МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля»

Институт технологий и инженерной механики Кафедра «Технология машиностроения и инженерный консалтинг»

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ «ТЕОРИЯ МЕХАНИЗМОВ И МАШИН»

По направлению подготовки 23.03.03 Эксплуатация транспортнотехнологических машин и комплексов

Профиль: «Автомобили и автомобильное хозяйство»

Лист согласования РПУД

Рабочая программа учебной дисциплины «Теория механизмов и машин» по направлению подготовки 23.03.03 Эксплуатация транспортно-технологических машин и комплексов. — ___ с.

Рабочая программа учебной дисциплины «Теория механизмов и машин» составлена с учетом Федерального государственного образовательного стандарта высшего образования по направлению подготовки 23.03.03 Эксплуатация транспортно-технологических машин и комплексов утвержденного приказом Министерства науки и высшего образования РФ от 7 августа 2020 г. N 916 "Об утверждении федерального государственного образовательного стандарта высшего образования -бакалавриат по направлению подготовки 23.03.03 Эксплуатация транспортно-технологических машин и комплексов" (с изменениями и дополнениями)

составитель:

канд. техн. наук, доцент Муховатый А.А.

Рабочая программа дисциплины утверждена на заседании кафедры технологии машиностроения и инженерного консалтинга « $\underline{\cancel{14}}$ » $\underline{\cancel{04}}$ 20 $\underline{\cancel{23}}$ г., протокол № $\underline{\cancel{9}}$
Заведующий кафедрой технологии машиностроения и инженерного консалтинга Витренко В.А.
Переутверждена: «»20 г., протокол №
Согласована (для обеспечивающей кафедры): Директор института транспорта и логистики Переутверждена: «»20 года, протокол №
Рекомендована на заседании учебно-методической комиссии института
Председатель учебно-методической вомиссии института Ясуник С.Н.

Структура и содержание дисциплины

1. Цели и задачи дисциплины, ее место в учебном процессе

Цель изучения дисциплины — формирование у студентов системы знаний о строении, принципах действия и методах исследования механизмов и машин, получение студентами первичных навыков инженерной деятельности, связанной с проектированием, изготовлением и эксплуатацией механизмов и машин различного назначения, независимо от отрасли промышленности или вида транспорта.

Задачи:

- изучить назначение, классификацию, строение и принципы действия типовых механизмов и машин;
- сформировать знания об основах строения механизмов, приводов и машин, структурном анализе и синтезе механизмов в соответствии с назначением и характером преобразуемого движения;
- сформировать знания и умения проводить исследования кинематических, силовых и динамических параметров и характеристик различных механизмов, с точки зрения их анализа и синтеза;
- выработать у студентов навыки и умения выполнять операции экспериментального измерения параметров, регулирования и уравновешивания механизмов и машинных агрегатов.
- сформировать у студентов навыки работы с технической и конструкторской (согласно ЕСКД) документацией, выполнения элементарных проектных процедур и самостоятельного решения инженерно-конструкторских задач.

2._Место дисциплины в структуре ООП ВО

Дисциплина «Теория механизмов и машин» относится к базовой части профессионального цикла дисциплин. Необходимыми условиями для освоения дисциплины являются: знания основных естественнонаучных законов и закономерностей, используемых в процессе изготовления продукции и производства изделий требуемого качества, основных понятий и методов решения оптимизационных задач, умения использовать физикорешения задач, математический аппарат ДЛЯ возникающих в ходе профессиональной деятельности, навыки применения современного математического инструментария для решения задач в профессиональной деятельности; умением оценивать результаты измерений; математическими методами и программными средствами. Содержание дисциплины является логическим продолжением содержания дисциплин «Математика», «Физика», «Инженерная и компьютерная графика» и служит основой для изучения для дисциплины «Детали машин и основы конструирования» и специальных дисциплин конструкторского профиля по направлениям подготовки.

3. Требования к результатам освоения содержания дисциплины

Код и наименование компетенции	Индикаторы достижений компетенции (по реализуемой дисциплине)	Перечень планируемых результатов
ОПК-1. Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в	ОПК-1.1. Применяет методы высшей математики для решения задач профессиональной деятельности ОПК-1.2. Применяет основные понятия и законы естественных наук для решения предметнопрофильных задач ОПК-1.3. Применяет естественнонаучные методы теоретического и экспериментального исследования объектов, процессов, явлений, проводит эксперименты по заданной методике и анализирует результаты	Знать: классификации механизмов, узлов и деталей; основы проектирования механизмов, стадий разработки; требований к деталям, критериев работоспособности и влияющих на них факторов. Уметь: выполнять эскизы механизмов, читать сборочные чертежи и оформлять конструкторскую документацию, назначать конструкционные материалы для проектируемых деталей; подбирать типовые передаточные механизмы к конкретным машинам, определять параметры передаточных механизмов Владеть: методами анализа и расчета деталей и механизмов узлов механической части; способами подбора типовых передаточных механизмов к конкретным машинам; навыками конструирования типовых деталей, их соединений, механических передач.

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

David vivo Savo V no Source	Объем часов (зач. ед.)		
Вид учебной работы	Очная форма	Заочная форма	
Общая учебная нагрузка (всего)	144	144	
	(4 зач. ед.)	(4 зач. ед.)	
Обязательная аудиторная учебная нагрузка (всего)	64	12	
в том числе:			
Лекции	32	6	
Семинарские занятия	-	-	
Практические занятия	32	6	
Лабораторные работы	-	-	

Вид учебной работы	Объем час	сов (зач. ед.)
Курсовая работа (курсовой проект)	-	-
Другие формы и методы организации образовательного	18	18
процесса (расчетно-графические работы,		
индивидуальные задания и т.п.)		
Самостоятельная работа студента (всего)	36	132
Форма аттестации	экзамен	экзамен

4.2. Содержание разделов дисциплины

Тема 1. Основы строения механизмов и машин. Понятие о теории механизмов и машин, место дисциплины в подготовке инженера. Цель, задачи и основные разделы дисциплины. Понятие анализа и синтеза. Машина. Механизм. Привод. Звено механизма. Входные и выходные, ведущие и ведомые звенья механизма. Классификация машин и механизмов. Кинематические пары и их классификация по характеру сопряжения, силовому замыканию, числу условий связи. Степень подвижности пространственных и плоских механизмов. Структурная схема механизмов, принцип синтеза рычажных механизмов, структурные группы (группы Ассура) и их классификация. Начальное звено и обобщенная координата, закон движения. Заменяющие механизмы, избыточные (пассивные) связи и лишние (локальные) степени подвижности. Структурный анализ механизма.

Тема 2. Кинематический анализ механизмов. Цель и задачи кинематического анализа. Основные параметры анализа – линейные, угловые скорости и ускорения, траектории движения звеньев и отдельных точек. Методы кинематического анализа механизмов. Графический метод (метод кривошипно-ползунного кинематических диаграмм) метод (метод планов) кинематического Графоаналитический анализа структурных групп рычажных механизмов. Совмещенные планы механизма, скоростей и ускорений механизмов. Аналитический кинематического анализа манипуляторов (метод Морошкина Ю. Ф.) и рычажных механизмов (метод Зиновьева В. А.).

Тема 3. Динамика механизмов и машин. Цели и задачи динамического анализа. Динамические модели механизмов. Приведение сил и моментов сил. Приведенный момент инерции и приведенная масса. Уравнение движения машины (механизма). Графическое решение уравнения движения машины Ф. Виттенбауэра (построением диаграммы энергомасс). Неравномерность движения механизмов, определение момента инерции и размеров маховика. Силовой анализ механизмов, его цели и задачи, значение для расчета и конструирования механизмов, приводов и машин. Силы, действующие в механизмах и машинах. Статическая определимость. Метод кинетостатики. Составление уравнений для определения реакций в опорах, с ил и моментов сил. План сил. Метод «жёсткого рычага» Н. Е. Жуковского. Силовой анализ структурных групп (групп Ассура) разных видов в рычажных механизмах

Тема 4. Уравновешивание механизмов и виброзащита машин. Причины неуравновешенности механизмов и возникновения динамических нагрузок на опоры, элементы конструкций и на фундамент. Влияние неуравновешенности движущихся масс на уровень шума и вибраций, износ, на надёжность механизмов долговечность неуравновешенности роторов. Уравновешивание роторов с известным расположением неуравновешенных масс в одной и трёх плоскостях. Уравновешивание роторов с неизвестным расположением масс. Способы и балансировки роторов. Уравновешивание оборудование механизмов на фундаменте. Вибрации, их причины, средства и методы виброзащиты механизмов и машин.

Тема 5. Теория зубчатых передач. Значение зубчатых передач и механизмов в современном машиностроении, их преимущества и недостатки. Основные термины и определения. Колесо и шестерня. Передаточное отношение. Зубчатое зацепление и зубчатый механизм. Редуктор. Основная теорема плоского зацепления (теорема Виллиса). Классификация зубчатых передач механизмов, преимущества И недостатки, особенности изготовления и эксплуатации. Методы изготовления зубчатых колес. Эвольвента окружности и ее свойства. Эвольвентное зацепление и его преимущества. Основные элементы и параметры эвольвентных зубчатых колес. Исходный производящий контур режущего инструмента (рейки). Нарезание зубчатых колес со смещением. Явление подрезания зубьев. Геометрический расчёт прямозубых эвольвентных зубчатых передач. Расчёт и построение внешнего эвольвентного зацепления. Блокирующий контур. Преимущества, особенности расчета и изготовления косозубых передач. Многозвенные зубчатые механизмы ступенчатые, планетарные, дифференциальные и др.

Тема 6. Кулачковые механизмы. Термины и определение, примеры использования и классификация кулачковых механизмов. Законы и фазы движения выходного звена кулачкового механизма. Синтез кулачкового механизма. Главное условие (закон движения выходного звена) и дополнительные требования (габариты, нагрузки, углы давления, режим и характер движения входного и выходного звеньев) для синтеза кулачкового механизма. Геометрический синтез кулачкового механизма методом инверсии.

4.3. Лекции

No			Объем часов	
п/п	Название темы	Очная форма	Заочная форма	
1	Основы строения механизмов и машин	4	1	
2	Кинематический анализ механизмов	6	1	
3	Динамика механизмов и машин	6	1	
4	Уравновешивание механизмов и виброзащита машин	6	1	
5	Теория зубчатых передач	6	1	
6	Кулачковые механизмы	4	1	
Итого):	32	6	

4.4. Практические (семинарские) занятия

№	Название темы	Объе	м часов
п/п		Очная форма	Заочная форма
1	Структурные схемы, принцип действия, преимущества и недостатки механизмов в соответствии с их классификацией. Структурный анализ механизмов.	4	1
2	Кинематический анализ. Масштабный коэффициент. Построение кинематических схем и совмещенных планов механизмов. Построение планов скоростей и ускорений. Решение задач кинематики.	6	1
3	Силы в механизмах. Составление уравнений и построение планов сил. Нахождение момента сил методом «рычага» Н.Е. Жуковского. Решение задач динамики механизмов.	6	1
4	Уравновешивание механизмов. Способы и средства балансировки роторов, методы и средства виброзащиты.	4	1
5	Расчет и построение косозубого зубчатого зацепления с использованием машиностроительных САПР.	6	1
6	Геометрический синтез кулачкового механизма.	6	1
Итого	o:	32	6

4.5. Лабораторные работы Лабораторные работы учебным планом не предусмотрены.

4.6. Самостоятельная работа студентов

No	Название темы	Вид СРС	Объем часов	
п/п			Очная форма	Заочная форма
1	2	3	4	5
1	Основы строения механизмов и машин	Подготовка к практическим занятиям, изучение конспекта лекций и дополнительной литературы.	8	10
2	Кинематический анализ механизмов	Подготовка к практическим занятиям, изучение конспекта лекций и дополнительной литературы.	10	24
3	Динамика механизмов и машин	Подготовка к практическим занятиям, изучение конспекта лекций и дополнительной литературы. Подготовка к текущему и промежуточному контролю.	6	16
4	Уравновешивание механизмов и виброзащита машин	Подготовка к практическим занятиям, изучение конспекта лекций и дополнительной литературы.	10	20
5	Теория зубчатых передач	Изучение конспекта лекций и дополнительной литературы. Подготовка к промежугочному	16	24

№	Название темы	Название темы Вид СРС		часов
		контролю знаний и умений.		
6	Кулачковые механизмы	Изучение конспекта лекций и дополнительной литературы. Подготовка к итоговому контролю знаний и умений.	12	20
7	Индивидуальное задание. Структурный анализ и метрический синтез механизма.	Подготовка материалов и литературы, выполнение расчётов оформление ПЗ.	6	6
8	Индивидуальное задание. Кинематический и силовой анализ механизма.	Выполнение расчётов, оформление ПЗ и первого листа графической части	6	6
9	Индивидуальное задание. Динамический анализ механизма. Расчёт приведенных массы, момента инерции, силы, момента силы.	Выполнение расчётов динамической модели механизма, оформление ПЗ и второго листа графической части. Подготовка к защите курсовой работы.	6	6
Ито	го:		80	132

4.7. Курсовые работы/проекты

По дисциплине «Теория механизмов и машин» курсовые работы/проекты учебным планом не предусмотрены.

5. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов образовательных технологий: объяснительно-иллюстративного обучения (технология поддерживающего обучения, технология проведения учебной дискуссии), информационных технологий (визуализация, создание электронных учебных материалов), развивающих и инновационных образовательных технологий.

Практические занятия проводятся с использованием развивающих, проблемных, проектных, информационных (использование электронных образовательных ресурсов (электронный конспект) образовательных технологий.

6. Учебно-методическое и программно-информационное обеспечение дисциплины:

- а) основная литература:
- 1. Артоболевский И.И. Теория механизмов и машин: Учебник для втузов М.: Альянс, 2016. 640 с.
- 2. Левитский Н.И. Теория механизмов и машин: Учеб. пособие для вузов [2- е изд.]. М.: Наука, 1990. 592 с.
- 3. Теория механизмов и машин. Терминология: Учеб. пособие. Под ред. К. Ф. Фролова. М.: Изд-во МГТУ им. Н. Э. Баумана, 2007. 80 с.

- 4. Носко П.Л. и др. Тексты лекций по дисциплине "Теория механизмов и машин". Луганск: Изд-во ВНУ им. В. Даля, 2005. 122 с.
- 5. Фролов К.В. и др. Теория механизмов и механика машин: Учеб. для втузов. М.: Высшая школа, 2008. 496 с.
- 6. Тимофеев Г.А. Теория механизмов и машин: Учебное пособие для бакалавров. М.: Юрайт, 2013. 351 с.
- 7. Тимофеев Г.А. Теория механизмов и машин. Курсовое проектирование. М.: МГТУ им. Н. Э. Баумана, 2010. 154 с.
- 8. Коловский М.З. и др. Теория механизмов и машин: Учебное пособие для студ. высших учеб. заведений. М.: ИЦ Академия, 2013. 560 с.
- 9. Брешев В. Е. Курсовое проектирование по теории механизмов и машин: Учебное пособие. Луганск: Изд-во ЛНУ им. В. Даля, 2019. 168 с.

б) дополнительная литература:

- 1. Фролов К.В. Теория механизмов и механика машин. Т.5. Механика в техническом университете. М.: МГТУ им. Н. Э. Баумана, 2012. 686 с.
- 2. Шевченко С. В., Брешев В. Е. Детали машин. Примеры расчетов: Учебное пособие. Луганск: Изд-во Луганского университета им. В. Даля, 2015. 106 с.
- 3. Чмиль В.П. Теория механизмов и машин: Учебно-методическое пособие. СПб.: Лань, 2012. 288 с.
- 4. Болотовский И. А. и др. Справочник по геометрическому расчёту эвольвентных зубчатых и червячных передач. М.: Машиностроение, 1986. 448 с.
- 5. Алямовский A.A. SolidWorks/COSMOSWorks. Инженерный анализ методом конечных элементов. М: ДМК, 2007. 784 с.
- 6. Алямовский А.А. SolidWorks Simulation. Инженерный анализ для профессионалов: задачи, методы, рекомендации. М.: ДМК-Пресс, 2015. 562 с.
- 7. Кореняко и др. Курсовое проектирование по теории механизмов и машин. 5-е изд. Киев: Вища школа, 1970. 332 с.
- 8. Корнеев В. Н. и др. КОМПАС-3D на примерах: для студентов, инженеров и не только. СПб.: Наука и Техника, 2017. 272 с.
- 9. Крайнев, В. Н. Идеология конструирования. М.: Машиностроение-1, 2003. 384 с.

в) методические рекомендации

- 1. Брешев В.Е. Методические указания к практическим занятиям и выполнению индивидуального задания по дисциплине "Теория механизмов и машин". Луганск: Изд-во ЛГУ им. В. Даля, 2016. 27 с.
- 2. Брешев В. Е. Методические указания к практическим занятиям и выполнению индивидуального задания по дисциплине «Прикладная механика». Луганск: Изд-во Луганского университета им. В. Даля, 2015. 52 с.
- 3. Брешев В. Е. Прикладные программы в инженерном проектировании. Учебно-методический комплекс дистанционного курса дисциплины (УМКДКД). Луганск: ВНУ им. В. Даля, 2008. 110 с.

- 4. Брешев В. Е. САПР оборудования. Учебно-методический комплекс дистанционного курса дисциплины (УМКДКД). Луганск: ВНУ им. В. Даля, 2009. 110 с.
 - г) интернет-ресурсы:
- 1. http://tmm.spbstu.ru/journal.html ТММ портал для профессионалов и студентов.
- 2. http://lalls.narod ru/Literatura./ библиотека полнотекстовой технической литературы (литература в форматах .pdf, .djvu, .htm).
 - 3. http://tech.lib.kharkov.ua библиотека технической литературы.
 - 4. http://bigor.bmstu.ru/ электронные учебники МГТУ им. Н.Э. Баумана.
- 5. http://booktech.ru/books/tmm портал литературы по теории механизмов и машин.

7. Материально-техническое обеспечение дисциплины

В качестве материально-технического обеспечения дисциплины используются модели, иллюстрирующие механизмы, деформированное и напряженное состояние тел, компьютеры, программное обеспечение, иллюстративные материалы.

Практические занятия проводятся в аудиториях, оснащенных макетами рычажных механизмов и приводами, редукторами; шаблоны отчетов по лабораторным работам.

Программное обеспечение:

Функциональное назначение	Бесплатное программное обеспечение	Ссылки
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu
Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx
Браузер	Opera	http://www.opera.com
Почтовый клиент	Mozilla Thunderbird	http://www.mozilla.org/ru/thunderbird
Файл-менеджер	Far Manager	http://www.farmanager.com/download.php
Архиватор	7Zip	http://www.7-zip.org/
Графический	GIMP (GNU Image	http://www.gimp.org/

Функциональное программное обеспечение		Ссылки
редактор	Manipulation Program)	http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator
Аудиоплейер	VLC	http://www.videolan.org/vlc/

8. Оценочные средства по дисциплине

Паспорт оценочных средств по учебной дисциплине

«Теория механизмов и машин»

Перечень компетенций (элементов компетенций), формируемых в результате освоения учебной дисциплины (модуля) или практики

№ п/п	Код контроли руемой компетен ции	Формулировка контролируемой компетенции	Индикаторы достижений компетенции (по реализуемой дисциплине)	Контролируемые темы учебной дисциплины, практики	Этапы формирова ния (семестр изучения)
1.	ПК-1	ОПК-1. Способен применять естественнонаучн	ОПК-1.1. Применяет методы высшей математики для	Тема 1. Основы строения механизмов и машин	4
		ые и общеинженерные знания, методы	решения задач профессиональной деятельности	Тема 2. Кинематический анализ механизмов	4
		математического анализа и	ОПК-1.2. Применяет основные понятия и	Тема 3. Динамика механизмов и машин	4
		моделирования в	законы естественных наук для решения предметно-профильных задач	Тема 4. Уравновешивание механизмов и виброзащита машин	4
			ОПК-1.3. Применяет естественнонаучные	Тема 5. Теория зубчатых передач	4
			методы теоретического и экспериментального исследования объектов, процессов, явлений, проводит эксперименты по заданной методике и анализирует результаты	Тема 6. Кулачковые механизмы	4

Показатели и критерии оценивания компетенций, описание шкал оценивания

№	Код	Индикаторы	Перечень	Контролируемые	Наименован
] 14≥		достижений	•		
п/п	контролируемой	компетенции (по	планируемых	темы учебной	
12/11	компетенции	реализуемой	результатов	дисциплины	оценочного
		дисциплине)			средства
1	OHK 1 C	· · · · · /	n	T 1	D
1.	ОПК-1. Способен	ОПК-1.1.	Знать:	Тема 1,	Вопросы для
	применять естественнонаучн	Применяет методы высшей	классификации	Тема 2,	комбинирова
	ые и	математики для	механизмов, узлов и	TeMa 2,	ННОГО
	общеинженерные	решения задач	деталей; основы	Тема 3,	контроля
	знания, методы	профессиональной	проектирования	,	усвоения
	математического	деятельности	механизмов, стадий	Тема 4,	теоретическо
	анализа и	ОПК-1.2.	разработки;		ГО
	моделирования в	Применяет	требований к	Тема 5,	материала,
		основные понятия	деталям, критериев	т (задания к
		и законы	работоспособности	Тема 6	практически
		естественных наук	и влияющих на них		м занятиям,
		для решения	факторов.		индивидуаль
		предметно-	фикторов.		ное задание,
		профильных задач ОПК-1.3.	Уметь: выполнять		экзамен
		Применяет	эскизы механизмов,		экзамен
		естественнонаучн	читать сборочные		
		ые методы	чертежи и		
		теоретического и	оформлять		
		экспериментальног	конструкторскую		
		о исследования	документацию,		
		объектов,	назначать		
		процессов,			
		явлений, проводит	конструкционные		
		эксперименты по заданной	материалы для		
		методике и	проектируемых		
		анализирует	деталей; подбирать		
		результаты	типовые		
		1 3	передаточные		
			механизмы к		
			конкретным		
			машинам,		
			определять		
			параметры		
			передаточных		
			механизмов.		
			Владеть: методами		
			анализа и расчета		
			деталей и		
			механизмов узлов		
			механической		
			части; способами		

$N_{\underline{0}}$	Код	Индикаторы	Перечень	Контролируемые	Наименован
п/п	контролируемой компетенции	достижений компетенции (по реализуемой дисциплине)	планируемых результатов	темы учебной дисциплины	ие оценочного средства
			подбора типовых передаточных механизмов к конкретным машинам; навыками конструирования типовых деталей, их соединений, механических передач.		

Вопросы для комбинированного контроля усвоения теоретического материала (устно или письменно):

- 1. Что такое машина? По каким признакам классифицируются машины?
- 2. Что такое механизм? Каково основное предназначение механизма?
- 3. Что такое привод? Каково основное предназначение привода в машине?
- 4. Что называется звеном механизма? Чем отличается звено от детали?
- 5. Какие звенья входят в состав механизмов?
- 6. Дайте определение кинематической пары.
- 7. Какие известны типы механизмов, в зависимости от входящих в них звеньев и кинематических пар?
- 8. По какому признаку определяется класс кинематической пары?
- 9. Что называется кинематической цепью и простейшей кинематической цепью?
- 10. Какое звено механизма называется начальным?
- 11. Какое звено в механизме называется входным, выходным, ведущим и ведомым?
- 12. Какой механизм называется рычажным, кулачковым, зубчатым, винтовым, фрикционным?
- 13. Какая кинематическая пара является низшей и какая высшей?
- 14. Дайте определение силового и геометрического замыкания кинематических пар?
- 15. Что такое степень подвижности (или степень свободы) кинематической цепи механизма?
- 16. Определите степень подвижности заданного рычажного механизма по формуле П. Л. Чебышева и поясните результат.

- 17. Что такое структурная группа (или группа Ассура)?
- 18. Каково соотношение количества звеньев и кинематических пар в структурной группе (или группе Ассура)?
- 19. Каким образом определяются класс и порядок структурной группы?
- 20. Сколько видов у структурных групп 2-го класса, по какому признаку они классифицируются?
- 21. Каков порядок структурного анализа рычажного механизма?
- 22. Что такое структурная схема механизма, в чём её отличие от кинематической схемы?
- 23. Зачем нужен структурный анализ механизма?
- 24. Как определить класс рычажного механизма?
- 25. При каком условии кинематическая цепь является механизмом?
- 26. Каковы основные задачи кинематического анализа?
- 27. Какие существуют методы кинематического анализа? Перечислите их преимущества и недостатки.
- 28. Что такое закон движения начального звена? В ком виде он может быть задан?
- 29. Как определить величину и направление скорости, ускорения любой точки вращающегося вокруг неподвижной оси начального звена?
- 30. Что такое масштабный коэффициент физической величины?
- 31. Что такое переносное и относительное движения материальной точки (звена) при сложном движении?
- 32. Что такое переносное, относительное и кориолисово (Кориолиса) ускорения материальной точки или звена?
- 33. Запишите векторные уравнения для кривошипно-ползунного механизма на основании теоремы о сложении скоростей в сложном движении.
- 34. Запишите векторные уравнения для кривошипно-ползунного механизма на основании теоремы о сложении ускорений в сложном движении.
- 35. Какое имеет направление вектор окружного или тангенциального ускорения при вращении звена?
- 36. Как определяются величины нормальной и окружной составляющих ускорения точки звена при его неравномерном вращении вокруг неподвижного центра?
- 37. Как определяются величина и направление вектора ускорения Кориолиса?
- 38. Что такое план скоростей?
- 39. Что такое план ускорений?
- 40. Каков порядок построения плана скоростей рычажного механизма?
- 41. Каков порядок построения плана ускорений рычажного механизма?
- 42. Как по плану скоростей или ускорений определить скорость или

- ускорение заданной точки рычажного механизма?
- 43. Как определить величину и направлению угловой скорости звена по известной величине линейной скорости его точки?
- 44. Как определить величину и направление углового ускорения звена по известной величине линейного ускорения его точки?
- 45. Какова цель силового расчёта механизма?
- 46. Каким образом в инженерной практике проектирования машин используются результаты силового расчёта механизмов?
- 47. Почему метод силового расчёта называется кинетостатическим?
- 48.В чём суть метода кинетостатики при силовом расчёте механизма?
- 49. Какие силы действуют в механизмах?
- 50. Какие силы в механизмах называют активными или движущими?
- 51. Почему работа движущих сил за цикл равна работе сил сопротивления?
- 52. Какие из действующих в механизме сил называются реакциями?
- 53. Как определяют силы и моменты сил инерции звеньев при различных видах их движения (вращении, прямолинейном и плоскопараллельном движениях)?
- 54. На основании какого уравнения и в каком порядке строится план сил?
- 55. Почему силовой расчёт механизма выполняется по группам Ассура?
- 56.В какой последовательности проводят силовой расчёт рычажного механизма кинетостатическим методом?
- 57. Что такое статическая определимость? Почему именно группы Ассура (структурные группы) обладают статической определимостью?
- 58. Каков порядок силового расчёта групп Ассура, входящих в исследуемый рычажный механизм?
- 59. Как определить реакцию во внутренней кинематической паре группы Ассура?
- 60. Какой имеет физический смысл уравновешивающий момент, приложенный к кривошипу (начальному звену) и что позволяет определить?
- 61. Как рассчитать усилие, действующее в кинематической паре кривошипстойка?
- 62.В каком случае к начальному звену следует приложить уравновешивающий момент, а в каком уравновешивающую силу?
- 63. Как формулируется теорема Н. Е. Жуковского о «рычаге»?
- 64. Что позволяет определить метод рычага Н. Е. Жуковского и в чём его преимущество перед методом кинетостатики?
- 65. Как определяется мощность на вращающемся звене?
- 66. Как определяется мощность прямолинейно движущегося з вена?
- 67. Что такое одномассовая динамическая модель механизма? В чём её преимущества?
- 68. Что называется приведенным моментом сил? Зависит ли он от

- скорости звена приведения?
- 69. Что называется приведенной силой? Зависит ли она от скорости звена приведения?
- 70. Что называется приведенным моментом инерции?
- 71. Что называется приведенной массой?
- 72. Чем характеризуется неравномерность вращения ротора машины на установившемся режиме вращения, необходимо ли её ограничивать?
- 73. Какие режимы работы роторных машин Вы знаете? Чем они отличаются?
- 74. В чем причины неравномерности вращения ротора машины при установившемся движении?
- 75. Каким коэффициентом оценивается неравномерность вращения ротора машины в режиме установившегося движения?
- 76. В чём суть графоаналитического метода Ф. Виттенбауэра определения момента инерции маховика? Как строится диаграмма энергомасс?
- 77. Что такое маховик? Какое он оказывает действие на неравномерность движения на уставившемся режиме, на разгон и торможение механизма?
- 78. Какие параметры движения и каким образом изменяет установка маховика?
- 79. Влияют ли силы тяжести звеньев на неравномерность хода машины?
- 80. Как определить истинную угловую скорость звена приведения при установившемся движении?
- 81. Что такое зубчатое колесо?
- 82. Что называется зубчатой передачей?
- 83. Какое из колёс называется шестерней?
- 84. Что такое зубчатое зацепление?
- 85. Что такое передаточное отношение и чем оно отличатся передаточного числа?
- 86. Какими преимуществами обладает эвольвентная зубчатая передача?
- 87. Какими преимуществами обладает косозубая передача?
- 88. Что такое начальная окружность?
- 89. Что называется полюсом зацепления?
- 90. Что такое эвольвента окружности? Какими эвольвента обладает свойствами?
- 91. Что такое основная окружность?
- 92. Как определите угол профиля эвольвенты в любой её точке?
- 93. Как определить эвольвентный угол в любой точке профиля?
- 94. Какие существуют методы изготовления зубчатых колёс?
- 95. Как связаны скорость рейки и угловая скорость заготовки при зубонарезании методом обкатки?
- 96. Что называется модулем зубчатого колеса? В каких единицах он измеряется?

- 97. Что такое делительная окружность зубчатого колеса? Как определяется её радиус?
- 98. Что такое станочное зацепление?
- 99. Какие параметры исходного контура согласно ГОСТ 13755-68 необходимо знать при геометрическом расчёте зубчатой передачи?
- 100. Как определить делительный шаг зубьев? Покажите его на чертеже.
- 101. Что такое подрезание зубьев, заострение, интерференция?
- 102. При каких условиях возникает подрезание зубьев и как его устранить?
- 103. Что такое угол зацепления?
- 104. Что такое смещение исходного производящего контура? Для чего оно применяется?
- 105. Что такое коэффициент смещения исходного производящего контура?
- 106. Какими качественными показателями характеризуются зубчатые передачи?
- 107. Из каких условий выбирают коэффициенты смещения?
- 108. Что такое блокирующий контур?
- 109. Как влияют коэффициенты смещения на наружные диаметры колёс, на толщину зубьев и ширину впадин, на качественные показатели зацепления?
- 110. Что такое удельное скольжение в зубчатом зацеплении?
- 111. Почему в полюсе зацепления удельное скольжение равно 0?
- 112. Что такое коэффициент перекрытия?
- 113. Что такое линия зацепления и как определяется её активный участок?
- 114. Чем отличаются коэффициенты перекрытия прямозубой и косозубой передач?
- 115. Как определить по чертежу коэффициент торцевого перекрытия передачи?
- 116. Как оценить продолжительность однопарного и двупарного зацепления в передаче при коэффициенте перекрытия 1,2?
- 117. Что такое активная часть профиля зуба?
- 118. Как найти спрягаемые точки активных профилей зубьев?
- 119. Изменяется ли в процессе зацепления одной пары зубьев направление линии действия нормального усилия в точке контакта?
- 120. Изменяется ли передаточное отношение эвольвентной зубчатой передачи при изменении межосевого расстояния за счёт погрешностей изготовления, нагрева или за счёт изготовления колёс со смещением?
- 121. Какой механизм называется кулачковым?
- 122. Как работает кулачковый механизм?
- 123. Какое звено называется кулачком?
- 124. Какое звено в кулачковом механизме называется входным, а какое выходным?
- 125. Какое звено в кулачковом механизме называется ведущим, а какое

ведомым?

- 126. В чём прежде всего заключается синтез кулачкового механизма?
- 127. Что является главным условием для синтеза кулачкового механизма?
- 128. Каковы дополнительные требования (условия), реализуемые при синтезе кулачковых механизмов?
- 129. Каким может быть замыкание высшей кинематической пары кулачкового механизма?
- 130. Является ли кулачковый механизм циклическим с выстоями?
- 131. Что такое фазовые углы удаления и дальнего стояния (выстоя), фазовые углы сближения и ближнего стояния (выстоя)?
- 132. Что такое эксцентриситет кулачкового механизма и какие преимущества имеют кулачковые механизмы с эксцентриситетом?
- 133. Каким должен быть радиус-вектор профиля на участке дальнего стояния?
- 134. Какой профиль называется центровым (или теоретическим) профилем кулачка?
- 135. Какой профиль называется рабочим (или конструктивным) профилем кулачка?
- 136. С какой целью на ведомом звене устанавливается ролик?
- 137. Как определить угловую скорость вращения ролика вокруг своей оси при условии отсутствия относительного проскальзывания ролика и кулачка? Будет ли она постоянна?
- 138. Что называют законом движения ведомого звена кулачкового механизма?
- 139. Каким способом (методом) может быть задан закон движения выходного звена?
- 140. Зависит ли профиль кулачка от законов движения ведомого звена?
- 141. Зависит ли профиль кулачка от формы элемента высшей пары на ведомом звене?
- 142. Когда возникают мягкие удары в кулачковых механизмах?
- 143. Когда возникают жёсткие удары в кулачковых механизмах?
- 144. Какие дополнительные условия используются при синтезе кулачкового механизма?
- 145. Что называется углом давления в кулачковом механизме?
- 146. Учитывают ли допускаемые значения углов давления для фазы сближения при силовом замыкания кинематической пары? При геометрическом замыкании?
- 147. Как связаны углы давления с геометрическими параметрами кулачкового механизма?
- 148. Как определить угол давления в любой точке профиля кулачка?
- 149. К чему может привести увеличение угла давления?
- 150. Какие начальные параметры надо определить при синтезе кулачкового

механизма?

- 151. Какое условие используется для определения радиуса ролика на ведомом звене?
- 152. К чему может привести невыполнение условия при определении радиуса ролика?
- 153. В чём суть метода обращённого движения при построении профиля кулачка?
- 154. Каковы максимальные допускаемые углы давления для роликового толкателя и для роликового коромысла?
- 155. В каком направлении откладываются фазовые углы при построении профиля кулачка?

Критерии и шкала оценивания по оценочному средству «Комбинированный контроль усвоения теоретического материала»

Шкала оценивания (интервал баллов)	Критерий оценивания	
5	Ответ дан на высоком уровне (студент в полном объёме осветил рассматриваемую проблематику, привёл аргументы в пользу своих суждений, владеет профильным понятийным (категориальным) аппаратом и т.п.)	
4	Ответ дан на среднем уровне (студент в целом осветил рассматриваемую проблематику, привёл аргументы в пользу своих суждений, допустив некоторые неточности и т.п.)	
3	Ответ дан на низком уровне (студент допустил существенные неточности, изложил материал с ошибками, не владеет в достаточной степени профильным категориальным аппаратом и т.п.)	
2	Ответ дан на неудовлетворительном уровне или не представлен (студент не готов, не выполнил задание и т.п.)	

Задания к практическим занятиям:

- 1. Построить структурные схемы рычажного, зубчатого, винтового, кулачкового механизмов с обозначением звеньев и кинематических пар. Выполнить структурный анализ заданного рычажного механизма, в том числе, определить структурные группы, в него входящие и решить задачу определения степени подвижности его кинематической цепи. Провести классификацию звеньев, кинематических пар, структурных групп и сравнительный анализ данного типа механизма с другими механизмами.
 - 2. Выполнить кинематический анализ рычажного механизма.
- 1) выбрать масштабный коэффициент построений;
- 2) выполнить построение кинематической схемы и совмещённых планов механизма для 8 положений от руки и с помощью САПР;

- 3) решить численно задачу определения скоростей точек и звеньев, в том числе угловых скоростей, графоаналитическим методом построением планов скоростей;
- 4) решить численно задачу определения ускорений точек и звеньев, в том числе угловых ускорений, графоаналитическим методом построением планов ускорений;
- 5) решить численно задачу определения скоростей точек и ускорений рычажного механизма графическим методом построением кинематических диаграмм с использованием машиностроительных САПР;
- 6) решить численно задачу определения перемещений, скоростей и ускорений ползуна синусного механизма экспериментальным и аналитическим методом, а также с помощью машиностроительной САПР.
 - 3. Выполнить силовой анализ кривошипно-ползунного механизма
- 1) выполнить построение совмещённых планов кривошипно-ползунного механизма для 10 положений;
- 2) решить численно задачу определения сил реакций в кинематических парах и крутящего момента (момента сил) на начальном звене методом кинетостатики с написанием уравнений равновесия и построением планов сил;
- 3) решить численно задачу нахождение момента сил на начальном звене методом «рычага» Н. Е. Жуковского;
- 4) решить задачу определения размеров маховика методом энергомасс (построением диаграммы Ф. Виттенбауэра) для обеспечения требуемой неравномерности вращения кривошипа.
- 4. Выполнить уравновешивание роторных механизмов (исходные данные получить у преподавателя).
- 1) решить численно задачу уравновешивания ротора с известным расположением неуравновешенных масс с использованием лабораторной установки для контроля правильности найденных решений;
- 2) решить численно задачу уравновешивания ротора с неизвестным расположением неуравновешенных масс с использованием лабораторной установки.
- 5. Выполнить расчёт параметров и построение косозубого зубчатого зацепления с использованием машиностроительных САПР (исходные параметры зубчатого зацепления определяет преподаватель).
- 1) выбор параметров исходного контура и коэффициентов смещения;
- 2) геометрический расчёт передачи и профилирование зубьев колеса и шестерни (расчёты параметров могут быть выполнены в специализированной программе);
- 3) графические построения зубчатого зацепления с помощью САПР;
- 4) определение качественных показателей зубчатого зацепления.
- 6. Выполнить геометрический синтез плоского кулачкового механизма с роликовым, плоским толкателем или роликовым коромыслом (исходные параметры и особенности конструкции определяет преподаватель).

- 1) определение закона движения ведомого (выходного) звена кулачкового механизма (расчёты могут быть выполнены в специализированной программе);
- 2) определение начальных параметров проектируемого кулачкового механизма;
- 3) построение профиля кулачка с помощью машиностроительной САПР.

Критерии и шкала оценивания по оценочному средству «Задания по практическим занятиям»

Шкала оценивания (интервал баллов)	Критерий оценивания
зачтено	Ответ дан на высоком уровне (студент в полном объеме осветил рассматриваемую проблематику, привел аргументы в пользу своих суждений, владеет профильным понятийным (категориальным) аппаратом и т.п.)
незачтено	Ответ дан на неудовлетворительном уровне или не представлен (студент не готов, не выполнил задание и т.п.)

Темы для индивидуальных заданий:

- 1. Структурный, кинематический и силовой анализ рычажного четырёхзвенника с заданными геометрическими параметрами, силами, скоростями и ускорениями на входном и выходном звеньях.
- 2. Структурный, кинематический и силовой анализ рычажного кривошипно-ползунного механизма с заданными геометрическими параметрами, силами, скоростями и ускорениями на входном и выходном звеньях.
- 3. Структурный, кинематический и силовой анализ кулисного механизма с заданными геометрическими параметрами, силами, скоростями и ускорениями на входном и выходном звеньях.
- 4. Структурный, кинематический и силовой анализ синусного рычажного механизма с заданными геометрическими параметрами, силами, скоростями и ускорениями на входном и выходном звеньях.
- 5. Структурный, кинематический и силовой анализ тангенсного рычажного механизма с заданными геометрическими параметрами, силами, скоростями и ускорениями на входном и выходном звеньях.

Запаппа

- 1. Выполнить структурный анализ механизма.
- 2. Выполнить кинематический анализ механизма методом планов.
- 3. Выполнить силовой расчёт механизма, учитывая момент сил сопротивления M_{C} и принимая во внимание массу m_{3} и момент инерции J_{S3} выходного звена.
- 4. Определить движущую силу, приложенную к начальному звену, методом «рычага» Жуковского.

- 5. Определить приведенную в точке A силу от момента сил сопротивления M_c и силы тяжести выходного звена.
- 6. Определить приведенную в точке A массу, ограничиваясь учётом заданных m_3 и J_{53} выходного звена.

Критерии и шкала оценивания по оценочному средству «Индивидуальное задание»

Шкала оценивания (интервал баллов)	Критерий оценивания			
зачтено	Ответ дан на высоком уровне (студент в полном объеме осветил рассматриваемую проблематику, привел аргументы в пользу своих суждений, владеет профильным понятийным (категориальным) аппаратом и т.п.)			
незачтено	Ответ дан на неудовлетворительном уровне или не представлен (студент не готов, не выполнил задание и т.п.)			

Вопросы к экзамену:

- 1. Содержание дисциплины «Теория механизмов и машин», основные термины и определения: машина, механизм, привод, их классификация и назначение.
- 2. Эвольвента и её свойства, угол профиля и эвольвентный угол, инволюта.
 - 3. Эвольвентное зацепление и его преимущества.
 - 4. Структурный анализ механизмов.
 - 5. Начальные звенья, группы Ассура и их классификация.
- 6. Основные термины и определения теории зубчатых передач: зубчатые зацепление и колесо, зубчатая передача, передаточное отношение.
 - 7. Классификация зубчатых передач.
- 8. Рычажные механизмы. Структурный анализ и принцип образования механизмов.
- 9. Определение степени подвижности плоского рычажного механизма (ф-ла П. Л. Чебышева).
- 10. Зубчатые передачи: определение, назначение, классификация, основные параметры.
 - 11. Цели и задачи кинематического анализа механизмов.
 - 12. Совмещённые планы положений механизма.
- 13. Построение планов скоростей и ускорений кривошипно-ползунного механизма.
- 14. Основная теорема плоского зацепления (теорема Виллиса). Передаточное отношение.
- 15. Методы кинематического анализа механизмов, их задачи, преимущества и недостатки.
- 16. Графоаналитический метод кинематического анализа (метод планов).
 - 17. Элементы и геометрия зубчатого колеса.

- 18. Модуль, коэффициенты, расчёт прямозубого зубчатого зацепления без смещения исходного производящего контура.
- 19. Степень подвижности механизмов, обобщённая координата, начальное звено.
- 20. Определение степени подвижности пространственного механизма (ф-ла Сомова-Малышева).
- 21. Методы изготовления зубчатых колёс, их преимущества и недостатки.
- 22. Кинематические пары и их элементы: определения, обозначения на структурных схемах.
 - 23. Классификация кинематических пар.
- 24. Элементы и геометрия косозубого зубчатого колеса. Модуль, коэффициенты, формулы расчёта косозубого зацепления.
 - 25. Кинематические цепи, их определение и классификация.
- 26. Нарезание зубчатых колёс со смещением инструмента. Явление подрезания зубьев.
- 27. Граничные условия по числу зубьев и смещению производящего контура.
- 28. Классификация механизмов. Разновидности рычажных механизмов и звеньев, входящих в их состав. Структурный анализ рычажных механизмов.
- 29. Исходный производящий контур режущего инструмента рейки. Элементы и параметры.
- 30. Графический метод кинематического анализа механизмов (метод кинематических диаграмм) на примере кривошипно-ползунного механизма.
- 31. Геометрический расчёт прямозубых зубчатых передач с заданными смещениями, модулем, числами зубьев.
- 32. Причины и виды неуравновешенности роторов. Дисбаланс, балансировка роторов
- 33. Причины вибрации машин и механизмов. Способы снижения уровня вибраций и виброзащиты.
- 34. Уравновешивание роторов с известным расположением неуравновешенных масс.
- 35. Одномассовая динамическая модель механизма. Приведение моментов сил и сил.
- 36. Одномассовая динамическая модель механизма. Приведенный момент инерции и приведенная масса.
- 37. Кинематический анализ механизмов: цель и задачи, графоаналитический метод анализа.
- 38. Блокирующий контур. Выбор коэффициентов смещения по блокирующему контуру.
 - 39. Показатели качества зубчатого зацепления.
- 40. Косозубые передачи, их преимущества, особенности изготовления и расчёта.
 - 41. Многозвенные зубчатые передачи.

- 42. Расчёт и построение эвольвентного косозубого зацепления при известных модуле, числах зубьев колеса и шестерни.
- 43. Силовой анализ механизмов: задачи, действующие в механизмах силы.
 - 44. Силы в механизмах. Уравнение движения механизма (машины).
 - 45. Метод кинетостатики. Кинетостатическая определимость.
- 46. Задачи силового анализа механизмов и содержание метода кинетостатики. Силовой анализ структурной группы первого вида.
- 47. Задачи силового анализа механизмов и содержание метода кинетостатики. Силовой анализ структурной группы второго вида.
- 48. Задачи силового анализа механизмов и содержание метода кинетостатики. Силовой анализ структурной группы третьего вида.
- 49. Кулачковые механизмы: основные определения, классификация, законы движения выходного звена, угол давления.
- 50. Фазы движения кулачкового механизма, условия и порядок синтеза плоского кулачкового механизма с роликовым толкателем.

Критерии и шкала оценивания по оценочному средству промежуточный контроль («экзамен»)

контроль («экзамен»)				
Шкала оценивания (интервал баллов)	Критерий оценивания			
отлично (5)	Студент глубоко и в полном объёме владеет программным материалом. Грамотно, исчерпывающе и логично его излагает в устной или письменной форме. При этом знает рекомендованную литературу, проявляет творческий подход в ответах на вопросы и правильно обосновывает принятые решения, хорошо владеет умениями и навыками при выполнении практических задач.			
хорошо (4)	Студент знает программный материал, грамотно и по сути излагает его в устной или письменной форме, допуская незначительные неточности в утверждениях, трактовках, определениях и категориях или незначительное количество ошибок. При этом владеет необходимыми умениями и навыками при выполнении практических задач.			
удовлетворительно	Студент знает только основной программный материал,			
(3)	допускает неточности, недостаточно чёткие формулировки, непоследовательность в ответах, излагаемых в устной или письменной форме. При этом недостаточно владеет умениями и навыками при выполнении практических задач. Допускает до 30% ошибок в излагаемых ответах.			
неудовлетворительно Студент не знает значительной части программного				
(2)	При этом допускает принципиальные ошибки в доказательствах, в трактовке понятий и категорий, проявляет низкую культуру знаний, не владеет основными умениями и навыками при выполнении практических задач. Студент отказывается от ответов на дополнительные вопросы			

Лист изменений и дополнений

No	Виды дополнений и	Дата и номер протокола	Подпись (с
п/п	изменений	заседания кафедры (кафедр), на котором были	расшифровкой) заведующего кафедрой
		рассмотрены и одобрены изменения и дополнения	(заведующих кафедрами)