уметь рассчитать стержни, валы, балки, рамы, другие элементы конструкций на прочность и жесткость при растяжении сжатии, кручении, изгибе, сложном сопротивлении и др. деформациях при статическом и динамическом нагружении;
 - уметь произвести расчет на устойчивость;
- уметь определять коэффициенты запаса прочности при циклических нагрузках различного вида;
- уметь проводить испытания различных элементов конструкций по нахождению напряжений и деформаций;
- уметь определять механические характеристики различных материалов при стандартных испытаниях.

2. Место дисциплины в структуре ООП ВО

Дисциплина входит в модуль профессиональных дисциплин обязательной части цикла подготовки.

Необходимыми условиями для освоения дисциплины являются: знание основных положений высшей математики, физики и теоретической механики; умение применять полученные знания математики, физики и теоретической механики к решению задач на прочность, устойчивость и надежность элементов конструкций, навыки работы с учебной литературой и электронными базами данных, решения задач высшей математики, физики и теоретической механики.

Содержание дисциплины является логическим продолжением содержания дисциплин физика, математика, теоретическая механика и служит основой для освоения дисциплин «Детали машин», «Механика материалов и основы

конструирования», «Техническая механика», при выполнении курсовых проектов и работ по специальным дисциплинам.

3. Требования к результатам освоения содержания дисциплины

Код и наименование	Индикаторы достижений	Перечень планируемых результатов			
компетенции	компетенции (по				
	реализуемой дисциплине)				
ОПК-1 Способен	ОПК-1.1. Использует	Знать: методику использования основных			
ставить и решать	законы и методы	законов математических и естественных			
инженерные и		наук, правила построения технических			
научнотехнические	наук при решении	схем и чертежей			
задачи в сфере	профессиональных задач	Уметь: использовать основных законов			
профессиональной		математических и естественных наук,			
деятельно-		правила построения технических схем и			
сти и новых		чертежей			
междисциплинарных направлений с		Владеть: методикой использования			
использованием		основных законов математических и			
естественнонаучных,		естественных наук, правила построения			
математических и		технических схем и чертежей			
технологических	ОПК-1.3. Ставит	Знать: подходы к формированию			
моделей	инженерные и	возможных вариантов решения			
	научнотехнические	инженерных и научно-технических задач с			
	задачи в сфере своей	использованием естественнонаучных и			
	профессиональной	общеинженерных знаний, методов			
	деятельности и новых	математического анализа			
	междисциплинарных	Уметь: формировать возможные варианты			
	направлений.	решения инженерных и			
		научнотехнических задач с			
		использованием естественнонаучных и			
		общеинженерных знаний, методов			
		математического анализа			
		Владеть: навыками формирования			
		возможных вариантов решения			
		инженерных и научно-технических задач с			
		использованием естественнонаучных и			
		общеинженерных знаний, методов			
		математического анализа			

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

Объем часов (зач. ед.)			
Очная форма	Очнозаочная форма	Заочная форма	
	Очная	Очная Очнозаочная	

Общая учебная нагрузка (всего)	252 (7 зач. ед)		252 (7 зач. ед)
Обязательная контактная работа (всего) в том числе:	112		10
Лекции	64		12
Семинарские занятия	-		-
Практические занятия	32		6
Лабораторные работы	16		4
Курсовая работа (курсовой проект)	-		-
Другие формы и методы организации образовательного процесса (расчетно-графические работы)	36		36
Самостоятельная работа студента (всего)	109		230
Форма аттестации	зачет/экзамен	зачет	зачет/экзамен

4.2. Содержание разделов дисциплины

Семестр 3

- Тема 1. Введение: наука о сопротивлении материалов, связь курса с другими науками. Основные гипотезы курса. Внутренние усилия. Метод сечений и понятие о напряжениях.
- Тема 2. Растяжение сжатие. Напряжения и деформации. Закон Гука. Условия прочности и жесткости. Испытания материалов на растяжение сжатие. Механические характеристики материала. Диаграммы растяжения различных материалов.
- Тема 3. Расчет статически неопределимых систем при растяжении сжатии. Монтажные и температурные напряжения.
- Тема 4. Геометрические характеристики плоских сечений. Статические моменты площади. Осевые, полярные и центробежные моменты инерции. Радиусы инерции. Зависимость между моментами инерции при параллельном переносе осей, при повороте осей. Главные оси инерции. Определение положения главных центральных осей и вычисление главных центральных моментов инерции различных сечений.
- Тема 5. Сложное напряженное состояние. Анализ линейного и плоского напряженного состояния. Закон парности касательных напряжений. Главные площадки и главные напряжения. Объемное напряженное состояние. Обобщенный закон Гука. Потенциальная энергия формоизменения объема. Критерии прочности. Классические теории прочности.
- Тема 6. Сдвиг. Чистый сдвиг. Закон Гука при сдвиге. Кручение. Определение напряжений и деформаций. Условие прочности и жесткости.
- Тема. 7. Изгиб балок. Внутренние силовые факторы пи изгибе. Дифференциальные зависимости между ними. Определение внутренних

силовых факторов в плоских рамах криволинейных стержневых и пространственных рамах. Нормальные и касательные напряжения при изгибе. Подбор сечений из условий прочности. Проверка по главным напряжениям. Аналитический метод определения деформаций при изгибе. Метод начальных параметров. Универсальные уравнения прогибов и углов поворота.

Семестр 4

Тема 8. Сложное сопротивление. Косой изгиб. Определение напряжений, нахождение положения нейтральной оси и опасных точек в сечении.

Определение прогибов. Внецентренное сжатие. Вычисление напряжений.

Условие прочности. Ядро сечения. Изгиб с кручением. Определение положения опасного сечения.

Вычисление напряжений. Подбор диаметра вала.

Тема 9. Энергетические методы определения деформаций. Потенциальная энергия упругой деформации. Теорема Кастильяно. Метод Максвелла-Мора. Теорема о взаимности работы и перемещений. Метод Верещагина.

Тема 10. Расчет статически неопределимых балок. Уравнение трех моментов. Метод сил. Канонические уравнения. Выбор основной системы. Использование прямой и обратной симметрии.

Тема 11. Устойчивость сжатых стержней. Понятие об устойчивых и неустойчивых формах равновесия. Критическая нагрузка. Формулы Эйлера и пределы их применимости. Понятие о потере устойчивости при напряжениях, превышающих предел пропорциональности. Формула Ясинского. Расчет по коэффициентам уменьшения допускаемых напряжений.

Тема 12. Динамическое действие нагрузок. Учет сил инерции при расчетах на прочность. Удар. Определение напряжений и деформаций при ударе. Ударная вязкость.

Колебания. Напряжения и деформации при колебаниях.

Тема 13. Усталостная прочность. Механизм усталостного разрушения. Кривые усталости и предел выносливости. Влияние на выносливость качества поверхности, концентратов напряжений, абсолютных размеров. Характеристики циклов переменных напряжений. Коэффициенты запаса прочности при переменных напряжениях. Практические рекомендации по повышению усталостной прочности.

4.3. Лекции

№	Название темы	Объе	ем, час
		Очная	Заочная
		форма	форма
1.	Тема 1. Введение. Основные гипотезы курса. Внутренние усилия. Метод	2	
	сечений.		6
2.	Тема 2. Растяжение – сжатие.	4	

3.	Тема 3. Расчет статически неопределимых систем при растяжении –	2	
	сжатии.		
4.	Тема 4. Геометрические характеристики плоских сечений.	4	
5.	Тема 5.Сложное напряженное состояние	4	
6.	Тема 6. Сдвиг. Кручение.	4	
7.	Тема 7. Изгиб балок.	12	
8	Тема 8. Сложное сопротивление. Косой изгиб. Внецентренное	8	
	растяжение – сжатие. Ядро сечения. Расчет валов при совместном		
	действии изгиба и кручения.		
9	Тема 9. Энергетические методы определения деформаций.	6	
10	Тема 10. Статически неопределимые системы при изгибе. Метод сил.	6	6
11	Тема 11. Расчет многопролетных неразрезных балок, особенности	6	O
	расчета. Уравнение 3-х моментов.		
12	Тема 12. Устойчивость сжатых стержней.	4	
13	Тема 13. Динамическое действие нагрузок. Расчет на прочность с учетом	6	
	сил инерции. Расчет на прочность при ударе. Упругие колебания.		
	Итого:	68	12

4.4. Практические занятия

			ем, час
$N_{\underline{0}}$	Название темы	Очная	Заочная
		форма	форма
1.	Расчет стержневых систем при растяжении – сжатии: подбор сечений,	2	
	проверка прочности, построение эпюр внутренних силовых факторов.		4
2.	Расчет статически неопределимых стержневых систем при растяжении –	2	7
	сжатии: раскрытие статической неопределимости, подбор сечений.		
3.	Геометрические характеристики плоских сечений. Определение	2	
	положения центра тяжести, главных центральных осей и главных осевых		
	моментов инерции составного сечения.		
4.	Исследование напряженно-деформированного состояния (НДС) при	2	
	плоском напряженном состоянии: определение главных площадок и		
	главных напряжений аналитически и графически (круг Мора), проверка		
	прочности, определение главных деформаций и относительного		
	изменения объема.		
5.	Расчет круглого вала при кручении: построение эпюры крутящих	2	
	моментов, подбор сечений, построение эпюр углов закручивания и		
	максимальных касательных напряжений.		
6.	Построение эпюр поперечных сил и изгибающих моментов для балок;	4	
	подбор сечений; проверка прочности по главным напряжениям.		
7.	Построение эпюр внутренних силовых факторов для плоских и	4	
	пространственных рам,		
8	Определение прогибов и углов поворота балок по методу начальных	6	
	параметров.		
	Расчеты балок при сложном изгибе: построение эпюр поперечных сил и		2
	изгибающих моментов; подбор сечений, определение положения		
	нейтральной оси в опасном сечении, построение Эп. «□», нахождение		
	прогиба конца консоли.		

9	Расчет круглого вала при изгибе с кручением: построение эпюр	4	
	внутренних силовых факторов, определение опасного сечения,		
	нахождение расчетного момента и диаметра вала.		
10	Определение перемещений (прогибов и углов поворота) энергетическими медами (методы Мора и Верещагина; метод Симпсона).	6	
	Расчет статически неопределимых рам по методу сил: раскрытие статической неопределимости, построение эпюр внутренних силовых факторов, статическая и деформационная проверки.	6	
12	Расчет неразрезных многопролетных балок: раскрытие статической неопределимости, построение эпюр поперечных сил и изгибающих моментов, статическая и деформационная проверки.	4	
13	Расчет сжатых стержней на устойчивость: подбор сечения, определение критической силы и коэффициента запаса.	4	
14	Расчет на прочность при ударе, при колебаниях и инерционных нагрузках: определение перемещений, динамического коэффициента, проверка прочности.	6	
	Итого:	34	6

4.5. Лабораторные работы

		Объем, час	
$N_{\underline{0}}$	Название темы	Очная	Заочная
		форма	форма
1.	Определение механических характеристик при растяжении стального	4	
	образца. В результате испытаний стандартного цилиндрического		
	стального образца на универсальной разрывной машине ГНС-50		
	определяются: предел текучести, предел прочности, относительное		
	удлинение и относительное сужение исследуемой стали.		
2.	Испытание материалов на сжатие.	2	4
	На гидравлическом прессе ГПА-100 проводятся испытания стандартного		T
	цилиндрического чугунного образца на сжатие до разрушения с		
	определением предела прочности и относительной деформации к		
	моменту разрушения чугуна при сжатии.		
3.	Определения модуля упругости для стали	2	
4.	Определения модуля сдвига при кручения для стали	2	
5.	Определение коэффициента поперечной деформации.	2	
	Коэффициент Пуассона при растяжении тонкой широкой полосы		
	методом электротензометрирования. Для регистрации деформаций		
	используются автоматические измерители деформаций АИД и ЦТМ-5.		
6	Определение жесткости и напряжений в витках цилиндрической	2	
	пружины.		
	Проводится экспериментальная проверка жесткости пружины,		
	полученной теоретически.		
7	Исследование закона распределения нормальных напряжений по высоте	3	
	сечения балки при изгибе.		
	Сравнивается эпюра нормальных напряжений, полученная		
	экспериментально		
	Итого:	17	4

4.6. Самостоятельная работа студентов

№ Название темы Вид СЕ	PC	Объем часов Очная Заочна	
	Вид СРС		Заочная
		форма	форма
1. Растяжение – сжатие, построение эпюр усилий, Выполнение		12	10
напряжений, деформаций. Расчет статически расчетнографи			
неопределимых систем. работы (Р.	ГР) и		
подготовка к	текущему		
контролю			
2. Анализ плоского напряженного состояния, Выполнение	РГР и	8	10
расчеты на прочность и жесткость при кручении. подготовка к	текущему		
контролю			
3. Геометрические характеристики плоских Выполнение	РГР и	9	10
стержней. Статические моменты площади, подготовка к	текущему		
моменты инерции простых фигур и сложных контролю			
сечений. Зависимость между моментами			
инерции при параллельном переносе осей и при			
повороте координатных осей. Главные оси и			
главные моменты инерции			
4. Построение внутренних силовых факторов при Выполнение	РГР и	30	60
изгибе балок, плоских и пространственных рам. подготовка к то	екущему		
Расчеты на прочность и жесткость при изгибе контролю			
5 Сложный изгиб, внецентренное Выполнение	РГР и	10	20
растяжениесжатие, изгиб с кручением. Подбор подготовка к	текущему		
сечения при сложном изгибе, определение контролю			
деформаций.			
6 Определение напряжений и допускаемых Выполнение	РГР и	10	10
нагрузок при внецентренном сжатии, подбор подготовка к	текущему		
ядра сечения. контролю			
7 Расчет на прочность при совместном действии Выполнение		10	10
изгиба с кручением. подготовка к	текущему		
контролю			
8 Энергетические методы определения Выполнение	РГР и	10	20
деформации. Определение деформаций подготовка к	текущему		
способом Верещагина, метод Симпсона. контролю			
9 Расчет статически неопределимых рам методом Выполнение	РГР и	10	20
сил. Деформационная проверка подготовка к	текущему		
контролю			• •
10 Расчет неразрывных балок методом уравнения Выполнение	РГР и	10	30
3-х моментов. Учет симметрии и косой подготовка к	текущему		
симметрии. контролю	DED		1.0
11 Устойчивость. Определение критической силы. Выполнение	РГР и	6	10
Подбор сечений сжатых стержней методом по- подготовка к т	гекущему		
следовательных приближений и вычисление контролю			
коэффициента запаса устойчивости. Выбор			
материала и рационального сечения.			
12 Расчет на прочность, на удар. Ударная проба. Выполнение	РГР и	4	10
подготовка к	текущему		
контролю			

13	Расчет на	про	чность	при	колебаниях.	Выполнение	РГР	И	4	10
	Собственные	И	вынужд	ценные	колебания.	подготовка к	текуще	му		
	Резонанс. Пу	ги отс	тройки о	т резона	анса.	контролю				
	Итого								133	230

4.7. Курсовые работы/проекты по дисциплине «Сопротивление материалов» не предполагаются учебным планом.

5. Образовательные технологии

При изучении дисциплины «Сопротивление материалов» используются следующие образовательные технологии. Технология обучения — это способ реализации содержания обучения, предусмотренного учебными программами, представляющий систему форм, методов и средств обучения, обеспечивающую наиболее эффективное достижение поставленных целей.

Для достижения планируемых результатов обучения в дисциплине «Сопротивление материалов» используются различные образовательные технологии:

1. Информационно-развивающие технологии, направленные на формирование системы знаний, запоминание и свободное оперирование ими.

Используется лекционно-семинарский метод, самостоятельное изучение литературы, применение новых информационных технологий для самостоятельного пополнения знаний, включая использование технических и электронных средств информации.

- 2. Деятельностные практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений при проведении экспериментальных исследований, обеспечивающих возможность качественно выполнять профессиональную деятельность.
- 3. Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие проблемного мышления, мыслительной активности, способности видеть и формулировать проблемы, выбирать способы и средства для их решения.
- Личностно-ориентированные технологии обучения, обеспечивающие в ходе учебного процесса учет различных способностей обучаемых, создание необходимых условий для развития их индивидуальных способностей, развитие активности личности в учебном процессе. Личностноориентированные обучения технологии реализуются результате индивидуального общения преподавателя и студента при защите лабораторных при выполнении расчетнографических заданий, работ, решении повышенной сложности, на еженедельных консультациях.

6. Формы контроля освоения дисциплины

Текущая аттестация студентов производится в дискретные временные интервалы лектором и преподавателем, ведущими лабораторные работы и практические занятия по дисциплине в следующих формах:

□ индивидуальное задание (расчетно-графическая работа); □ контрольные работы; □ лабораторные работы.

Фонды оценочных средств, включающие типовые задания, контрольные работы, тесты и методы контроля, позволяющие оценить результаты текущей и промежуточной аттестации обучающихся по данной дисциплине, помещаются в приложении к рабочей программе в соответствии с «Положение о фонде оценочных средств».

Промежуточная аттестация по результатам освоения дисциплины проходит в форме зачета/экзамена (включает в себя ответ на теоретические вопросы и решение задач). Студенты, выполнившие 75% текущих и контрольных мероприятий на «отлично», а остальные 25 % на «хорошо», имеют право на получение итоговой отличной оценки.

В экзаменационную ведомость и зачетную книжку выставляются оценки по шкале, приведенной в таблице.

Шкала оценивания	Характеристика знания предмета и ответов	Зачеты
отлично (5)	Студент глубоко и в полном объеме владеет программным материалом. Грамотно, исчерпывающе и логично его излагает в устной или письменной форме. При этом знает рекомендованную литературу, проявляет творческий подход в ответах на вопросы и правильно обосновывает принятые решения, хорошо владеет умениями и навыками при выполнении практических задач	зачтено
хорошо (4)	Студент знает программный материал, грамотно и по сути излагает его в устной или письменной форме, допуская незначительные неточности в утверждениях, трактовках, определениях и категориях или незначительное количество ошибок. При этом владеет необходимыми умениями и навыками при выполнении практических задач.	
удовлетворительно (3)	Студент знает только основной программный материал, допускает неточности, недостаточно четкие формулировки, непоследовательность в ответах, излагаемых в устной или письменной форме. При этом недостаточно владеет умениями и навыками при выполнении практических задач. Допускает до 30% ошибок в излагаемых ответах.	

неудовлетворительно (2)	Студент не знает значительной части программного	не зачтено
	материала. При этом допускает принципиальные	
	ошибки в доказательствах, в трактовке понятий и	
	категорий, проявляет низкую культуру знаний, не	
	владеет основными умениями и навыками при	
	выполнении практических задач. Студент	
	отказывается от ответов на дополнительные вопросы.	

7. Учебно-методическое и программно-информационное обеспечение дисциплины:

- а) основная литература:
- 1. Водопьянов В.И. Курс сопротивления материалов с примерами и задачами [Электронный ресурс]: учебное пособие / В.И. Водопьянов, А.Н. Савкин, О. В. Кондратьев. Волгоград: ВолгГТУ, 2012. 136 с.
- 2. Вольмир А.С. Сопротивление материалов [Текст] : учебник / А.С. Вольмир, Ю.П. Григорьев, А.И. Станкевич; под ред. Д.И. Макаревского. М.: Дрофа, 2007. 592 с.
- 3. Феодосьев В.И., Сопротивление материалов: учебник для вузов / В.И. Феодосьев М.: Издательство МГТУ им. Н. Э. Баумана, 2018. 542 с. Текст : электронный // ЭБС "Консультант студента": [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785703848197.html

б) дополнительная литература:

- 1. Сопротивление материалов. Лабораторный практикум: учеб. пособие для вузов / А.С. Вольмир [и др.]. 3-е изд., стер. М. : Дрофа, 2006. 352 с.
- 2. Кукса Л.В. Сопротивление материалов. Курс лекций с примерами решения задач. В 2 Ч.1 [Текст] / Л.В. Кукса, Е.Е. Евдокимов; М-во образования и науки Рос.Федерации, Волгогр. гос.архитектур.-строит. ун-т. 2-е изд., перераб. и доп. Волгоград : ВолгГАСУ, 2015. 227 с.
- 3. Атапин В.Г., Сопротивление материалов. Базовый курс. Дополнительные главы: учебник / В.Г. Атапин, А.Н. Пель, А.И. Темников Новосибирск: Изд-во НГТУ, 2011. 508 с. (Серия "Учебники НГТУ") Текст: электронный //
- ЭБС "Консультант студента": [сайт]. URL http://www.studentlibrary.ru/book/ISBN9785778217508.html
- 4. Старовойтов Э.И., Сопротивление материалов : Учеб. для вузов / Старовойтов Э.И. М.: ФИЗМАТЛИТ, 2010. 384 с. Текст : электронный // ЭБС "Консультант студента": [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785922108836.html.

- 5. Горшков А.Г., Сопротивление материалов : Учеб. пос. / Горшков А.Г., Трошин В.Н., Шалашилин В.И. 2-е изд., исправл. М. : ФИЗМАТЛИТ, 2008. -
- 544 с. Текст : электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785922101813.html 6. Межецкий Г.Д., Сопротивление материалов / Межецкий Г.Д. М. :
- Дашков и K, 2013. 432 с. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785394019722.html
- 7. Атапин В.Г., Сопротивление материалов. Сборник заданий с примерами их решения : учеб. пособие. / Атапин В.Г. Новосибирск : Изд-во НГТУ, 2016. 148 с. Текст : электронный // ЭБС "Консультант студента" : [сайт]. -

URL: http://www.studentlibrary.ru/book/ISBN9785778228856.html

8. Шатохина Л.П., Сопротивление материалов. Расчёты при сложном сопротивлении: учеб. пособие / Л.П. Шатохина, Е.М. Сигова, Я.Ю. Белозёрова; под общ. ред. Л.П. Шатохиной - Красноярск : СФУ, 2012. - 140 с. - Текст : электронный // ЭБС "Консультант студента" : [сайт]. - URL : http://www.studentlibrary.ru/book/ISBN9785763823080.html

в) методические указания:

- 1. Методические указания к выполнению индивидуального задания № 1 по дисциплине «Сопротивление материалов» // Коструб В.А., Меликбекян А.Х., Вербская Л.М. Луганск: Изд-во ЛГУ им. В.Даля, 2015. 53 с.
- 2. Методические указания к выполнению индивидуального задания № 2 по дисциплине «Сопротивление материалов» // Коструб В.А., Меликбекян А.Х., Вербская Л.М. Луганск: Изд-во ЛГУ им. В.Даля, 2015. 46 с.
- 3. Методические указания к выполнению индивидуального задания № 1 по дисциплине «Сопротивление материалов» // Коструб В.А., Меликбекян А.Х., Вербская Л.М. Луганск: Изд-во ЛНУ им. В.Даля, 2016. 50 с.
- 4. Методические указания к выполнению индивидуального задания № 2 по дисциплине «Сопротивление материалов» // Коструб В.А., Меликбекян А.Х., Вербская Л.М. Луганск: Изд-во ЛНУ им. В.Даля, 2016. 56 с.
- 5. Методические указания № 1 к выполнению контрольной работы по дисциплине «Сопротивление материалов» (для студентов заочного отделения) // Коструб В.А., Вербская Л.М. Луганск: Изд-во ЛНУ им. В.Даля, 2018. 57 с.
- 6. Методические указания № 2 к выполнению контрольной работы по дисциплине «Сопротивление материалов» (для студентов заочного отделения) // Коструб В.А., Вербская Л.М. Луганск: Изд-во ЛНУ им. В.Даля, 2018. 68 с.

г) интернет-ресурсы:

Министерство образования и науки Российской Федерации

http://минобрнауки.рф/

Федеральная служба по надзору в сфере образования и науки – http://obrnadzor.gov.ru/

Портал Федеральных государственных образовательных стандартов высшего образования – http://fgosvo.ru

Федеральный портал «Российское образование» — http://www.edu.ru/ Информационная система «Единое окно доступа к образовательным ресурсам» — http://window.edu.ru/

Федеральный центр информационно-образовательных ресурсов – http://fcior.edu.ru/

Электронные библиотечные системы и ресурсы

Электронно-библиотечная система «Консультант студента» - http://www.studentlibrary.ru/cgi-bin/mb4x

Электронно-библиотечная система «StudMed.ru» — https://www.studmed.ru Информационный ресурс библиотеки образовательной организации Научная библиотека имени А. Н. Коняева — http://biblio.dahluniver.ru/

8. Материально-техническое обеспечение дисциплины

Освоение дисциплины «Сопротивление материалов» предполагает использование академических аудиторий, соответствующих действующим санитарным и противопожарным правилам и нормам.

Лабораторные работы: лаборатория, оснащенная разрывной машиной, гидравлическим прессом, установкой тензометрирования, установка для определения ударной пробы, лабораторные установки для исследования сложного изгиба, изгиба с кручением, статически неопределимой рамы, многопролетной балки, устойчивости сжатых стержней, удара, колебаний.

Прочее: рабочее место преподавателя, оснащенное компьютером с доступом в Интернет. На лекционных занятиях используются раздаточный материал, наглядные пособия.

Программное обеспечение:

Функциональное назначение	Бесплатное программное обеспече- ние	Ссылки
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu
Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx

Браузер	Opera	http://www.opera.com
Почтовый клиент	Mozilla Thunderbird	http://www.mozilla.org/ru/thunderbird
Файл-менеджер	Far Manager	http://www.farmanager.com/download.php
Архиватор	7Zip	http://www.7-zip.org/
Графический редактор	GIMP (GNU Image Manipulation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator
Аудиоплейер	VLC	http://www.videolan.org/vlc/

9. Оценочные средства по дисциплине

Паспорт

фонда оценочных средств по учебной дисциплине «Сопротивление материалов»

Перечень компетенций (элементов компетенций), формируемых в результате освоения учебной дисциплины (модуля) или практики

№ п/п	Код контролируемой компетенции	Формулировка контролируемой компетенции	Индикаторы достижений компе тенции (по реализуемой дисци плине)	Контролируемые темы учебной дисциплины, практики	Этапы формирования (семестр изучения)
1.	ОПК-1	Способен ставить и решать инженерные и научнотехнические задачи в сфере профессиональной деятельности и	ОПК-1.1. Использует законы и методы математики, естественных наук при решении профессиональных задач	Тема 1. Введение: наука о сопротивлении материалов, связь курса с другими науками. Основные гипотезы курса.	
		новых междисциплинарных		Тема 2. Растяжение – сжатие.	3
		направлений с использованием естественнонаучных, математических и технологических		Тема 3. Расчет статически неопределимых систем при растяжении – сжатии.	
		моделей		Тема 4. Геометрические характеристики плоских сечений.	3
				Тема 5. Сложное напряженное состояние.	3
				Тема 6. Сдвиг. Чистый сдвиг. Кручение.	3

		Тема. 7. Изгиб балок.	3
	ОПК-1.3. Ставит инженерные и	Тема 8. Сложное сопротивление.	4
	научнотехнические задачи в сфере своей профес-	Тема 9. Энергетические методы определения деформаций.	4
		Тема 11. Устойчивость сжатых стержней.	4
	сиональной деятельности и новых	Тема 12. Динамическое действие нагрузок.	4
	междисциплинарных направлений.	Тема 13. Усталостная прочность.	4

Показатели и критерии оценивания компетенций, описание шкал оценивания

$N_{\underline{0}}$		Индикаторы	Перечень	Контролируемые	Наименование
п/	Код	достижений	планируемых	те-	оценочного
П	контролируемой	компетенции (по	результатов	мы учебной	средства
	компетенции	реализуемой		дисциплины	
		дисциплине)			
1.	ОПК-1	ОПК-1.1.	Знать: методику	Тема 1, Тема	Контрольные
		Использует законы и	использования	2,	работы;
		методы математики,	основных законов	Тема 3, Тема	лабораторные
		естественных наук	математических и	4,	работы,
		при решении	естественных наук,	Тема 5,	индивидуальное
		профессиональных	правила построения	Тема 6,	задание (РГР),
		задач	технических схем и	Тема 7,	вопросы к
			чертежей	Тема 8,	зачету (экзаме-
			Уметь: использовать	Тема 9,	ну)
			основных законов	Тема 11,	
			математических и	•	
			естественных наук,	Тема 12, Тема 13	
			правила построения		
			технических схем и		
			чертежей В до дожу с може жумей		
			Владеть: методикой		
			использования		
			основных законов		
			математических и		
			естественных наук,		
			правила построения		
			технических схем и		
			чертежей		

	ОПК-1.3. Ставит инженерные и научнотехнические задачи в сфере своей профессиональной деятельности и новых междисциплинарных направлений	Знать: подходы к формированию возможных вариантов решения инженерных и научно-технических задач с использованием естественнонаучных и общеинженерных знаний, методов математического анализа Уметь: формировать возможные варианты решения инженерных и научнотехнических задач с использованием естественнонаучных и общеинженерных знаний, методов математического анализа Владеть: навыками формирования возможных вариантов решения инженерных и научнотехнических задач с использованием естественнонаучных и научнотехнических задач с использованием естественнонаучных и общеинженерных и научнотехнических задач с использованием естественнонаучных и общеинженерных знаний, методов математического анализа	, , , , , , , , , , , , , , , , , , ,	Контрольные работы; лабораторные работы, индивидуальное задание (РГР), вопросы к зачету (экзамену)
--	---	--	---------------------------------------	--

Фонды оценочных средств по дисциплине «Сопротивление материалов»

Вопросы к контрольным работам

- 1. Дайте определение статическому моменту, осевому, полярному и центробежному моментам инерции. Каковы их свойства?
 - 2. Как вычисляются координаты центра тяжести сложного сечения?
- 3. По каким формулам определяются моменты инерции при параллельном переносе осей и при повороте осей?

- 4. Какие напряжения возникают при растяжении или сжатии и чему они равны?
 - 5. Как определяются деформации при растяжении (сжатии)?
 - 6. Что такое коэффициент запаса прочности и запас прочности?
 - 7. Какие системы называются статически неопределимыми?
- 8. Как определяются продольная сила, нормальные напряжения и деформации при действии на стержень распределённой продольной нагрузки?
- 9. Какие площадки называют главными? Что такое главное напряжение? Какое напряженное состояние называется линейным, плоским и объемным?
 - 10. Сформулируйте закон парности касательных напряжений.
 - 11. Как вычислить относительное изменение объема?
 - 12. Какой вид имеет условие прочности по III и IV теории прочности?
- 13. Как записывается выражение для закона Гука при сдвиге? Запишите условие прочности при сдвиге.
- 14. Как определяется внешний скручивающий момент по заданной мощности и угловой скорости вращения?
- 15. Напишите общее уравнение для определения крутящих моментов в поперечных сечениях вала методом сечений.
 - 16. Как производится расчёт вала на прочность, на жесткость?
- 17. Как вычисляются изгибающий момент и поперечная сила в поперечном сечении балки?
 - 18. Запишите условие прочности по нормальным напряжениям?
 - 19. Как вычисляются касательные напряжения при изгибе?
 - 20. Как находятся главные напряжения при изгибе?
 - 21. Как определить значения начальных параметров?
 - 22. Что называется сложным изгибом? Какой изгиб называется косым?
 - 23. Запишите условие прочности при сложном изгибе.
- 24. Какой вид сопротивления называется внецентренным сжатием (растяжением)?
 - 25. Какой вид имеет условие прочности при внецентренном сжатии?
 - 26. Как определяется допускаемая нагрузка при внецентренном сжатии?
- 27. Как записывается условие прочности при совместном действии изгиба и кручения?
- 28. Как вычисляется величина расчётного момента по различным теориям прочности?
- 29. Как вычисляется диаметр вала при совместном действии изгиба и кручения?
- 30. Как вычислить потенциальную энергию упругой деформации для балок и рам?
 - 31. Как определить деформации по методу Максвелла-Мора?

- 32. В чем заключается способ Верещагина? Как перемножить эпюры, используя правило Симпсона-Корнаухова?
- 33. Какой вид имеет уравнение трёх моментов для неразрезной балки и каков физический смысл этого уравнения?
- 34. Как с помощью уравнений трёх моментов рассчитывается неразрезная балка с защемлёнными концами?
 - 35. В каком порядке производится расчёт неразрезной балки?
- 36. Как определяется степень статической неопределимости плоской рамы?
- 37. Как записывается система канонических уравнений? Как определяются коэффициенты канонических уравнений?
- 38. В каком порядке производится расчёт статически неопределимых рам методом сил?
- 39. Как производится статическая проверка окончательных эпюр Q, N, M? На чём основана и как производится деформационная проверка окончательной эпюры изгибающих моментов?
 - 40. Что понимается под потерей устойчивости конструкции?
- 41. Запишите выражение для геометрической гибкости стержня? Как определяется минимальный радиус инерции поперечного сечения?
 - 42. Запишите формулу Эйлера для определения критической силы.
- 43. Как определяется величина критической силы в зависимости от гибкости стержня? Запишите условие устойчивости стержня.
- 44. Какое явление называется ударом и результатом чего оно является? Как записывается условие прочности при ударном действии нагрузки?
- 45. Какие колебания называются свободными, а какие вынужденными? По какой формуле определяется амплитуда вынужденных колебаний? Как определяются динамические напряжения при вынужденных колебаниях?
 - 46. Как вычислить динамический коэффициент при колебаниях?

Критерии и шкала оценивания по оценочному средству контрольная работа

Шкала оценивания (интервал баллов)	Критерий оценивания
отлично (5)	Контрольная работа выполнена на высоком уровне (правильные ответы даны на 90-100% вопросов)
хорошо (4)	Контрольная работа выполнена на среднем уровне (правильные ответы даны на 75-89% вопросов)
удовлетворительно (3)	Контрольная работа выполнена на низком уровне (правильные ответы даны на 50-74% вопросов)
неудовлетворительно (2)	Контрольная работа выполнена на неудовлетворительном уровне (правильные ответы даны менее чем на 50%)

Вопросы к лабораторным работам

- 1. Какие характерные точки диаграммы растяжения мягкой стали вам известны?
- 2. Что называется пределом пропорциональности, упругости, текучести, прочности?
- 3. Какие деформации называются упругими, а какие остаточными (пластичными)?
 - 4. Как определяются допускаемые напряжения?
- 5. Какие свойства стали характеризуют остаточное удлинение и остаточное сужение?
- 6. Какие механические характеристики можно определить при сжатии мягкой стали, чугуна, дерева?
- 7. Что называется пределом прочности при сжатии стали, чугуна, дерева?
 - 8. Как формулируется закон Гука?
- 9. Что называется абсолютной продольной деформацией? Что называется относительной продольной деформацией?
 - 10. Что такое модуль упругости первого рода?
 - 11. Какой физический и геометрический смысл модуля Юнга?
 - 12. Какой вид деформации называется кручением?
 - 13. Что такое относительный сдвиг при кручении?
- 14. Что называется углом закручивания? Напишите закон Гука при сдвиге.
 - 15. Что называется относительной продольной деформацией?
 - 16. Что называется относительной поперечной деформацией?
- 17. Что называется коэффициентом Пуассона (коэффициентом поперечной деформации)?
 - 18. Что называется прямым изгибом?
- 19. Как вычисляются нормальные напряжения в любой точке поперечного сечения? 20. Как определяется полный прогиб балки при косом изгибе?

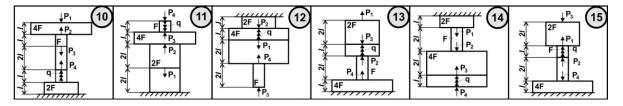
Критерии и шкала оценивания по лабораторной работе

Шкала оценивания (интервал баллов).	Критерий оценивания					
отлично (5)	Лабораторная работа выполнена на высоком уровне (правильные ответы даны на 90-100%)					
хорошо (4)	Лабораторная работа выполнена на среднем уровне (правильные ответы даны на 75-89%)					

удовлетворительно (3)	Лабораторная работа выполнена на низком уровне (правильные ответы даны на 50-74%)					
неудовлетворительно (2)	Лабораторная работа выполнена на неудовлетворительном уровне (правильные ответы даны менее чем на 50%)					

Индивидуальное задание (расчетно-графическая работа)

Nº	P ₁	P ₂	P ₃	P ₄	P ,kH	q ,kН/м	F,cm²	L,M	σ _т ,МПа	n,
0	Р	1,5P	2P	2,5P	30	28	5	1,0	200	1.3
1	2,5P	3P	1,5P	Р	32	26	6	1,5	210	1.4
2	2P	3P	1,5P	2,5P	34	24	7	2,0	220	1.5
3	1,5P	2P	2,5P	3P	36	22	8	2,5	230	1.6
4	3P	1,5P	Р	2,5P	38	20	9	3,0	240	1.7
5	Р	2P	2,5P	1,5P	40	18	10	1,0	250	1.3
6	2P	2,5P	1,5P	3P	42	16	11	1,5	260	1.4
7	2,5P	Р	2P	1,5P	44	14	12	2,0	270	1.5
8	1,5P	2,5P	3P	Р	46	12	13	2,5	280	1.6
9	3P	Р	1,5P	2,5P	48	10	14	3,0	290	1.7

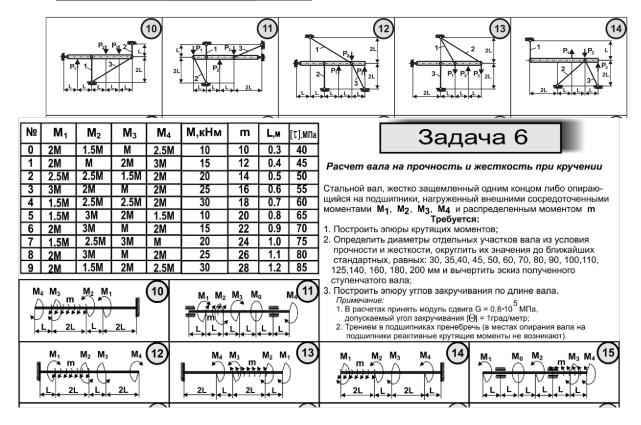

Задача 2

Расчет на прочность при растяжении - сжатии

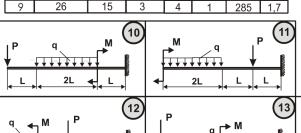
Для заданного трехступенчатого стержня, нагруженного сосредоточенными силами $P_1,\ P_2,\ P_3,\ P_4$ и распределенной нагрузкой q, действующими вдоль оси стержня,

Требуется:

- 1. Построить эпюры продольных сил и нормальных напряжений;
 2. Оценить прочность стержня;
 3. Построить эпюру продольных перемещений.



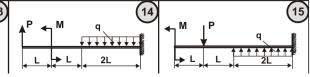
Nº	P ₁	P ₂	P ₃	P, ĸH	Номер убираемого стержня	F ₁ : F ₂ : F ₃	σ _τ , ΜΠα	n,
0	Р	0	0	50	2	1:2:3	250	1,3
1	0	2P	0	55	3	2:1:3	300	1,4
2	0	0	3P	60	1	1:3:2	350	1,5
3	0	Р	0	65	2	2:3:4	400	1,6
4	3P	0	0	70	3	2:3:1	450	1,7
5	0	0	Р	75	1	3:2:4	500	1,3
6	2P	0	0	80	2	2:4:3	550	1,4
7	0	0	Р	85	3	3:2:1	600	1,5
8	0	3P	0	90	1	4:2:3	650	1,6
9	Р	0	0	95	2	4:3:2	700	1,7


Абсолютно жёсткая балка, нагруженная одной из указанных на расчётных схемах силой, опирается на шарнирно неподвижную опору и прикрепляется с помощью шарниров к трём стальным стержням

Требуется:

- 1. Определить усилия N_1 , N_2 , N_3 в стержнях, предварительно построив план предполагаемых деформаций системы;
- 2. Провести подбор поперечных сечений стержней F_1 , F_2 , F_3 из условия прочности и с учётом их заданного соотношения.

q,<u>κΗ</u> М,кНм Р,кН Nº **თ**_т,МПа n_{τ} α 0 6 4 240 1,3 10 3 2.5 2 245 1.4 7 2 12 8 2 3 3 250 1,5 9 14 1 255 1.6 3.5 4 10 16 4 4 260 1,7 5 18 11 3 3 2 265 1.3 20 12 2 6 2,5 270 1,4 13 3 275 1,5 24 14 4 8 3,5 280 1,6



Для заданной консольной балки Требуется:

- 1. Построить эпюры поперечных сил и изгибающих моментов:
- 2. Из условия прочности подобрать размеры поперечных сечений балки следующих форм:
 - а) прямоугольное
- с соотношением сторон

8

- б) квадратное, со стороной а; в) круглое, диаметром **d**;
- г) двутавровое;
- 3. Сравнить экономичность указанных сечений;
- 4. Произвести проверку прочности балки двутаврового сечения по главным напряжениям.

Nº	Р₁,кНм	R₁,кНм	N₁,ĸH	D _{1 ,M}	D ₂ ,M	L,м	$σ_{\tau}$,ΜΠ a	n,
0	5	2,0	1,0	0.20	0,32	0,5	300	1.3
1	6	2,5	1,5	0.22	0,34	0,4	310	1.4
2	7	3,0	2,0	0.24	0,36	0,3	320	1.5
3	8	3,5	2,5	0.26	0,38	0,2	330	1.6
4	9	4,0	3,0	0.28	0,40	0,3	340	1.7
5	10	4,5	3,5	0.30	0,42	0,4	350	1.3
6	11	5,0	4,0	0.32	0,44	0,5	360	1.4
7	12	5,5	4,5	0.34	0,46	0,4	370	1.5
8	13	6,0	5,0	0.36	0,48	0,3	380	1.6
Q	14	6.5	5.5	0.38	0.50	0.2	390	17

Задача 16

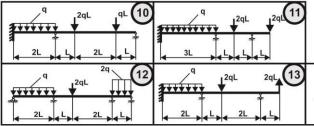
Изгиб с кручением
На вал круглого сечения насажены коническое (или цилиндрическое косозубое) зубчатое колесо диаметром D₁ и прямозубое цилиндрическое зубчатое колесо (или шкив) диаметром D₂. Окружная P, радиальная R и осевая N составляющие силы зацепления в зубчатых передачах (или усилия натяжения ремней P₂ и 2P₂) показаны на расчётных схемах. Принимается, что R₂≈0,4P₂ A - упорный подшипник.

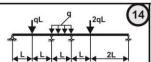
Требуерос:

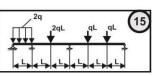
- А упорныи подшипник.
 Требуется:
 1. Построить эпюру крутящих моментов.
 2. Построить эпюры изгибающих моментов в вертикальной и горизонтальной плоскостях и эпюру суммарного изгибающего момента.
 3. Построить эпюру продольных сил.
 - Построить эпюру продольных сил.
 Установить положение опасного сечения, для которого определить значение расчётного момента по III теории прочности
 Из условия прочности при изгибе с кручением определить диаметр вала и округлить его до ближайшего большего стандартного, равного:30,35,40,45,50,60,70,80,90,100,110,125,140,160,180,200 мм.
 Провести проверочный расчёт на прочность с учётом действия продольной силы.

Nº	L,M	Форма попереч- ного сечения	NN прокатных профилей	$\sigma_{\scriptscriptstyle{T}}$,МПа	n _T
0	0.4	I	12	200	1.3
1	0.6		14	210	1.4
2	0.8	II	16	220	1.5
3	1.0		18	230	1.6
4	1.2	I	20	240	1.7
5	1.4	I	22	250	1.8
6	1.6	II	24	260	1.7
7	1.8		27	270	1.6
8	2.0	I	30	280	1.5
9	2.2		22	290	1 4

Задача 18


Неразрезные балки. Уравнение 3-х моментов


Для заданной статически неопределимой балки


Требуется:

Используя уравнение 3-х моментов:

- 1. Построить эпюры Q и M.
- 2. Определить из условия прочности допускаемую нагрузку [q].

№	L,M	М ,kНм	q, kН/м	P,kH	Форма попереч- ного сечения	$\sigma_{\!\scriptscriptstyle T}$,МПа	n,
0	2.2	38	10	16	I	290	1.4
1	2.0	36	15	20	I	280	1.5
2	1.8	34	20	24	[]	270	1.6
3	1.6	32	25	28	П	260	1.7
4	1.4	30	30	32][250	1.8
5	1.2	28	35	36	I	240	1.7
6	1.0	26	40	40		230	1.6
7	0.8	24	45	44	П	220	1.5
8	0.6	22	50	48	I	210	1.4
9	0.4	20	55	52		200	1.3


Задача 19

Статически неопределимые рамы. Метод сил

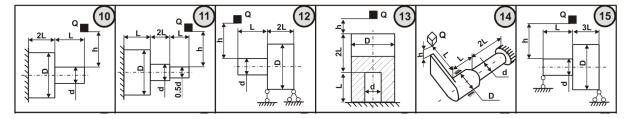
Для заданной статически неопределимой рамы

Требуется:

- 1. Используя метод сил построить эпюры N, Q, М;
- 2. Провести статическую и деформационную проверки.
- Подобрать размеры поперечного сечения, указанного в таблице:

22

Nº	Q,ĸH	L,M	d,мм	D ,мм	һ,см	Ι	α, м/кН	n,	О _т ,МПа
0	0.5	1.9	60	100	10	10	0.01	1.4	200
1	0.6	1.8	70	110	12	12	0.02	1.5	220
2	0.7	1.7	80	125	14	14	0.03	1.6	240
3	0.8	1.6	90	140	16	16	0.04	1.7	260
4	0.9	1.5	100	160	18	18	0.05	1.8	280
5	1.0	1.4	110	180	20	18a	0.01	1.9	300
6	1.1	1.3	125	200	22	20	0.02	2.0	320
7	1.2	1.2	140	210	24	20a	0.03	2.1	340
8	1.3	1.1	160	240	26	22	0.04	2.2	360
9	1./	1 0	180	250	28	222	0.05	23	380


На стальной стержень, представленный на расчетных схемах, падает груз ${f Q}$ с высоты ${f h}$.

Требуется:

- 1. Определить наибольшие динамические напряжения
- и оценить динамическую прочность конструкции;
- 3. Определить предельно допустимую высоту падения груза [h] и сравнить с заданной.

Примечание:

 $oldsymbol{lpha}$ - податливость пружины; принять [T]=0,5[σ] .

Критерии и шкала оценивания по индивидуальному заданию (расчетнографической работе)

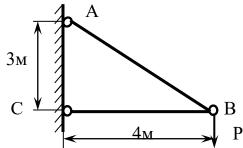
Шкала оценивания (интервал баллов).	Критерий оценивания
отлично (5)	Индивидуальное задание выполнено на высоком уровне (пра-
	вильные ответы даны на 90-100% задания)
хорошо (4)	Индивидуальное задание выполнено на среднем уровне (правильные ответы даны на 75-89% задания)
удовлетворительно (3)	Индивидуальное задание выполнено на низком уровне (правильные ответы даны на 50-74% задания)
неудовлетворительно (2)	Индивидуальное задание выполнено на неудовлетворительном уровне (правильные ответы даны менее чем на 50% задания)

Промежуточный контроль (зачет, экзамен)

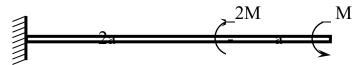
Вопросы к промежуточному контролю (зачет, экзамен)

Теоретическая часть

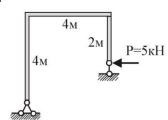
- 1. Гипотезы идеально упругого тела.
- 2. Анализ плоского напряженного состояния. Закон парности касательных напряжений.
 - 3. Прямая задача в плоском напряженном состоянии.
- 4. Изменение моментов инерции при параллельном переносе осей.
 - 5. Кручение. Расчеты на прочность и жесткость.
 - 6. Классические теории прочности.
- 7. Зависимость между напряжениями и деформациями при чистом сдвиге.
 - 8. Полная проверка балок на прочность при изгибе.
 - 9. Определение внутренних усилий, метод сечений.
 - 10. Анализ плоского напряженного состояния. Прямая задача.
- 11. Плоское напряженное состояние. Определение главных напряжений (обратная задача).
- 12. Определение напряжений и деформации при растяжениисжатии.
- 13. Кручение. Вычисление напряжений и деформаций при кручении.


Условие прочности и жесткости.

- 14. Главные центральные оси и их определение.
- 15. Построение эпюр внутренних силовых факторов для плоских рам.
 - 16. Полная проверка балок на прочность при изгибе.
 - 17. Расчет на прочность при ударе.
 - 18. Вывод формулы Эйлера для вычисления критической силы.
 - 19. Расчет на устойчивость с помощью □.
 - 20. Вывод уравнения трех моментов.
 - 21. Метод Максвелла-Мора.
 - 22. Расчет статически неопределимых балок.
 - 23. Расчет статически неопределимых рам.
 - 24. Расчет на прочность при колебаниях.
 - 25. Теорема Кастильяно.
 - 26. Энергетические методы определения деформаций.

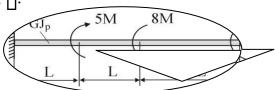

- 27. Расчет статически неопределимых рам методом сил.
- 28. Определение динамических напряжений при ударе.
- 29. Метод сил.
- 30. Расчет статически неопределимых симметричных рам.

Практическая часть

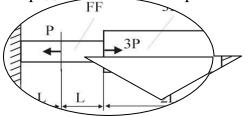

1. Определить диаметр d стальной тяги AB, если сила Р=20 кH, [□]=60 МПа.

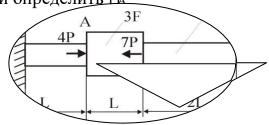


2. Подобрать диаметр вала из условий прочности и жесткости, если M=40 кHм, a=1 м, $G=8*10^4$ МПа, $[\Box]=100$ МПа; $[\Box]=0.5$ рад/м.

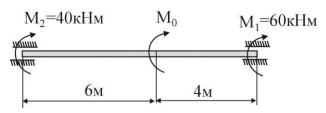


3. Построить эпюры M, Q, N.

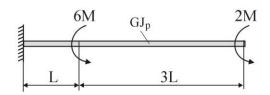



5. Построить эпюры $M_{\kappa p}$, \square .

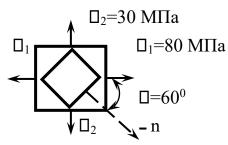
6. Раскрыть статическую неопределимость и построить $\Im N$.

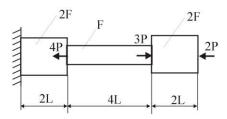


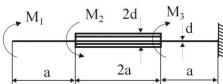
7. Построить эпюры 9^N и определить \square

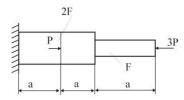


4. Подобрать двутавровое сечение, если a=1 м, [\square]=200 МПа. q=20 кH/м

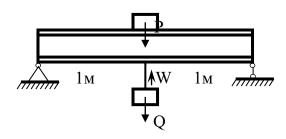

8. Подобрать диаметр вала, если [П]=100 МПа.

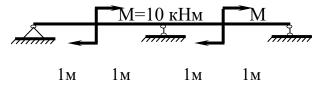

9. Построить эпюры M_{kp} , \square .

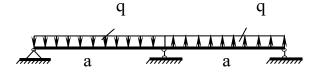

10. Определить линейные деформации □□ , □□ элемента, площадки которого повернуты на угол □ по отношению к главным.


11. Построить ЭН и Э□.

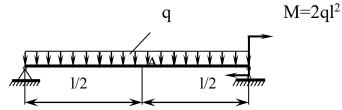
12. Подобрать диаметр вала и вычислить угол поворота сечения A, если M_1 =10 кHм; M_2 =16 кHм; M_3 =8 кHм; a=1 м; G=1*10 4 МПа; [\Box]=100 МПа

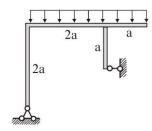

13. Построить эпюры N, \square , \square , если P=50 кH, a=20 см, E=2*10⁵ МПа; F=40 см²;


14. Определить допускаемую нагрузку сжатого стального стержня, если сечение квадратное a=10 см, $\Box_{\rm r}=300$ МПа, $n_{\rm r}=2$, l=2 м.

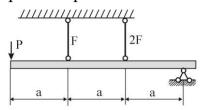

16. Подъемник весом P=0,5 кH поднимает груз весом Q=10 кH с ускорением W=2 м/сек 2 . Определить \square_g^{max} в балке I №20.

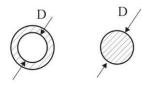
17. Построить ЭQ,ЭМ для заданной балки.


18. Подобрать прямоугольное сечение балки, если $\square_{\rm T}$ =270 МПа, $n_{\rm T}$ =1,5, h/b=2, q=2 кH/м, a=2 м.


19. Определить размер а квадратного сечения $q \qquad \qquad M=ql^2$ стальной балки, если $l=1\,$ м, $q=10\,$ кH/м, а допускаемый прогиб конца балки не должен $1/500\,$ доли пролета балки.


20. Определить прогиб сечения А методом Верещагина.


21. Построить ЭМ, ЭQ, ЭN и подобрать квадратное сечение, если a=1 м, q=2 кH/м; $[\Box]=100$ М \Box а


22. M_1 =16 кHм, M_2 =8 кHм, M_3 =4 кHм; [\square]=40 МПа. Построить Э $M_{\kappa p}$ и определить размеры вала.

23. Определить усилия в стержнях при Р=10 кН.

24. Сравнить уровень касательных напряжений, возникающих при кручении в сплошном и полом валах с одинаковой площадью поперечного сечения.

Критерии и шкала оценивания по оценочному средству промежуточный контроль (зачет, экзамен)

Шкала оценивания	Характеристика знания предмета и ответов	Зачеты
отлично (5)	Студент глубоко и в полном объеме владеет программным материалом. Грамотно, исчерпывающе и логично его излагает в устной или письменной форме. При этом знает рекомендованную литературу, проявляет творческий подход в ответах на вопросы и правильно обосновывает принятые решения, хорошо владеет умениями и навыками при выполнении практических задач	зачтено
хорошо (4)	Студент знает программный материал, грамотно и по сути излагает его в устной или письменной форме, допуская незначительные неточности в утверждениях, трактовках, определениях и категориях или незначительное количество ошибок. При этом владеет	

	необходимыми умениями и навыками при выполнении практических задач.	
удовлетворительно (3)	Студент знает только основной программный материал, допускает неточности, недостаточно четкие формулировки, непоследовательность в ответах, излагаемых в устной или письменной форме. При этом недостаточно владеет умениями и навыками при выполнении практических задач. Допускает до 30% ошибок в излагаемых ответах.	
неудовлетворительно (2)	Студент не знает значительной части программного материала. При этом допускает принципиальные ошибки в доказательствах, в трактовке понятий и категорий, проявляет низкую культуру знаний, не владеет основными умениями и навыками при выполнении практических задач. Студент отказывается от ответов на дополнительные вопросы.	не зачтено

Лист изменений и дополнений

№	Виды дополнений и	Дата и номер протокола	Подпись (с
Π/Π	изменений	заседания кафедры	расшифровкой)
		(кафедр), на котором были	заведующего кафед-
		рассмот-	рой (заведующих кафед-
		рены и одобрены изменения	рами)
		и дополнения	

Экспертное заключение

Представленный фонд оценочных средств (далее - ФОС) *по дисциплине «Сопротивление материалов»* соответствует требованиям ГОС ВО.

Предлагаемые формы и средства текущего и промежуточного контроля адекватны целям и задачам реализации основной образовательной программы по специальности 23.03.03 Эксплуатация транспортно-технологических машин и комплексов.

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебнометодическое обеспечение самостоятельной работы обучающегося представлены в полном объеме.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанный и представленный для экспертизы фонд оценочных средств рекомендуется к использованию в процессе подготовки инженеров по указанной специальности.

Председатель учебно-методической комиссии института транспорта и логистики

Е.И. Иванова