# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Институт транспорта и логистики Кафедра двигателей внутреннего сгорания

Директор института гранспорта и логистики и поста и п

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«ТЕРМОДИНАМИКА И ТЕПЛОПЕРЕДАЧА»

По направлению подготовки 23.03.03 Эксплуатация транспортнотехнологических машин и комплексов

Профиль «Автомобили и автомобильное хозяйство»

#### Лист согласования рабочей программы учебной дисциплины

Рабочая программа учебной дисциплины (модуля) «Термодинамика и теплопередача». – 39 с. Рабочая программа учебной дисциплины (модуля) «Термодинамика и теплопередача» разработана с учетом ФГОС ВО: Федеральный государственный образовательный стандарт высшего образования — бакалавриат по направлению подготовки 23.03.03 Эксплуатация транспортно-технологических машин и комплексов, утвержденный приказом Министерства образования и науки Российской Федерации от от 7 августа 2020 г. № 916.

#### составители:

д-р. техн. наук, проф. кафедры «Двигатели внутреннего сгорания» Киреев А.Н., старший преподаватель кафедры «Двигатели внутреннего сгорания» Ковтун А.С., канд. техн. наук, доц. кафедры «Двигатели внутреннего сгорания» Данилейченко А.А.

| канд. техн. наук, доц. кафедры «Двигатели внутреннего сгорания» Данилейченко А.А.                                             |
|-------------------------------------------------------------------------------------------------------------------------------|
| Рабочая программа дисциплины утверждена на заседании кафедры «Двигатели внутрен него сгорания» « 12 » 04 2023г., протокол № 8 |
| Заведующий кафедрой А.А.Данилейченко Переутверждена: «»20_ г., протокол №                                                     |
| Согласована (для обеспечивающей кафедры): Быкадоров В.В.                                                                      |
| Рекомендована на заседании учебно-методической комиссии института транспорта и логистики «                                    |
| Председатель учебно-методической комиссии института                                                                           |

© Киреев А.Н., Ковтун А.С., Данилейченко А.А., 2023 год © ФГБОУ ВО «ЛГУ им. В. ДАЛЯ», 2023 год

#### Структура и содержание дисциплины

#### 1. Цели и задачи дисциплины, ее место в учебном процессе

Целью изучения дисциплины — изучение законов и методов получения, преображения, передачи и использования тепловой энергии (теплоты) в тепломеханических агрегатах (тепловых машинах, двигателях технологического оборудования, аппаратах и устройствах) и их системах.

Задачи дисциплины — формирование багажа знаний, которые позволят будущему специалисту правильно выполнять теплотехнические расчеты, повышать качество и эффективность работы тепломеханических агрегатов и технологического оборудования, новых технологических процессов.

# 2. Место дисциплины в структуре ОПОП ВО. Требования к результатам освоения содержания дисциплины

Дисциплина «Термодинамика и теплопередача» входит в обязательную часть модуля профессиональных дисциплин.

Основывается на базе дисциплин: физика, математика. Содержание дисциплины служит основой для изучения профессиональных дисциплин и ВКР.

### 3. Требования к результатам освоения содержания дисциплины

ОПК-1. Способен ОПК-1.2. Применяет основные знать: основные законы понятия и законы естественных науктермодинамики и тепломассообмена; применять для решения предметно-профильных основные положения И естественнонаучн термодинамики и теплообмена; методы ые задач. получения и преобразования, передачи общеинженерные использования теплоты знания, тепломеханических агрегатах методы тепловых машинах и двигателях, математического технологических процессах анализа автомобилестроения и пр.; методы моделирования расчета термодинамических тепловых процессов, возникающих в тепломеханических агрегатах (тепловых машинах, технологическом оборудовании и пр.) процессов сушки, вытекания, дросселирования, нагнетание газа (пара) и пр.; уметь: определять параметры рабочего состояния тела тепловых машин, двигателей, аппаратов; проводить термодинамический анализ циклов тепловых машин, технологического оборудования; рассчитывать рабочие тепловые процессы В тепловых машинах И технологическом оборудовании; рассчитывать процессы тепломассообмена тепловых машинах И технологическом оборудовании; выполнять расчеты теплообменников. владеть навыками: анализа и расчета термодинамических и тепловых процессов агрегатах, технологическом оборудовании приборах.

# 4. Структура и содержание дисциплины

# 4.1. Объем учебной дисциплины и виды учебной работы

| Dur vurafina i nafari v                          | Объем час   | сов (зач. ед.) |
|--------------------------------------------------|-------------|----------------|
| Вид учебной работы                               | Очная форма | Заочная форма  |
| Общая учебная нагрузка (всего)                   | 108 (3      | 108 (3         |
|                                                  | зач. ед)    | зач. ед)       |
| Обязательная аудиторная учебная нагрузка (всего) | 48          | 10             |
| в том числе:                                     |             |                |
| Лекции                                           | 32          | 6              |
|                                                  |             |                |
| Семинарские занятия                              | -           | -              |
| Практические занятия                             |             |                |
| Лабораторные работы                              | 16          | 4              |
| Курсовая работа (курсовой проект)                | -           | -              |

| Другие формы и методы организации образовательного          | -     | -     |
|-------------------------------------------------------------|-------|-------|
| процесса (расчетно-графические работы, групповые дискуссии, |       |       |
| ролевые игры, тренинг, компьютерные симуляции,              |       |       |
| интерактивные лекции, семинары, анализ деловых ситуаций и   |       |       |
| m.n.)                                                       |       |       |
| Самостоятельная работа студента (всего)                     | 54    | 98    |
| Форма аттестации                                            | зачет | зачет |

# 4.2. Содержание разделов дисциплины

**Тема 1**. Исходные положения технической термодинамики: 1. Предмет и методы. 2. Основные понятия и определения. 3. Параметры состояния. 4. Уравнения состояния газов. 5. Работа и теплота в

термодинамическом процессе.

- 6. Теплоемкость. 7. Газовые смеси.
- **Тема 2.** Основные законы термодинамики: 1. Первый закон термодинамики. 2. Второй закон термодинамики. 3.Циклы Карно. 4. Математическое выражение второго закона термодинамики. 5. Изменение энтропии в изолированной термодинамической системе. 6. Максимальная работа (эксергия). 7. Основные термодинамические процессы.
- **Тема 3.** Свойства и процессы реальных газов. 1. Общие свойства. 2. Свойства и процессы воды и водного пара. Свойства и процессы влажного воздуха. h-d диаграмма влажного воздуха.
- **Тема 4.** Термодинамика потока. 1. Первый закон термодинамики для потока газа. 2. Истечение газов и паров. 3. Дросселирование газов и паров. 4. Нагнетания газов и паров.
- **Тема 5.** Циклы теплосиловых установок. 1. Циклы двигателей внутреннего сгорания. 2. Циклы газовых турбин. 3. Циклы паросиловых установок.
  - 4. Циклы холодильных установок и тепловых насосов. Термодинамические и тепловые процессы в технологических машинах и оборудовании.

#### 4.3. Лекции

| № п/п | и/п Название темы Объем часов                     |             | м часов       |
|-------|---------------------------------------------------|-------------|---------------|
|       |                                                   | Очная форма | Заочная форма |
|       | Исходные положения технической термодинамики:     |             |               |
|       | Предмет и методы. Основные понятия и определения. |             |               |
| 1     | Параметры состояния. Уравнения состояния газов.   | 7           | 1             |
|       | Работа и теплота в термодинамическом процессе.    |             |               |
|       | Теплоемкость. Газовые смеси                       |             |               |
|       | Основные законы термодинамики: Первый закон       |             |               |
|       | термодинамики. Второй закон термодинамики. Циклы  |             |               |
|       | Карно. Математическое выражение второго закона    |             |               |
| 2     | термодинамики. Изменение энтропии в               | 7           | 2             |
|       | изолированной термодинамической системе.          |             |               |
|       | Максимальная работа (эксергия). Основные          |             |               |
|       | термодинамические процессы.                       |             |               |

| 3 | Свойства и процессы реальных газов. Общие свойства. Свойства и процессы воды и водного пара. Свойства и процессы влажного воздуха. h-d диаграмма влажного воздуха.                                                                                          | 6  | 1 |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|
| 4 | Термодинамика потока. Первый закон термодинамики для потока газа. Истечение газов и паров. Дросселирование газов и паров. Нагнетания газов и паров.                                                                                                         | 6  | 1 |
| 5 | Циклы теплосиловых установок. Циклы двигателей внутреннего сгорания. Циклы газовых турбин. Циклы паросиловых установок. Циклы холодильных установок и теплосиловых насосов. Термодинамические и тепловые процессы в технологических машинах и оборудовании. | 6  | 1 |
|   | Итого:                                                                                                                                                                                                                                                      | 32 | 6 |

# 4.4. Практические (семинарские) занятия

Не предусмотрены учебным планом 4.5.

# Лабораторные работы

| №   | Название темы                                                                                             | Объе           | м часов          |
|-----|-----------------------------------------------------------------------------------------------------------|----------------|------------------|
| п/п |                                                                                                           | Очная<br>форма | Заочная<br>форма |
| 1.  | Определение объемной изобарной теплоемкости воздуха                                                       | 1,6            | 2                |
| 2.  | Исследование термодинамических процессов идеального газа                                                  | 1,6            |                  |
| 3.  | Определение теплоемкости веществ при различной температуре                                                | 1,6            |                  |
| 4.  | Измерение давления манометрами различных типов                                                            | 1,6            |                  |
| 5.  | Определение коэффициента теплоотдачи от поверхности цилиндра к воздуху в условиях свободной конвекции     | 1,6            |                  |
| 6.  | Исследование работы теплооб-менного аппарата при параллельном токе и противотоке                          | 1,6            | 2                |
| 7.  | Исследование особенностей лучистого теплообмена между<br>твердыми телами                                  | 1,6            |                  |
| 8.  | Определение коэффициента теплопроводности теплоизоляционных материалов методом пластины                   | 1,6            |                  |
| 9.  | Определение коэффициента теплоотдачи методом регулярного теплового режима                                 | 1,6            |                  |
| 10. | Исследование работы водо-воздушного теплообменного аппарата при свободном и вынужденном движении воздуха. | 1,6            |                  |
| 11. | Итого:                                                                                                    | 16             | 4                |

# 4.6. Самостоятельная работа студентов

| № п/п | Название темы                      | Вид СРС         | Объем часов    |               |
|-------|------------------------------------|-----------------|----------------|---------------|
|       |                                    |                 | Очная<br>форма | Заочная форма |
| 1     | Изучение лекционных тем            | Изучение лекций | 22             | 40            |
| 2     | Анализ термодинамических<br>циклов | Изучение лекций | 18             | 18            |
| 3     | Расчет теплообменника              | Изучение лекций | 20             | 40            |

ИТОГО: 60 98

## 4.7. Курсовые работы/проекты. Не предусмотрено учебным планом.

# 5. Образовательные технологии

В процессе обучения для достижения планируемых результатов освоения дисциплины используются следующие образовательные технологии:

- традиционные объяснительно-иллюстративные технологии, которые обеспечивают доступность учебного материала для большинства студентов, системность, отработанность организационных форм и привычных методов, относительно малые затраты времени;
- информационно-коммуникационная технология, в том числе визуализация, создание электронных учебных материалов;
- использование электронных образовательных ресурсов при подготовке к лекциям, практическим и лабораторным занятиям;
- технология проблемного обучения, в том числе в рамках разбора проблемных ситуаций;
- технология развивающего обучения, в том числе постановка и решение задач от менее сложных к более сложным, развивающих компетенции студентов.
- В рамках перечисленных технологий основными методами обучения являются:

работа в команде; самостоятельная работа; проблемное обучение.

# 6. Формы контроля освоения дисциплины

Текущая аттестация студентов производится в дискретные временные интервалы лектором и преподавателем, ведущим лабораторные работы и практические занятия по дисциплине в следующих формах:

тестирование, опрос, задачи; 🛘

контрольные работы;

□ защита лабораторных работ.

Фонды оценочных средств, включающие типовые задания, контрольные работы, тесты и методы контроля, позволяющие оценить результаты текущей и промежуточной аттестации обучающихся по данной дисциплине, помещаются в приложении к рабочей программе в соответствии с «Положением о фонде оценочных средств».

Промежуточная аттестация по результатам освоения дисциплины проходит в форме письменного зачета (включает в себя ответ на теоретические вопросы и решение задач) либо в сочетании различных форм (компьютерного тестирования, решения задач). Студенты, выполнившие 75% текущих и контрольных мероприятий на «отлично», а остальные 25 % на «хорошо», имеют право на получение итоговой отличной оценки.

В экзаменационную ведомость и зачетную книжку выставляются оценки по шкале, приведенной в таблице.

| Характеристика знания предмета и ответов                                         | Зачеты     |
|----------------------------------------------------------------------------------|------------|
| Студент глубоко и в полном объеме владеет программным материалом. Грамотно,      |            |
| исчерпывающе и логично его излагает в устной или письменной форме. При этом      |            |
| знает рекомендованную литературу, проявляет творческий подход в ответах на       |            |
| вопросы и правильно обосновывает принятые решения, хорошо владеет умениями и     |            |
| навыками при выполнении практических задач.                                      |            |
|                                                                                  |            |
| Студент знает программный материал, грамотно и по сути излагает его в устной или |            |
| письменной форме, допуская незначительные неточности в утверждениях,             |            |
| трактовках, определениях и категориях или незначительное количество ошибок. При  |            |
| этом владеет необходимыми умениями и навыками при выполнении практических        |            |
| задач.                                                                           | зачтено    |
| Студент знает только основной программный материал, допускает неточности,        |            |
| недостаточно четкие формулировки, непоследовательность в ответах, излагаемых в   |            |
| устной или письменной форме. При этом недостаточно владеет умениями и            |            |
| навыками при выполнении практических задач. Допускает до 30% ошибок в            |            |
| излагаемых ответах.                                                              |            |
| Студент не знает значительной части программного материала. При этом допускает   | не зачтено |
| принципиальные ошибки в доказательствах, в трактовке понятий и категорий,        |            |
| проявляет низкую культуру знаний, не владеет основными умениями и навыками при   |            |
| выполнении практических задач. Студент отказывается от ответов на                |            |
| дополнительные вопросы.                                                          |            |

# 7. Учебно-методическое и программно-информационное обеспечение дисциплины:

### а) основная литература:

- 1. Куликов Ю. А. Теплопередача: учебник / Ю. А. Куликов.- Луганск:, Из-во Ноулинж, 2018.-142 с.
- 2. Куликов Ю. А. Теоретические основы термодинамики и тепломассообмена: учебник / Ю. А. Куликов.- Луганск: Изд-во «Ноулинж», 2015. 360 с. ISBN 978-966-8827-93-0.
- 3. Куликов Ю.А. Теоретические основы тепломассообмена: Учебник/ Ю.А.Куликов. Луганск: Изд-во «Ноулидж», 2014. 235с. ISBN 978-9668827-85-3.
- 4. Сторчеус Ю.В. Термодинамика [Электронный ресурс]: учебное пособие / Сторчеус Ю.В., Ковтун А.С.; Луганск: изд-во ЛГУ им. В. Даля, 2015. 93 с. : табл. 2. ил. 34. библиограф. назв. 17.

# б) дополнительная литература:

- 5. Куликов Ю.А., Ажипо А.Г., Гончаров А.В., Быкадоров В.В. Оробцов Т.А. (под ред. проф., дтн, Куликова Ю.А.) Компактные теплообменники из пучков труб с винтовым оребрением для транспортных машин. Монография. Луганск: Изд-во «»Элтон-2», 2011. 201с. ISBN 978-617-563-105-8.
- 6. Куликов Ю.А. Теоретические основы теплопередачи. Учебное пособие Луганск: Издательство ВНУ им. В.Даля, 2005.-116 с.

- 7. Куликов Ю.А. Теоретические основы термодинамики. Учебное пособие Луганск: Издательство «Элтон- 2», 2005.-208 с.
- 8. Куликов Ю. А., Быкадоров В.В., Котнов А.С., Ажиппо А.Г., Грибиниченко М.В., Гончаров А.В., Томачинский Ю.Н., Пыхтя В.А., Верховодов А.А. (под ред. проф., д.т.н, Куликова Ю.А.) Теплоэнергетические системы транспортных машин: монография/ -Луганск: Изд-во «Элтон- 2», 2009. 365 с. ISBN 978-617-563-012-0.
- 9. Кириллин В.А., Техническая термодинамика: учебник для вузов / В.А. Кириллин, В.В. Сычев, А.Е. Шейндлин М.: Издательский дом МЭИ, 2017. 502 с. ISBN 978-5-383-00939-0 Текст: электронный // ЭБС "Консультант студента":[сайт].
  - -URL: http://www.studentlibrary.ru/book/ISBN9785383009390.html
- 10. Александров А.А., Термодинамические основы циклов теплоэнергетических установок: учебное пособие для вузов / Александров А.А. М.: Издательский дом МЭИ, 2017. ISBN 978-5-383-01110-2 Текст: электронный // ЭБС "Консультант студента":[сайт].
  - -URL: http://www.studentlibrary.ru/book/ISBN9785383011102.html
- 11.Мирам А.О., Техническая термодинамика. Тепломассообмен / А.О. Мирам, В.А. Павленко М.: Издательство АСВ, 2017. 352 с. ISBN 978-5-93093841-8 Текст : электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785930938418.html
- 12. Теплообменные аппараты и системы охлаждения газотурбинных и комбинированных установок [Электронный ресурс]: Учебник для вузов / В.Л. Иванов, А.И. Леонтьев, Э.Л. Манушин, М.И. Осипов; Под ред. А.И. Леонтьева М.: Издательство МГТУ им. Н. Э. Баумана, 2003. Режим доступа: http://www.studentlibrary.ru/book/ISBN570382138.html
- 13.Исаев С.И., Теория тепломассообмена: учебник для вузов / С.И. Исаев и др.; под ред. А.И. Леонтьева М.: Издательство МГТУ им. Н. Э. Баумана, 2018. 462 с. ISBN 978-5-7038-4527-1 Текст: электронный // ЭБС "Консультант студента":[сайт].
  - URL: http://www.studentlibrary.ru/book/ISBN 9785703845271.html
- 14.Валуева Е.П., Особенности гидродинамики и теплообмена при течении в микроканальных технических устройствах / Е.П. Валуева, А.Б. Гаряев, А.В. Клименко М.: Издательский дом МЭИ, 2016. 88 с. ISBN 978-5-383-010686 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785383010686.html
- 15. Горбачев М.В., Тепломассообмен: учебное пособие / Горбачев М.В. Новосибирск: Изд-во НГТУ, 2015. 443 с. (Серия "Учебники НГТУ") ISBN 978-5-7782-2803-0 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785778228030.html

- 16. Крайнов А.Ю. Основы теплопередачи. Теплопередача через слой вещества: учеб. пособие.— Томск: STT, 2016. 48 с. https://ftf.tsu.ru/wphttps://ftf.tsu.ru/wpcontent/uploads/A.YU.-Krajnov-Osnovy-teploperedachi.-Teploperedacha-cherezsloj-veshhestva.pdfcontent/uploads/A.YU.-Krajnov-Osnovy-teploperedachi.-Teploperedachi.-Teploperedachi.-Teploperedachi.-Teploperedachi.-Teploperedacha-cherez-sloj-veshhestva.pdfsloj-veshhestva.pdf
- 17.Баранов, В.М. Б 241 Термодинамика и теплопередача: Учебное пособие: 2-е издание, переработанное / В.М. Баранов, А.Ю.Коньков. Хабаровск: Издательство ДВГУПС, 2004. 91 с. http://www.vixri.com/d2/Baranov%20%20Termodinamika%20I%20Teploperedac ha.pdf

#### в) методические указания:

- 18.Методические указания к лабораторным занятиям по дисциплине «Термодинамика и теплопередача» для студентов, обучающихся по направлению подготовки 13.03.03 Энергетическое машиностроение специальности "Двигатели внутреннего сгорания") / Сост.: Ю.А.Куликов, А.А.Данилейченко. Луганск: изд-во ЛНУ им. В. Даля, 2019. 93 с.
- 19.Методические указания к выполнению индивидуального задания по дисциплине "Теоретические основы теплотехники" для студентов всех специальностей / Сост.: Н.Г. Банников, В.А. Волков, Ю.А.Куликов, А.Н.Кинщак, В.А. Рыбальченко Луганск: Изд-во ВНУ им. Даля, 2014.-25 с.
- 20. Методические указания к выполнению домашнего задания «Расчет теплообменных аппаратов» по дисциплине «Основы теплотехники» для студентов всех специальностей / Сост.: Ю.А.Куликов, Ю.А.Шманев. Луганск: Изд-во ВНУ им. Даля, 2013.-30с.
- 21. Методические указания к практическим занятиям по дисциплине «Прикладная термодинамика» для студентов инженерных специальностей / Сост.: А.С Ковтун. Луганск: изд-во ЛНУ им. В.Даля, 2018. 17с.
- 22. Методические указания к практическим занятиям по дисциплине «Термодинамика и теплопередача» (для студентов, обучающихся по направлению подготовки 13.03.03 Энергетическое машиностроение специальности "Двигатели внутреннего сгорания") / Сост.: Ю.А.Куликов, А.А.Данилейченко. Луганск: изд-во ЛНУ им. В. Даля, 2019. 105 с.
- 23. Методические указания к самостоятельной работе по дисциплине «Термодинамика и теплопередача» для студентов инженерных специальностей / Сост.: А.С Ковтун. Луганск: изд-во ЛНУ им. В.Даля, 2019. 24с.

# в) Интернет-ресурсы:

Министерство образования и науки Российской Федерации – http://минобрнауки.pф/

Федеральная служба по надзору в сфере образования и науки

http://obrnadzor.gov.ru/

Министерство образования и науки Луганской Народной Республики – https://minobr.su

Народный совет Луганской Народной Республики – https://nslnr.su

Портал Федеральных государственных образовательных стандартов высшего образования – http://fgosvo.ru

Федеральный портал «Российское образование» — http://www.edu.ru/ Информационная система «Единое окно доступа к образовательным ресурсам» — http://window.edu.ru/

Федеральный центр информационно-образовательных ресурсов – http://fcior.edu.ru/

Электронные библиотечные системы и ресурсы

Электронно-библиотечная система «Консультант-студента» – http://www.studentlibrary.ru/cgi-bin/mb4x

Электронно-библиотечная система «StudMed.ru» –https://www.studmed.ru Информационный ресурс библиотеки образовательной организации Научная библиотека имени А. Н. Коняева – http://biblio.dahluniver.ru/

# **8. Материально-техническое обеспечение дисциплины** Лекционные занятия проводятся в академических аудиториях.

Освоение дисциплины предполагает использование академических аудиторий, соответствующих действующим санитарным и противопожарным правилам и нормам.

Практические занятия: проводятся с использованием раздаточного материала, наглядных пособий, демонстрационных плакатов. Прочее: комплект электронных раздаточных материалов выдается студентам в электронной форме.

Лабораторные работы: лаборатория ДВС, оснащенная специализированными лабораторными стендами (Стенд «Всетин» с ДВС, стенды с дизелями 5Д2, 6ЧН12/14, 1Ч12/14, 5Д4, стенд СДТА, стенд «Motorpal», стенд с ДВС 4ЧН8,5/11 с волновым обменником давления, наглядное пособие двигатель ТВ3-117 и СПГГ, лабораторные стенды 1, 2, 3, 4 по теплотехнике, лабораторное контрольноизмерительное оборудование, наглядные пособия), плакаты со схемами лабораторных работ, шаблоны отчетов по лабораторным работам.

Прочее: рабочее место преподавателя, оснащенное компьютером с доступом в Интернет (комплект электронных раздаточных материалов выдается студентам в электронной форме).

Программное обеспечение:

| Функциональное<br>назначение | Бесплатное программное<br>обеспечение | Ссылки |
|------------------------------|---------------------------------------|--------|
|------------------------------|---------------------------------------|--------|

| Офисный пакет        | Libre Office 6.3.1                    | https://www.libreoffice.org/<br>https://ru.wikipedia.org/wiki/LibreOffice                          |
|----------------------|---------------------------------------|----------------------------------------------------------------------------------------------------|
| Операционная система | UBUNTU 19.04                          | https://ubuntu.com/<br>https://ru.wikipedia.org/wiki/Ubuntu                                        |
| Браузер              | Firefox Mozilla                       | http://www.mozilla.org/ru/firefox/fx                                                               |
| Браузер              | Opera                                 | http://www.opera.com                                                                               |
| Почтовый клиент      | Mozilla Thunderbird                   | http://www.mozilla.org/ru/thunderbird                                                              |
| Файл-менеджер        | Far Manager                           | http://www.farmanager.com/download.php                                                             |
| Архиватор            | 7Zip                                  | http://www.7-zip.org/                                                                              |
| Графический редактор | GIMP (GNU Image Manipulation Program) | http://www.gimp.org/<br>http://gimp.ru/viewpage.php?page_id=8<br>http://ru.wikipedia.org/wiki/GIMP |
| Редактор PDF         | PDFCreator                            | http://www.pdfforge.org/pdfcreator                                                                 |
| Аудиоплейер          | VLC                                   | http://www.videolan.org/vlc/                                                                       |

# 9. Оценочные средства по дисциплине

# Паспорт

# оценочных средств по учебной дисциплине

«Термодинамика и теплопередача»

Перечень компетенций (элементов компетенций), формируемых в результате освоения учебной дисциплины (модуля) или практики

| <b>№</b><br>п/п | контролируемой | Формулировка<br>контролируемой<br>компетенции | Индикаторы достижений компетенции (по реализуемой дисциплине | Контролируемые разделы (темы) учебной дисциплины |  |
|-----------------|----------------|-----------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|--|
|-----------------|----------------|-----------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|--|

|    | ОПК-1 | ОПК-1. Способен    | ОПК-1.2.       |                 | Тема                    | 1.  |   |   |
|----|-------|--------------------|----------------|-----------------|-------------------------|-----|---|---|
|    | !     | применять          | Применяет осно | овные           | Исходные                |     |   |   |
|    | !     | естественнонаучные | понятия и      |                 | положения               |     |   |   |
|    | !     | и общеинженерные   | законы         |                 | технической             |     |   |   |
|    | !     | знания, методы     | естественных   | наук            | термодинами             | ки. |   |   |
|    | !     | математического    | дл             | -               | Предмет                 | И   |   |   |
|    | !     | анализа и          |                |                 | методы.                 |     | _ |   |
| 1. | !     | моделирования      | предметнопроф  | ильных          |                         |     | 5 |   |
|    | !     |                    | задач.         |                 | понятия                 | И   |   |   |
|    | !     |                    |                |                 | определения.            |     |   |   |
|    | !     |                    |                |                 | Параметры               |     |   |   |
|    | !     |                    |                |                 | состояния.              |     |   | ŀ |
|    |       |                    |                |                 | Уравнения               |     |   |   |
|    |       |                    |                |                 | состояния газ           | OB. |   |   |
|    |       |                    |                | Работа          | и теплота в             |     |   |   |
|    |       |                    |                |                 | цинамическом            |     |   |   |
|    |       |                    |                | процес          | ece.                    |     |   |   |
|    |       |                    |                | Теплое          | емкость.                |     |   |   |
|    |       |                    |                | Газовь          | ие смеси                |     |   |   |
|    |       |                    |                | Тема 2          | . Основные              |     |   |   |
|    |       |                    |                | законы          | I                       |     |   |   |
|    |       |                    |                | термод          | цинамики.               |     |   |   |
|    |       |                    |                | Первы           | й закон                 |     |   |   |
|    |       |                    |                | термод          | цинамики.               |     |   |   |
|    |       |                    |                | Второй          | й закон                 |     |   |   |
|    |       |                    |                | _               | цинамики.               |     |   |   |
|    |       |                    |                | Циклы           | -                       |     |   |   |
|    |       |                    |                |                 | атическое               |     |   |   |
|    |       |                    |                | _               | ение второго            |     |   |   |
|    |       |                    |                | закона          |                         |     |   |   |
|    |       |                    |                | термод<br>Измен | цинамики.               |     |   |   |
|    |       |                    |                |                 |                         |     |   |   |
|    |       |                    |                | энтроп          |                         |     |   |   |
|    |       |                    |                | _               | ованной<br>цинамической |     |   |   |
|    |       |                    |                | систем          |                         |     |   |   |
|    |       |                    |                |                 | мальная                 |     |   |   |
|    |       |                    |                | работа          |                         |     |   |   |
|    |       |                    |                | _               | (эксергия).             |     |   |   |
|    |       |                    |                | Основі          |                         |     |   |   |
|    |       |                    |                |                 | цинамические            |     |   |   |
|    |       |                    |                | - r             | ,                       |     |   |   |

процессы.

| Тема 3. Свойства и                |
|-----------------------------------|
| процессы реальных                 |
| газов. Общие                      |
| свойства. Свойства                |
| и процессы воды и                 |
| водного пара.                     |
| Свойства и                        |
| процессы влажного                 |
| воздуха. h-d                      |
| диаграмма влажного                |
| воздуха.                          |
| Тема 4                            |
| Термодинамика                     |
| потока. Первый                    |
|                                   |
| закон                             |
| термодинамики для<br>потока газа. |
| Истечение газов и                 |
|                                   |
| паров.<br>Дросселирование         |
|                                   |
| газов и паров.                    |
| Нагнетания газов и                |
| паров.                            |
| Тема 5 Циклы                      |
| теплосиловых                      |
| установок. Циклы                  |
| двигателей                        |
| внутреннего                       |
| сгорания. Циклы                   |
| газовых турбин.                   |
| Циклы                             |
| паросиловых                       |
| установок. Циклы                  |
| холодильных                       |
| установок и                       |
| тепловых насосов.                 |
| Термодинамические                 |
| и тепловые                        |
| процессы в                        |
| технологических                   |
| машинах и                         |
| оборудовании.                     |

# Показатели и критерии оценивания компетенций, описание шкал оценивания

|                     | Код     | Индикаторы (по | Перечень планируемых | Контролируе |            |  |
|---------------------|---------|----------------|----------------------|-------------|------------|--|
|                     | контрол | достижений     | результатов          | мые разделы | Наименова  |  |
| $N_{\underline{0}}$ | ируемо  | компетенции    |                      | (темы)      | ние        |  |
| $\Pi/\Pi$           | й       | реализуемой    |                      | учебной     | оценочног  |  |
|                     | компет  | дисциплине)    |                      | дисциплины  | о средства |  |
|                     | енции   |                |                      | дисциплины  |            |  |

| 1  | OFFIC 1 | <u> </u>             | 1                                            | TD 1    | ПС          |
|----|---------|----------------------|----------------------------------------------|---------|-------------|
| 1. | ОПК-1   |                      | знать: основные законы                       | Тема 1, | Лаборатор   |
|    |         |                      | термодинамики и                              | Тема 2, | ная работа, |
|    |         |                      | тепломассообмена;                            | Тема 3, | контрольн   |
|    |         |                      | основные положения                           | Тема 4, | ая работа,  |
|    |         |                      | и методы                                     | Тема 5  | индивидуа   |
|    |         |                      | термодинамики и                              |         | льное       |
|    |         |                      | теплообмена; методы                          |         | задание     |
|    |         |                      | получения и                                  |         |             |
|    |         |                      | преобразования, передачи и                   |         |             |
|    |         |                      | использования теплоты в                      |         |             |
|    |         |                      | тепломеханических                            |         |             |
|    |         | ОПК-1. Способен      | агрегатах, тепловых                          |         |             |
|    |         |                      | машинах и двигателях, в                      |         |             |
|    |         | применять            | технологических                              |         |             |
|    |         | естественнонаучные и | процессах                                    |         |             |
|    |         | обще инженерные      | автомобилестроения и пр.;                    |         |             |
|    |         | знания, методы       | методы расчета                               |         |             |
|    |         | математического      | термодинамических и                          |         |             |
|    |         | анализа и            | 1 ' '                                        |         |             |
|    |         | моделирования        | Возникающих в                                |         |             |
|    |         |                      | тепломеханических                            |         |             |
|    |         |                      | агрегатах (тепловых машинах, технологическом |         |             |
|    |         |                      | оборудовании и пр.)                          |         |             |
|    |         |                      | процессов сушки,                             |         |             |
|    |         |                      | вытекания,                                   |         |             |
|    |         |                      | дросселирования,                             |         |             |
|    |         |                      | нагнетание газа (пара) и пр.;                |         |             |
|    |         |                      | уметь: определять                            |         |             |
|    |         |                      | параметры рабочего                           |         |             |
| ī  |         |                      | 1 1                                          |         |             |
|    |         |                      | состояния тела тепловых                      |         |             |
|    |         |                      | машин, двигателей,                           |         |             |

| аппаратов; проводить     |  |
|--------------------------|--|
| термодинамический анализ |  |
| циклов тепл овых машин,  |  |
| технологического         |  |
| оборудования;            |  |
| рассчитывать рабочие     |  |
| тепловые процессы в      |  |
| тепловых машинах и       |  |
| технологическом          |  |
| оборудовании;            |  |
| рассчитывать процессы    |  |
| тепломассообмена в       |  |
| тепловых машинах и       |  |
| технологическом          |  |
| оборудовании; выполнять  |  |
| расчеты теплообменников. |  |
| владеть навыками:        |  |
| анализа и расчета        |  |
| термодинамических и      |  |
| тепловых процессов в     |  |
| агрегатах,               |  |
| технологическом          |  |
| оборудовании и приборах. |  |

# Оценочные средства по дисциплине «Термодинамика и теплопередача»

# Вопросы при защите лабораторных работ:

- 1. Что такое процесс теплопроводности?
- 2. Каковы единицы измерения коэффициента теплопроводности? Почему сыпучие, пористые и волокнистые материалы имеют низкие значения коэффициента теплопроводности?
- 3. Как записывается уравнение Фурье для плоской однослойной стенки при стационарном режиме?
- 4. Как зависит коэффициент теплопроводности от температуры в данном случае? Чем это объяснить?
- 5. Может ли рассматриваемый материал иметь другие величины коэффициента теплопроводности? Если да, то в каких условиях? В каких пределах? Почему? 6. Что называется конвективным теплообменом?
- 7. Как записывается уравнение теплоотдачи (уравнение Ньютона Рихмана)?
- 8. Каковы физический смысл и единицы измерения коэффициента теплоотдачи?
- 9. От каких величин зависит коэффициент теплоотдачи?
- 10. Какие условия лежат в основе теории подобия?
- 11. Что такое критерий подобия?
- 12. Какими критериями подобия характеризуется конвективный теплообмен, в чем их физический смысл?

- 13. Какое уравнение называется критериальным?
- 14. Что такое степень черноты?
- 15.От каких факторов зависит величина коэффициента теплоотдачи?
- 16.Как Вы могли бы изменить величину коэффициента теплоотдачи в данной установке?
- 17. Что Вы понимаете под сложным теплообменом?
- 18. Как определяется коэффициент сложного теплообмена?
- 19.Почему у вертикальной трубы коэффициент теплоотдачи при прочих равных условиях меньше, чем у горизонтальной?
- 20. Как записывается уравнение теплопередачи?
- 21. Физический смысл и единицы измерения коэффициента теплопередачи.
- 22. Что такое средний температурный напор и как он вычисляется?
- 23. Каковы особенности работы теплообменника по схемам «прямоток» и «противоток»?
- 24.Объяснить устройство лабораторной установки по исследованию работы теплообменного аппарата.
- 25.Обстоятельно, с подробностями, объяснить, почему схема противотока выгоднее? 26. Как оцениваете Вы полученные величины коэффициента теплопередачи в сравнении со справочно-литературными данными? Причины расхождения?
- 27. Как изменяется коэффициент теплопередачи в процессе эксплуатации теплообменника и по каким причинам?
- 28. Как Вы могли бы повысить эффективность данного теплообменника?
- 29. Каковы основные особенности лучистого теплообмена?
- 30. Какое тело называется абсолютно белым, абсолютно прозрачным?
- 31.В чем сущность законов Планка и Вина?
- 32.В чем сущность закона Стефана-Больцмана?
- 33.В чем сущность закона Кирхгофа?
- 34. Что такое степень черноты? От каких факторов она зависит?
- 35.Как приблизительно изменится количество излучаемой энергии при установке двух экранов?
- 36. Что такое излучательная способность тела?
- 37.В чем основные особенности излучения газов?
- 38. Какие критерии подобия конвективного теплообмена используются в данной лабораторной работе? Каков их физический смысл?
- 39. Что называется теплообменным аппаратом? По какой схеме он работает?
- 40.Почему при вынужденном движении воздуха коэффициент теплопередачи больше, чем при свободном?
- 41.С какой целью трубы теплообменника выполнены ребристыми? Почему ребра выполнены со стороны воздуха, а не воды?

- 42. Что такое конвективный теплообмен?
- 43. Как записывается уравнение теплоотдачи (уравнение Ньютона-Рихмана)?
- 44. Каков физический смысл единицы измерения коэффициента теплоотдачи?
- 45.От каких величин зависит коэффициент теплоотдачи?
- 46. Что такое критерий подобия?
- 47. Какими критериями подобия характеризуется конвективный теплообмен, в чем их физических смысл?
- 48. Что такое тепловой регулярный режим?
- 49.Как связаны темп охлаждения с величиной коэффициента теплоотдачи? 10.Как влияет вид конвекции на коэффициент теплоотдачи?
- 50. Какова физическая сущность передачи тепла при теплопроводности?
- 51. Что такое температурное поле?
- 52. Что такое температурный градиент?
- 53. Как записывается уравнение Фурье?
- 54. Что такое термическое сопротивление плоской стенки?
- 55. Что такое удельный тепловой поток?
- 56.Объясните методику определения к в данной лабораторной работе.
- 57. Как зависит X от температуры в данном случае? Чем это можно объяснить?
- 58. Бывают ли иные зависимости А. от температуры?
- 59. Какие единицы применяются для измерения давления?
- 60.Объясните устройство и принцип работы манометра с трубчатой пружиной.
- 61. Объясните принцип работы прибора ИКД-27.
- 62. Как подсчитывается абсолютное давление?
- 63. Какие бывают приборы для измерения давления, кроме использованных в данной лабораторной работе?
- 64. Как связаны между собой различные единицы измерения давления?
- 65.Объясните принцип работы шарикового клапана.
- 66.В чем различается назначение регулирующего и предохранительного клапана?
- 67. Как определяется абсолютное давление в сосуде, если известно показание вакуумметра р, подсоединенного к сосуду?
- 68.В чем физическая сущность абсолютного давления с точки зрения молекулярнокинетической теории газов?
- 69. Какие термодинамические параметры относятся к основным?
- 70. Какие физические условия в термодинамике называются нормальными?
- 71. Объясните принцип работы манометра.
- 72. Приведите примеры использования в технике предохранительных клапанов.
- 73. Какие типы предохранительных клапанов (кроме шарикового) используются в технике?

- 74. Какие единицы измерения давления используются при решении задач с помощью уравнения состояния идеального газа?
- 75.. Какие единицы измерения давления являются основными в СИ и МКГСС? .
- 76. Какие внесистемные единицы измерения давления Вы знаете?
- 77..В чем различие между технической и физической атмосферой?
- 78. Приведите пример из техники, когда необходимо поддерживать постоянное давление?
- 79. Что называется удельной теплоемкостью? В каких единицах она измеряется?
- 80.В чем физическая сущность метода измерения теплоемкости используемого в данной лабораторной работе?
- 81. Какая связь между единицами измерения теплоемкости в системах единиц Сии МКГСС?
- 82. Чему равна теплоемкость воды при 20 °C в единицах СИ и МКГСС?
- 83. Какое вещество из используемых в теплотехнике имеет наибольшую теплоемкость?
- 84.Почему в лабораторной установке ампула с образцом отделена от окружающей среды адиабатической оболочкой (теплоизоляцией)? 85. Какой пар называется насыщенным, перегретым?
- 86. Что такое влажный насыщенный пар, сухой насыщенный пар?
- 87. Что такое степень сухости?
- 88. На что расходуется подводимое тепло при парообразовании?
- 89. Как изображается процесс парообразования (p = const) в диаграммах p,v и  $\Gamma$ ,5?
- 90. Как определяются параметры пара и воды с помощью диаграммы h, s?
- 91. Как определяются параметры влажного пара с помощью таблиц?
- 92. В чем заключается удобство диаграммы h,s?
- 93. Каков характер изотерм, изохор, изобар в координатах T, s, h,sl Ю.Как исследовать процесс дросселирования с помощью диаграммы h,s!
- 94. Как изменяется величина располагаемой работы адиабатного процесса, если перед его осуществлением происходит дросселирование? Почему?
- 95. Почему с помощью обычно применяемых в технике манометров измеряется избыточное давление, а не абсолютное?
- 96. Как определяется абсолютное давление на основе измеренного избыточного давления?
- 97. Какое давление (абсолютное или избыточное) приводится в диаграммах и таблицах термодинамических свойств воды и водяного пара?
- 98. Как по диаграмме h, s определить температуру насыщения по заданному давлению?

- 99. Как связан знак относительной ошибки с условиями эксперимента (нагрев или охлаждение)?
- 100. Может ли вода кипеть при 20 °C? При 400 °C?
- 101. Может ли происходить парообразование при 0 °C? При -20 °C?
- 102. Что такое критическое состояние вещества? Каковы основные параметры воды в критическом состоянии?
- 103. Как записывается уравнение политропного процесса?
- 104. Чему равны значения показателя политропы соответственно для адиабатного, изотермического, изобарного и изохорного процесса?
- 105. Как изображается адиабатный процесс расширения в диаграмме Т, s?
- 106. Чему равна площадь под кривой процесса в диаграммах p, v и T, s?
- 107. Как изображается адиабатный процесс сжатия в диаграмме p, v (сравнить с изотермическим)?
- 108. Как записывается математическое выражение первого закона термодинамики для неподвижной массы газа?
- 109. Чему равна работа газа при адиабатном расширении?
- 110. Как подсчитывается работа политропного расширения (сжатия)?
- 111. Как учитываются различные виды потерь при совершении газом работы? 112. Какое давление следует использовать при расчете термодинамических процессов: абсолютное или избыточное? Почему?
- 113. В каких единицах должна быть измерена температура при расчетах с помощью уравнений состояния? Почему?
- 114. Почему в данной работе оказывается возможным пренебречь изменением массы газа? Велика ли (сколько процентов) при этом погрешность?
- 115. Что такое теплоемкость газа и от каких факторов она зависит?
- 116. Что такое средняя теплоемкость, как она обозначается?
- 117. Что больше: изобарная теплоемкость или изохорная? Почему?
- 118. Какие единицы измерения имеют массовая, объемная и киломольная теплоемкости?
- 119. Как найти объемную теплоемкость, если известна соответствующая массовая теплоемкость?
- 120. Как зависит теплоемкость газа от температуры?
- 121. Может ли воздух иметь другую теплоемкость? Если да, то при каких условиях?

Выполняется в соответствии с методическими указаниями к лабораторным занятиям по дисциплине «Термодинамика и теплопередача» (для студентов, обучающихся по направлению подготовки 13.03.03 — Энергетическое машиностроение специальности "Двигатели внутреннего сгорания") / Сост.: Ю.А.Куликов, А.А.Данилейченко. — Луганск: изд-во ЛНУ им. В. Даля, 2019. — 93 с.

# Критерии и шкала оценивания по оценочному средству лабораторная работа

| Шкала оценивания  | Критерий оценивания                                                                                                                          |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| (интервал баллов) |                                                                                                                                              |
| 5                 | Лабораторная работа выполнена на высоком уровне (расчеты, оформление, представление итогового материала даны на 90-100 % вопросов/задач)     |
| 4                 | Лабораторная работа выполнена на среднем уровне (расчеты, оформление, представление итогового материала даны на 75-89 % вопросов/задач)      |
| 3                 | Лабораторная работа выполнена на низком уровне (расчеты, оформление, представление итогового материала даны на 50-74 % вопросов/задач)       |
| 2                 | Лабораторная работа выполнена на неудовлетворительном уровне (расчеты, оформление, представление итогового материала даны менее чем на 50 %) |

# Практические занятия:

# Контрольная задача 1

Газообразные продукты сгорания топлива охлаждаются в изобарном процессе от температуры  $t_1$  до температуры  $t_2$ . Состав газов задан в объемных долях:  $r_{N2}$ ,

rco2 И rн20.

Найти количество теплоты, отдаваемое 1 м<sup>3</sup> продуктов сгорания. Объем определен при нормальных условиях. Исходные данные принять по табл. 1.1 в зависимости от шифра (номера варианта). Расчет выполнить с использованием средних теплоемкостей.

Таблица 1.1. Исходные данные

| Последняя      | Объ              | емный соста  | ав, %        | Предпоследняя | Температуры                            |                                        |  |
|----------------|------------------|--------------|--------------|---------------|----------------------------------------|----------------------------------------|--|
| цифра<br>шифра | rco <sub>2</sub> | <b>r</b> N 2 | <b>r</b> H2O | цифра шифра   | <i>t</i> <sub>1</sub> , <sup>0</sup> C | <i>t</i> <sub>2</sub> , <sup>0</sup> C |  |
| 1              | 17               | 72           | 11           | 1             | 800                                    | 200                                    |  |
| 2              | 25               | 67           | 8            | 2             | 700                                    | 300                                    |  |
| 3              | 19               | 75           | 6            | 3             | 1 500                                  | 400                                    |  |
| 4              | 15               | 64           | 21           | 4             | 1 400                                  | 500                                    |  |
| 5              | 16               | 70           | 14           | 5             | 1 300                                  | 600                                    |  |
| 6              | 14               | 57           | 29           | 6             | 1 200                                  | 200                                    |  |
| 7              | 14               | 73           | 13           | 7             | 1 100                                  | 300                                    |  |
| 8              | 10               | 70           | 20           | 8             | 1 000                                  | 400                                    |  |
| 9              | 14               | 79           | 7            | 9             | 900                                    | 500                                    |  |
| 0              | 11               | 73           | 16           | 0             | 800                                    | 600                                    |  |

# Контрольная задача 2

В одноступенчатом поршневом компрессоре с объемной подачей  $Q_V$  сжимается смесь газов от давления  $P_1$ = 100 кПа до давления  $P_2$ . Начальная температура газовой

смеси  $t_1$ , ее состав задан массовыми долями  $g_{H_2}$ ,  $g_{CO}$ ,  $g_{CO_2}$ ,  $g_{N_2}$ . Подача компрессора приведена к нормальным условиям ( $P_o = 101,3$  кПа и  $t_o = 0$   $^{0}$ C).

Определить удельный объем и удельную энтропию газовой смеси перед сжатием.

Рассчитать для изотермического, адиабатного и политропного (с показателем политропы n) процессов сжатия:

- -температуру, удельный объем и удельную энтропию смеси газов в конце процесса сжатия;
  - -теоретическую мощность привода;
- —расход охлаждающей воды G , кг/ч, при повышении температуры воды в рубашке компрессора на  $10\ ^{0}\mathrm{C}$ .

Расчет выполнить без учета влияния вредного пространства, принимая теплоемкость смеси газов постоянной в каждом из процессов.

Построить в масштабе рабочий процесс компрессора в диаграммах  $P \square$  и TS. Исходные данные приведены в табл. 1.2. в зависимости от шифра (номера варианта).

| Таблица  | 1   | 2 | Исходные,  | ланные |
|----------|-----|---|------------|--------|
| т иолици | 1 . |   | ттолодирю, | динные |

|           | Последняя Состав смеси, массовые доли Предпосл $P_2$ , п $t_1$ , $Q_V$ , |          |            |           |          |         |      |         |         |  |  |  |
|-----------|--------------------------------------------------------------------------|----------|------------|-----------|----------|---------|------|---------|---------|--|--|--|
| Последняя | Соста                                                                    | в смеси, | массов     | ые доли   | Предпосл | $P_2$ , | n    | $t_1$ , | $Q_V$ , |  |  |  |
| цифра     |                                                                          | газо     | B, %       |           | едняя    | кПа     |      | 0       | $M^3/H$ |  |  |  |
| шифра     | $g_{H_2}$                                                                | $g_{CO}$ | $g_{CO_2}$ | $g_{N_2}$ | цифра    |         |      | С       |         |  |  |  |
|           |                                                                          |          |            |           | шифра    |         |      |         |         |  |  |  |
| 1         | 30                                                                       | 5        | 10         | 60        | 1        | 500     | 1,1  | 5       | 30      |  |  |  |
| 2         | 15                                                                       | 10       | 15         | 60        | 2        | 550     | 1,12 | 10      | 50      |  |  |  |
| 3         | 20                                                                       | 15       | 15         | 50        | 3        | 600     | 1,14 | 15      | 80      |  |  |  |
| 4         | 35                                                                       | 20       | 10         | 35        | 4        | 650     | 1,16 | 20      | 100     |  |  |  |
| 5         | 10                                                                       | 40       | 5          | 45        | 5        | 700     | 1,18 | 30      | 120     |  |  |  |
| 6         | 15                                                                       | 30       | 15         | 40        | 6        | 750     | 1,2  | 5       | 150     |  |  |  |
| 7         | 25                                                                       | 15       | 20         | 40        | 7        | 800     | 1,23 | 10      | 200     |  |  |  |
| 8         | 20                                                                       | 25       | 5          | 50        | 8        | 850     | 1,26 | 20      | 250     |  |  |  |
| 9         | 20                                                                       | 10       | 15         | 55        | 9        | 900     | 1,29 | 25      | 300     |  |  |  |
| 0         | 30                                                                       | 15       | 10         | 45        | 0        | 1000    | 1,32 | 30      | 400     |  |  |  |

# Контрольная задача 3

Рассчитать цикл поршневого ДВС по заданным начальным параметрам состояния рабочего тела ( $P_1$ ,  $t_1$ ) и параметрам цикла ( $\square_{\mathcal{U}}$ ,  $\square_{\mathcal{U}}$ ,  $\square_{\mathcal{U}}$ ). В качестве рабочего тела принять воздух.

При расчете определить основные параметры состояния (P,  $\square$ , T и S) в характерных точках цикла, подведенную и отведенную удельную теплоту, термический КПД и удельную работу цикла.

Построить цикл в масштабе в диаграммах  $P \square$  и TS .

Исходные данные принять в соответствии с табл. 1.3. Таблица 1.3. Исходные данные

| Параметры<br>цикла                     |     |                           |     | Последн | іяя цифр | оа шиф | pa  |     |     |     |
|----------------------------------------|-----|---------------------------|-----|---------|----------|--------|-----|-----|-----|-----|
| цикла                                  | 0   | 1                         | 2   | 3       | 4        | 5      | 6   | 7   | 8   | 9   |
| $\square_{\mathcal{U}}$                | 7   | 18                        | 13  | 8       | 20       | 15     | 9   | 23  | 12  | 6   |
| $\square_{\mathcal{U}}$                | 1,8 | 1,0                       | 1,2 | 1,7     | 1,0      | 1,3    | 2,0 | 1,0 | 1,4 | 1,9 |
|                                        | 1,0 | 2,0                       | 1,5 | 1,0     | 2,3      | 1,7    | 1,0 | 1,9 | 1,5 | 1,0 |
|                                        |     | Предпоследняя цифра шифра |     |         |          |        |     |     |     |     |
| <i>P</i> <sub>1</sub> , кПа            | 95  | 120                       | 100 | 150     | 180      | 110    | 98  | 102 | 96  | 95  |
| <i>t</i> <sub>1</sub> , <sup>0</sup> C | 40  | 30                        | 25  | 27      | 17       | 20     | 35  | 27  | 7   | 0   |

### Контрольная задача 4

Для цикла ГТУ с изобарным подводом теплоты определить параметры ( P,  $\square$ , T и S ) рабочего тела (воздуха) в характерных точках цикла, подведенную и отведенную удельную теплоту, удельную работу цикла и термический КПД, теоретическую мощность ГТУ.

Начальное давление  $P_1$ = 0,1 МПа, начальная температура  $t_1$ = 27  ${}^{0}$ С. Степень повышения давления в компрессоре  $\square_{\mathcal{U}}$ , температура рабочего тела перед турбиной  $t_3$  и расход рабочего тела  $m_t$  выбрать по табл. 1.4 в зависимости от шифра (номера варианта). Изобразить цикл в масштабе в диаграммах  $P \square$  и TS.

| Параметры                              |     | Последняя цифра шифра     |     |     |     |     |     |     |     |     |  |
|----------------------------------------|-----|---------------------------|-----|-----|-----|-----|-----|-----|-----|-----|--|
|                                        | 0   | 0 1 2 3 4 5 6 7 8 9       |     |     |     |     |     |     |     |     |  |
| $\square_{\mathcal{U}}$                | 6   | 6,5                       | 7   | 7,5 | 8   | 8,5 | 9   | 10  | 11  | 12  |  |
|                                        |     | Предпоследняя цифра шифра |     |     |     |     |     |     |     |     |  |
| <i>t</i> <sub>3</sub> , <sup>0</sup> C | 600 | 625                       | 650 | 675 | 700 | 725 | 750 | 775 | 800 | 825 |  |
| $m_t$ , кг/с                           | 20  | 25                        | 30  | 40  | 50  | 60  | 70  | 80  | 90  | 100 |  |

Таблица 1.4. Исходные данные

# Контрольная задача 5

Рассчитать идеальный цикл паросиловой установки — цикл Ренкина по заданным начальным параметрам перегретого водяного пара (  $^{P}_{_{1}}$ ,  $^{t}_{_{1}}$ ) и давлению пара в конденсаторе (  $^{P}_{_{2}}$ ).

Определить параметры состояния воды и водяного пара ( $^P$ ,  $^t$ ,  $^\square$ ,  $^h$ ,  $^S$ ,  $^x$ ) в характерных точках цикла (рис. 6.1), удельную работу цикла, термический КПД и удельный расход пара. При этом не учитывать удельную работу, затрачиваемую в насосе.

Изобразить цикл в  $P^{\square}$  и  $^{TS}$  – диаграммах. Показать стрелками процессы подвода и отвода теплоты, а штриховкой — удельную работу цикла. Исходные данные принять по табл. 1.5.

Состояние пара в точке  $\frac{5}{2}$  характеризуется давлением  $\frac{P}{1}$  и степенью сухости  $x_5$ .

Таблица 1.5. Исходные данные

| Параметры цикла                        | Последняя цифра шифра |                           |     |     |     |     |     |     |     |     |
|----------------------------------------|-----------------------|---------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
|                                        | 0                     | 1                         | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   |
| $P_1$ , МПа                            | 4,5                   | 2,0                       | 3,0 | 3,5 | 1,5 | 2,5 | 4,0 | 5,0 | 3,5 | 2,0 |
| <i>t</i> <sub>1</sub> , <sup>0</sup> C | 490                   | 480                       | 450 | 470 | 440 | 420 | 430 | 500 | 410 | 450 |
|                                        |                       | Предпоследняя цифра шифра |     |     |     |     |     |     |     |     |
|                                        | 0                     | 1                         | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   |
| $P_2$ , к $\Pi$ а                      | 4,0                   | 3,0                       | 4,5 | 45  | 5,0 | 30  | 20  | 7,5 | 40  | 10  |
| <i>x</i> <sub>5</sub> , %              | 87                    | 95                        | 96  | 92  | 98  | 95  | 88  | 97  | 95  | 90  |

# Контрольная задача 6

В качестве рабочего вещества в холодильной машине холодопроизводительностью  $\Phi$ , кВт, используется хладон R12, который при температуре  $t_1$  поступает в компрессор и сжимается в адиабатном процессе до состояния сухого насыщенного пара при температуре  $t_2$ .

Конденсация хладона происходит полностью без переохлаждения конденсата перед терморегулирующим вентилем.

Найти холодильный коэффициент, массовый расход хладона и теоретическую мощность привода компрессора.

Изобразить цикл холодильной машины в масштабе в диаграмме TS и ее схему. Исходные данные принять по табл. 1.6

Таблица 1.6. Исходные данные

| таолица т.о. походиые данные |                                        |                              |                   |                                        |  |  |  |  |  |  |
|------------------------------|----------------------------------------|------------------------------|-------------------|----------------------------------------|--|--|--|--|--|--|
| Последняя<br>цифра шифра     | <i>t</i> <sub>1</sub> , <sup>0</sup> C | Предпоследняя<br>цифра шифра | <i>Ф</i> ,<br>кВт | <i>t</i> <sub>C</sub> , <sup>0</sup> C |  |  |  |  |  |  |
| 1                            | 0                                      | 1                            | 10                | 15                                     |  |  |  |  |  |  |
| 2                            | - 5                                    | 2                            | 20                | 20                                     |  |  |  |  |  |  |
| 3                            | - 10                                   | 3                            | 30                | 25                                     |  |  |  |  |  |  |
| 4                            | - 15                                   | 4                            | 40                | 30                                     |  |  |  |  |  |  |
| 5                            | - 18                                   | 5                            | 50                | 35                                     |  |  |  |  |  |  |
| 6                            | - 20                                   | 6                            | 60                | 15                                     |  |  |  |  |  |  |
| 7                            | - 25                                   | 7                            | 80                | 20                                     |  |  |  |  |  |  |
| 8                            | - 30                                   | 8                            | 100               | 25                                     |  |  |  |  |  |  |
| 9                            | - 35                                   | 9                            | 120               | 30                                     |  |  |  |  |  |  |
| 0                            | - 40                                   | 0                            | 150               | 35                                     |  |  |  |  |  |  |

#### Контрольная задача 7

Рассчитать цикл (определить параметры в узловых точках, холодильный коэффициент, холодопроизводительность и теоретическую мощность привода компрессора) аммиачной холодильной машины. Температуру кипения  $t_1$ , температуру конденсации  $t_2$  и массовый расход аммиака  $m_t$  принять по табл. 1.7.

Состояние пара на входе в компрессор – сухой насыщенный, переохлаждение конденсата отсутствует, сжатие пара является адиабатным.

Изобразить цикл в масштабе в диаграмме TS.

Таблица 1.7. Исходные данные

| Последняя   | $t_1$ , | $t_1$ , Предпоследняя |      | $t_2$ , |
|-------------|---------|-----------------------|------|---------|
| цифра шифра | $^{0}C$ | цифра шифра           | кг/ч | $^{0}C$ |
| 1           | - 22    | 1                     | 30   | 35      |
| 2           | - 35    | 2                     | 50   | 30      |
| 3           | - 30    | 3                     | 80   | 25      |
| 4           | - 25    | 4                     | 100  | 20      |
| 5           | - 20    | 5                     | 150  | 15      |
| 6           | - 18    | 6                     | 200  | 35      |
| 7           | - 15    | 7                     | 250  | 30      |
| 8           | - 10    | 8                     | 300  | 25      |
| 9           | - 12    | 9                     | 400  | 20      |
| 0           | -28     | 0                     | 500  | 15      |

Контрольная задача 8

По горизонтальному трубопроводу внутренним диаметром  $d_1$  и толщиной стенки  $\Box_1$  движется горячая вода со скоростью  $\Box$  и средней температурой  $t_1$ . Для снижения теплопотерь предусмотрена тепловая изоляция теплопроводностью  $\Box_2$  и толщиной  $\Box_2$ . Трубопровод охлаждается в условиях свободной конвекции атмосферного воздуха температурой  $t_2$  и лучистого теплообмена на наружной поверхности тепловой изоляции. Коэффициент теплового излучения поверхности изоляции  $\Box = 0.95$ . Теплопроводность стали  $\Box_1 = 45$  Bт/(м·К).

Определить температуры поверхностей трубопровода и изоляции, линейный коэффициент теплопередачи и линейную плотность теплового потока.

Определить критический диаметр изоляции и сделать вывод о ее эффективности.

Построить в масштабе температурный график, исходные данные принять по табл. 1.8.

Таблица 1.8. Исходные данные к задаче 8

| Последняя цифра шифра | $t_1$ , ${}^0$ C | □,<br><sub>м/c</sub> | $\square_2$ , | Предпоследняя цифра<br>шифра | <i>t</i> <sub>2</sub> , <sup>0</sup> C | $d_1$ , | □ <sub>1</sub> , | $\Box_2$ , $BT/(M\cdot K)$ |
|-----------------------|------------------|----------------------|---------------|------------------------------|----------------------------------------|---------|------------------|----------------------------|
| 1                     | 90               | 0,5                  | 40            | 1                            | -20                                    | 21      | 2                | 0,05                       |
| 2                     | 110              | 1,0                  | 50            | 2                            | -10                                    | 28      | 2                | 0,075                      |
| 3                     | 130              | 1,5                  | 60            | 3                            | 0                                      | 34      | 2                | 0,1                        |
| 4                     | 150              | 2,0                  | 70            | 4                            | 10                                     | 41      | 2                | 0,15                       |
| 5                     | 170              | 2,5                  | 80            | 5                            | 20                                     | 51      | 3                | 0,2                        |
| 6                     | 90               | 0,5                  | 40            | 6                            | -20                                    | 70      | 3                | 0,25                       |
| 7                     | 110              | 1,0                  | 50            | 7                            | -10                                    | 83      | 3                | 0,3                        |
| 8                     | 130              | 1,5                  | 60            | 8                            | 0                                      | 101     | 4                | 0,35                       |
| 9                     | 150              | 2,0                  | 70            | 9                            | 10                                     | 126     | 4,5              | 0,4                        |

| 0 | 170 | 2,5 | 80 | 0 | 20 | 150 | 4,5 | 0,5 |
|---|-----|-----|----|---|----|-----|-----|-----|
| 1 |     |     |    |   | 1  |     |     | 1   |

# Контрольная задача 9

Выбрать типоразмер секционного водоводяного подогревателя, устанавливаемого в системе теплоснабжения сельскохозяйственного объекта, и определить число секций, принятых к установке.

Построить температурные графики сетевой и нагреваемой воды.

Тепловую мощность подогревателя  $\Phi$ , температуры сетевой воды на входе в подогреватель  $t_1'$  и на выходе  $t_1''$ , а также температуры нагреваемой воды на входе в подогреватель  $t_2'$  и на выходе  $t_2''$  принять по табл. 1.9. в зависимости от номера варианта.

Предпоследняя Последняя Температура, <sup>0</sup>С  $\Phi$ , кBт цифра цифра шифра  $t_1$  $t_1//$ **t**2/  $t_2$ // шифра 1 000 

Таблица 1.9. Исходные данные

#### Критерии и шкала оценивания по оценочному средству практические занятия

| Шкала             | Критерий оценивания                                                |
|-------------------|--------------------------------------------------------------------|
| оценивания        |                                                                    |
| (интервал баллов) |                                                                    |
| 5                 | Задания выполнены на высоком уровне (расчеты, оформление,          |
|                   | представление итогового материала даны на 90-100 % вопросов/задач) |
| 4                 | Задания выполнены на среднем уровне (расчеты, оформление,          |
|                   | представление итогового материала даны на 75-89 % вопросов/задач)  |
| 3                 | Задания выполнены на низком уровне (расчеты, оформление,           |
|                   | представление итогового материала даны на 50-74 % вопросов/задач)  |
| 2                 | Задания выполнены на неудовлетворительном уровне (расчеты,         |
|                   | оформление, представление итогового материала даны менее чем на 50 |
|                   | (%)                                                                |

# Комплект заданий к контрольной работе:

Вариант 1

- 1. Предмет термодинамики. Термодинамический метод. Термодинамические параметры состояния.
- В сосуде емкостью 1000 литров содержится при давлении р = 1,2 атм, температуре t = 20□С газовая смесь, состоящая по объему из 20% азота и 80% окиси углерода. Определить вес составляющей газовой смеси. Вариант 2
- 1. Рабочее тело и его параметры. Уравнение состояния.
- 2. Определить удельный расход пара в паросиловой установке, работающей по циклу Ренкина, если параметры пара перед турбиной p = 30бар, t = 460 С, а давление в конденсаторе p =0,04бар.

### Вариант 3

- 1. Работа газа. Вычисление работы. Графическое представление.
- 2. Манометр, установленный на барабане парового котла, показывает 8 кг/см. Чему равно абсолютное давление в котле, если барометрическое давление В =700 мм.рт.ст.

#### Вариант 4

- 1. Основные законы идеальных газов
- 2. На изобарное сжатие 1 кг кислорода (О) затрачена работа 100 кДж. Определить давление кислорода, если в начале сжатия его объем равен 0,4 м

/кг, а температура в конце сжатия равна 30 □ С.

# Вариант 5

- 1. Сравнение термодинамических циклов поршневых ДВС при  $\epsilon$  = idem.
- 2. В 1 кг воздуха в изохорном процессе подводится 500кДж тепла. Давление газа при этом возрастает от 30 бар до 70 бар. Определить конечную температуру воздуха, считая теплоемкость постоянной. Вариант 6
- 1. Работа и теплота в термодинамическом процессе.
- 2. Определить абсолютное давление в сосуде, если показание присоединенного к нему ртутного манометра равно 1бар, а атмосферное давление по барометру составляет 750 мм.рт.ст. Температура в месте установки приборов равно 0 С.

# Вариант 7 1.

Уравнения состояния для реальных газов.

- 2. В 1 кг воздуха в изохорном процессе подводится 500кДж тепла. Давление газа при этом возрастает от 30 бар до 70 бар. Определить конечную температуру воздуха, считая теплоемкость постоянной. Вариант 8 1. Анализ изохорного и изобарного процессов.
- 2. Вследствие адиабатного сжатия воздуха его температура повышается с 30 С до  $31^0$  С. при этом затрачена работа 0,2 кДж. Определить массу сжигаемого воздуха, считая теплоемкость постоянной.

### Вариант 9

- 1. Цикл поршневых ДВС со смешанным подводом теплоты.
- 2. Массовая теплоемкость воздуха при постоянном давлении C = 1000Дж/(кг град). Найти модульную теплоемкость воздуха в процессе при постоянном объеме (M = 29 кг/кмоль).

### Вариант 10

- 1. Какие рабочие диапазоны температур различных термопар?
- 2. Определить полезную работу цикла Карно, если при адиабатном сжатии абсолютная температура рабочего тела повысилась в 2,5 раза, а в цикле подводится 350 кДж тепла.

### Вариант 11

- 1. Энтропия.
- 2. Определить средний температурный напор в противоточном воздушногелиевом теплообменнике энергетического атомного реактора. Гелий охлаждается от 730 до 440 С и нагревается воздух от 390 до 670 С. Вариант 12
- 1. Коэффициент теплопроводности, его физический смысл.
- 2. Определить работу цикла Карно, если при адиабатном сжатии абсолютная температура рабочего тела повысилась в 2 раза, в цикле проводится 180 кДж тепла.

# Вариант 13

- 1. Цикл Карно. Его значение. Термический к.п.д. цикла Карно
- 2. Определить подведенное тепло q в цикле газотурбинной установки со сгоранием при p =const, если степень повышения в компрессоре 10, а показатель адиабата 1,4. Тепло, отданное холодному источнику, 25 кДж/кг.

# Вариант 14

- 1. Н-d диаграмма влажного воздуха.
- 2. Манометр, установленный на сосуде с кислородом, показывает давление 820 мм.рт.ст., а барометрическое давление равно 740 мм.рт.ст. Определить плотность кислорода при температуре 20 С.

# Вариант 15

- 1. Температурное поле и температурный градиент. Закон Фурье. 2. Определить потерю теплоты путем конвекции вертикальным паропроводом диаметром 15 мм и высотой 2 м, если температура наружной стенки 160 С, а температура окружающего воздуха 30 С. Вариант 16
- 1. Второй закон термодинамики и его формулировки.
- 2. Определить потерю теплоты путем конвекции вертикальным паропроводом диаметром d=15 мм и высотой h =2 м, если температура

- наружной стенки th=160 C, а температура окружающего воздуха t=30 C Вариант 17
- 1. Реальные рабочие тела. Фазовые переходы. Диаграмма р-t.
- 2. При расширении азота совершается работа 150 кДж. Определить конечное давление газа, если его начальное давление равно 650 кПа, а температура газа в процессе расширения не изменяется h= 0,5м. Вариант 18
- 1. Графический метод расчета паровых процессов Н-S (I-S)диаграмма.
- 2. Температура воздуха 10 С. Определить относительную влажность воздуха при нагреве его до температуры 40 С, если влагосодержание воздуха при 10 С, равно 2

# Вариант 19

- 1. Общий вид критериального уравнения теплоотдачи. Определяющие и определяемые критерии.
- 2. Вследствие адиабатного сжатия воздуха его температура повышается с 30 С до 310 С. при этом затрачена работа 0,2 кДж. Определить массу сжигаемого воздуха, считая теплоемкость постоянной. Вариант 20
- 1. Цикл Карно. Его значение
- 2. Вследствие адиабатного сжатия воздуха его температура повышается с 30 С до 310 С. при этом затрачена работа 0,2 кДж. Определить массу сжигаемого воздуха, считая теплоемкость постоянной. Вариант 21
- 1. Обработка результатов экспериментальных исследований с использованием теории подобия.
- 2. В 1 кг воздуха в изохорном процессе подводится 500кДж тепла. Давление газа при этом возрастает от 30 бар до 70 бар. Определить конечную температуру воздуха, считая теплоемкость постоянной. Вариант 22
- 1. Лучистый теплообмен. Закон Стефана-Больцмана.
- 2. Манометр, установленный на сосуде с кислородом, показывает давление 820 мм.рт.ст., а барометрическое давление равно 740 мм.рт.ст. Определить плотность кислорода при температуре 20 С.

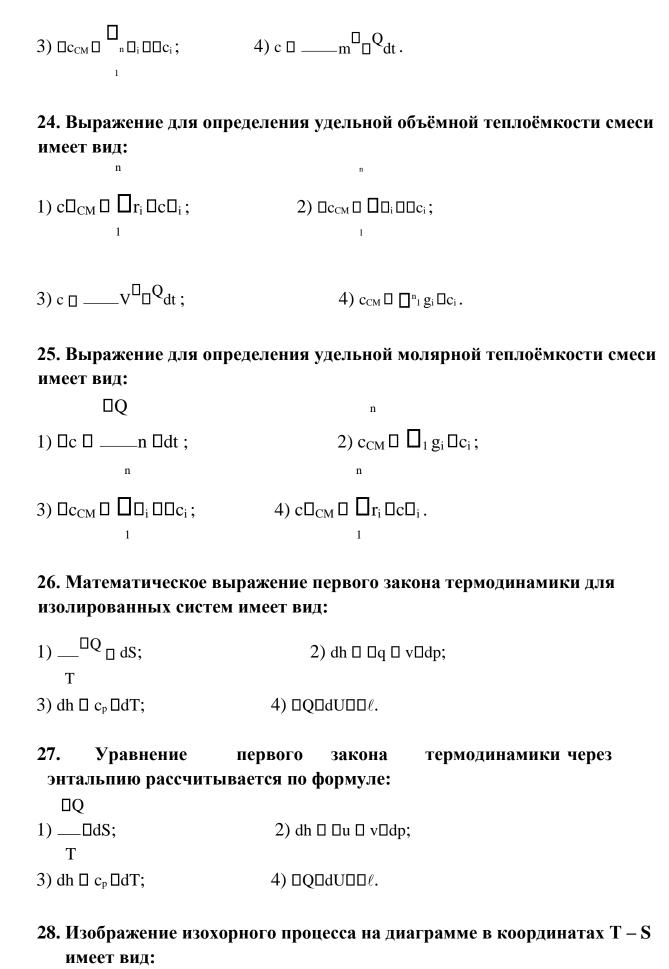
#### Вариант 23 1.Цикл

компрессорной холодильной машины.

- 2.При расширении азота совершается работа 150 кДж. Определить конечное давление газа, если его начальное давление равно 650 кПа, а температура газа в процессе расширения не изменяется h=0,5м. Вариант 24 1.Основы работы теплообменных аппаратов.
- 2.Определить подведенное тепло q в цикле газотурбинной установки со сгоранием при p =const, если степень повышения в компрессоре 10, а показатель адиабата K=1,4. Тепло, отданное холодному источнику, q = 25  $\kappa$ Дж/кг.

# Пример контрольного тестирования по дисциплине «Термодинамика и теплопередача»

| 1. Закон Боиля – Мариотта у  1) при р□const, □i/Ti □const;                             | тверждает что:                   |
|----------------------------------------------------------------------------------------|----------------------------------|
| 2) при T□const, □i □p <sub>i</sub> □const;                                             |                                  |
| 3) при V $\square$ const, $p_i/T_i$ $\square$ const;                                   |                                  |
| $4)p\square V\square m_\squareR_{\ \square}T.$                                         |                                  |
| 2. Закон Гей – Люсака утвер                                                            | ждает что:                       |
| 1) при р $\square$ const , $\overline{\square_i}$ $\square$ const; $T_i$               |                                  |
| 2) при $T\square const$ , $p_i \square \square_i \square$ $const$ ;                    |                                  |
| 3) при V□const , <sup>p<sub>i</sub></sup> □ const; T <sub>i</sub>                      |                                  |
| 4) p□V □ m□R□T.                                                                        |                                  |
| 3. Закон Шарля утверждает<br>1) при Т□const , p <sub>i</sub> □□ <sub>i</sub> □ const ; | что:                             |
| 2) при $V_{\square}$ const, $p_{\overline{i}}$ const; $T_{i}$                          |                                  |
| 3) при р□ const , □ const;<br>T <sub>i</sub>                                           |                                  |
| 4) p□V □ m□R□T.                                                                        |                                  |
| 4. Уравнение Клапейрона I н                                                            | зида имеет вид:                  |
|                                                                                        |                                  |
| 1) $p\Box V_{\Box}\Box\Box\Box R\Box T$ ;                                              | 2) p□V □ m□R□T;                  |
| <ol> <li>1) p□V□□□□R□T;</li> <li>3) p□V □ n□□□R □T;</li> </ol>                         | 2) p□V □ m□R□T;<br>4) p□□ □ R□T. |
| •                                                                                      | 4) p□□ □ R□T.                    |


| 3) $p\Box V_{\Box}\Box\Box\Box R\Box T$ ;                         | 4) $p\Box V \Box n\Box\Box\Box R\Box T$ .          |                     |
|-------------------------------------------------------------------|----------------------------------------------------|---------------------|
| 6. Уравнение Менделе                                              | ева – Клапейрона представле                        | но выражением:      |
| 1) p□□ □ R□T;                                                     | 2) p□V□ □□□R□T;                                    | •                   |
| 3) $p\Box V_{\Box}\Box\Box\Box R\Box T$ ;                         | 4) p $\Box$ V $\Box$ n $\Box$ $\Box$ CR $\Box$ T . |                     |
| 7. Уравнение состояни                                             | не идеального газа записывает                      | гся в виде: 1)      |
| $p\Box m\Box V\Box R\Box T;$                                      | 2) $m\Box R\Box p\Box V\Box T$ ;                   | 3)                  |
| $p\square V\square m\square R\square T;$                          | 4) T□R □m□p□V.                                     |                     |
| <b>8.</b> Величина □ <i>R</i> назыв                               | ается:                                             |                     |
| 1) удельная газовая пос                                           | тоянная;                                           |                     |
| 2) термический коэффи                                             | циент полезного действия;                          |                     |
| 3) универсальная газова                                           |                                                    |                     |
| 4) холодильный коэффи                                             | ициент.                                            |                     |
| _                                                                 | я система, не обменивающаяс                        | я теплотой с        |
| окружающей средой, і                                              | называется:                                        |                     |
| 1) открытой;                                                      |                                                    |                     |
| <ul><li>2) закрытой;</li><li>3) узакрытой;</li></ul>              |                                                    |                     |
| <ul><li>3) изолированной;</li><li>4) адиабатной.</li></ul>        |                                                    |                     |
| 4) адиаоатной.                                                    |                                                    |                     |
| -                                                                 | ая система, не обменивающая                        | ся с окружающей     |
| средой веществом, наз<br>1) закрытой;                             | зывается:                                          |                     |
| <ol> <li>закрытой,</li> <li>замкнутой;</li> <li>теплои</li> </ol> | зопированной: 4)                                   |                     |
| изолированной.                                                    | John Pobulition, 1)                                |                     |
| _                                                                 | ая система, не обменивающая                        | ся с окружающей     |
| _                                                                 | и веществом, называется:                           |                     |
| 1) адиабатной;                                                    |                                                    |                     |
| 2) закрытой;                                                      |                                                    |                     |
| 3) замкнутой;                                                     |                                                    |                     |
| 4) теплоизолированной                                             |                                                    |                     |
| -                                                                 | ий процесс, протекающий как                        | з в прямом, так и в |
| обратном направлени                                               | и называется:                                      |                     |

1) равновесным;

2) обратимым;

| <ul><li>4) необратимым.</li></ul>                                                                                                                  |                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| •                                                                                                                                                  | процесс, в котором рабочее тело, пройдя рядся в начальное состояние, называется:  4)                                             |
| <ul><li>и Т в равных объёмах со</li><li>1) атомов;</li><li>2) молекул;</li><li>3) степеней свободы; 4) м</li></ul>                                 | ерждает, что все идеальные газы при одинаковых р<br>одержат одинаковые число:<br>полей.<br>геплоемкость определяется по формуле: |
|                                                                                                                                                    | 2) С 🗆 <sup>□</sup> dt <sup>Q</sup>                                                                                              |
| 1) $\square c \square \square Q$ ;                                                                                                                 | 2) C ⊔ dt <                                                                                                                      |
| ; n□dt                                                                                                                                             |                                                                                                                                  |
| 3) c□ □ <u>Q</u> ;<br>V□dt                                                                                                                         | 4) c' □ □ <u>Q</u> . m□dt                                                                                                        |
| 16. Удельная объёмная                                                                                                                              | теплоёмкость определяется по формуле:                                                                                            |
| 1) c $\square$ $\square$ $\square$ $\square$ ; $\square$ | 2) c□ □□Q ;                                                                                                                      |
| 3) □c □□Q ;<br>□Q . n □dt 0                                                                                                                        | 4) C □<br>dt                                                                                                                     |
| 17. Удельная молярная                                                                                                                              | теплоёмкость определяется по формуле:                                                                                            |
| 1) $\square c \square \square \square \square Q$ ; $\square Q$                             | 2) c \( \preceq \) \( \text{t}_1 \)                                                                                              |
| 3) c $\square$ $\square$ $\square$ $\square$ ; . m $\square$ dt dt                                                                                 | 4) C                                                                                                                             |

| 18. Средняя удельна                                                                               | я массовая теплоемкость (                                                     | определяется по формуле:   |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------|
| 1) e□ □ □ □ □ Q;                                                                                  | 2) □e-□                                                                       | □Q ;                       |
| $V\square(t_2\squaret_1)$                                                                         | $n\square(t_2\square t_1)$                                                    |                            |
| 3) e- $\square$ $\square$ $\square$ ; . m $\square$ (t <sub>2</sub> $\square$ t <sub>1</sub> ) dt | 4) C □ <sup>□</sup> Q                                                         |                            |
| 19. Истинная удельн                                                                               | ая молярная теплоёмкост                                                       | ь определяется по формуле: |
| $V\square(t_2\square\ t_1)_0$                                                                     | 2) $e \square \square \square Q \xrightarrow{\vdots} m \square (t_2 \square)$ | <b>t</b> 1)0               |
| 3) □e-□ <sup>□Q</sup> ; 4                                                                         | $\cap C \square^{\square Q} . n \square (\overline{t_2 \square} \ t_1)_0 dt$  |                            |
| <b>20. Теплоёмкость, ог</b> 1) изохорной; истинной;                                               | пределенная при постоянно 2) изобарной;<br>4) средней.                        |                            |
| 21. Закон Майера ут                                                                               | верждает что:                                                                 |                            |
| 1) $\square c_{V} \square 4.115 \square z$ ;                                                      | 2) $\square c_P \square \square c_V \square \square R$ ; 3)                   |                            |
| $c_P \square c_V \square R$ ;                                                                     | 4) k $\Box$ $\Box$ $C_P$ $\Box$ $C_P$ . —                                     |                            |
|                                                                                                   | $\Box C_{V}  C_{V}$                                                           |                            |
| 22. Уравнение для ра имеет вид:                                                                   | асчета удельной молярной                                                      | изохорной теплоёмкости     |
| 1) $\square c_P \square k \square \square c_V$ ;                                                  | 2) $\square_{C_{P}}\square\square_{C_{V}}\square\squareR$ ;                   |                            |
| 3) $\square c \square \longrightarrow \square Q$ ;                                                | 4) □c <sub>v</sub> □ 4.115□z .                                                |                            |
| 23. Выражение для о имеет вид:                                                                    | пределения удельной масс                                                      | совой теплоёмкости смеси   |
| $1)c^{\textstyle\square}_{CM}\square\square r_i\square c^{\textstyle\square}_{i};$                | 2) $c_{CM} \square \square g_i \square c_i$ ;                                 |                            |



# 29. Связь между параметрами для изохорного процесса имеет вид:

1)  $p_{\underline{1}} \sqcap T_{\underline{1}}$ ;

 $2)^{\overline{\square}_1} \Pi^{\overline{T}_1}; \mathfrak{p}_2$ 

 $T_2$  $\square_2$  $T_2$ 

- 3)  $p_1 \square \square_1 \square p_2 \square_2$ ;
- 4) 0000 \_\_0012 0000
- $\square$  \_\_TT12.

# 29. Связь между параметрами для изохорного процесса имеет вид:

1)  $p_{1} T_{1}$ :

 $2)^{\overline{\square}_1} \underline{\square}^{\overline{\Upsilon}_1}; \mathfrak{p}_2$ 

 $T_2$  $\square_2$  $T_2$ 

k□1

- 3)  $p_1 \square \square_1 \square p_2 \square_2$ ;
- 4)  $\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box$

# 30. Уравнение для расчёта работы расширения газа в изохорном процессе имеет вид:

1) L □0;

- 2) L  $\square$  m $\square$ c<sub>P</sub>  $\square$ (T<sub>1</sub>  $\square$ T<sub>2</sub>);
- 3) L  $\square$  m $\square$ p<sub>1</sub>  $\square$ D<sub>1</sub>  $\square$ <sup>ln</sup>  $\square$ <sup>2</sup>; 4) L  $\square$  m $\square$ c<sub>v</sub>  $\square$ (T<sub>1</sub>  $\square$ T<sub>2</sub>).

 $\Box_1$ 

# 31. Изменение энтальпии газа в изохорном процессе представлено:

- 1) □h □0;
- 2)  $\Box$ h  $\Box$   $c_{\Pi} \Box$ ( $T_2 \Box T_1$ ); 3)  $\Box$ h  $\Box$   $c_P \Box$ ( $T_1 \Box T_2$ );
- 4)  $\Box$ h  $\Box$  c<sub>P</sub>  $\Box$ (T<sub>2</sub>  $\Box$ T<sub>1</sub>).

# 32. Уравнение для изменения энтропии в изохорном процессе имеет вид:

- 1)  $\square S \square m \square c_{V} \square ln \__{2}$ ;
- 2) □S□0;

 $\square_1$ 

3) 
$$\square S \square m \square c_v \square ln \underline{\hspace{1cm}}^{T_2};$$
 4)  $\square S \square m \square c_p \square ln \underline{\hspace{1cm}}^{p_2}.$ 

# 33. Уравнение для расчета теплоты в изохорном процессе имеет вид:

- 1)  $Q \square m \square c_v \square \square t$ ; 2)  $Q \square m \square (c_v \square R) \square \square t$ ; 3)
- $Q \; \square \; m \square R \; \square T \square ln \; \underline{\hspace{1cm}}^{\square_2}; \qquad \qquad 4) \; Q \; \square \; m \square R \; \square T_2 \; \square ln \; \underline{\hspace{1cm}}^{P_{\underline{\hspace{1cm}}}}.$ 
  - $\square_1$   $P_2$

# 34. Уравнение для расчета подведенной теплоты в изобарном процессе имеет вид:

- 1)  $Q \square m \square c_P \square (T_2 \square T_1);$  2)  $Q \square m \square c_V \square (T_1 \square T_2);$
- 3)  $Q \square m \square p_1 \square \square_1 \square^{\ln} \underline{\square}_2$ ; 4)  $Q \square m \square R \square T \square ln \underline{\square}_2$ .

# 35. Связь между параметрами изобарного процесса представлено выражением:

k□1

 $\square_2$   $T_2$   $\square$ 

3) 
$$p_1 \square \square_1 \square p_2 \square \square_2$$
; 4)  $p_1 \square T_1$ .  $p_2 \square T_2$ .

# Критерии и шкала оценивания по оценочному средству контрольная работа

| Шкала оценивания (интервал баллов) | Критерий оценивания                                                                                    |
|------------------------------------|--------------------------------------------------------------------------------------------------------|
| 5                                  | Контрольная работа выполнена на высоком уровне (правильные ответы даны на 90-100 % вопросов/задач)     |
| 4                                  | Контрольная работа выполнена на среднем уровне (правильные ответы даны на 75-89 % вопросов/задач)      |
| 3                                  | Контрольная работа выполнена на низком уровне (правильные ответы даны на 50-74 % вопросов/задач)       |
| 2                                  | Контрольная работа выполнена на неудовлетворительном уровне (правильные ответы даны менее чем на 50 %) |

# Индивидуальное задание: Требуется:

1.Определить параметры состояния рабочего тела в характерных точках цикла и заполнить таблицу

|   | Точка | р, кПа        | υ, м³/кг | T, K | t, °C |
|---|-------|---------------|----------|------|-------|
| a |       |               |          |      |       |
| c |       |               |          |      |       |
| Z |       |               | 1        |      |       |
| b |       | (62)Hers-1990 |          |      |       |

- 2.Для каждого процесса, входящего в цикл, вычислить изменение внутренней энергии, энтальпии, энтропии, а также работу процесса и количество теплоты, участвующей в процессе.
- 3. Результаты вычислений термодинамических параметров процессов занести в таблицу, определить работу цикла, теплоту цикла, количество подведенной и отведеной теплоты, а также термический КПД цикла.

| Процесс | ∆и,кДж/кг | ∆һ,кДж/кг       | As,κДж/кг    | K           | ℓ,кДж/кг     | q,кДж/кг |
|---------|-----------|-----------------|--------------|-------------|--------------|----------|
| a-c     | 3224      |                 | W 72 50 - 10 | (7) (1) (1) | 746 0 20 5 6 |          |
| c•z     |           |                 |              |             |              |          |
| z-b     |           |                 |              |             |              |          |
| b-a     |           |                 |              |             |              |          |
| Цикл    |           | 6 10.16 etc 51. |              | 000         | 778. 0384:   |          |

4.Построить заданный цикл в координатах T-s.

| Вари-<br>ант | Газ             | ta,<br>°C | Ра,<br>kПа | 3   | q <sub>1</sub> ´,<br>кДж/кг | a-c     | z-b     | n    |
|--------------|-----------------|-----------|------------|-----|-----------------------------|---------|---------|------|
| A-37         | Не              | 99        | 250        | 5,5 | 5700                        | T=const | T=const | -    |
| A-38         | SO <sub>2</sub> | 99        | 250        | 7,5 | 960                         | T=const | dq=0    | -    |
| A-39         | воздух          | 80        | 290        | 8,5 | 1700                        | T=const | n≕const | 1,26 |
| A-40         | O <sub>2</sub>  | 15        | 101        | 9,0 | 1200                        | dq=0    | T=const | -    |
| A-41         | воздух          | 70        | 170        | 6,5 | 1200                        | dq=0    | T≃const | -    |
| A-42         | H <sub>2</sub>  | 85        | 101        | 9,5 | 9900                        | dq=0    | T=const | =    |
| A-43         | CO              | 30        | 101        | 10  | 1300                        | dq=0    | dq=0    | -    |
| A-44         | воздух          | 58        | 150        | 7,5 | 1500                        | dg=0    | dq=0    | -    |
| A-45         | H <sub>2</sub>  | 66        | 160        | 6,5 | 1500                        | dq=0    | dq=0    | -    |
| A-46         | CO <sub>2</sub> | 20        | 101        | 9,0 | 1400                        | dq=0    | n≈const | 1,26 |
| A-47         | CH4             | 42        | 150        | 7,0 | 4100                        | dq=0    | n≂const | 1,26 |
| A-48         | O <sub>2</sub>  | 15        | 101        | 9,5 | 1300                        | dq=0    | n=const | 1,26 |
| A-49         | CO              | 20        | 101        | 8,0 | 1400                        | n=const | T≃const | 1,35 |
| A-50         | CO <sub>2</sub> | 25        | 101        | 7,5 | 1500                        | n=const | T=const | 1,35 |
| A-51         | H <sub>2</sub>  | 42        | 130        | 7,0 | 9900                        | n=const | T=const | 1,35 |
| A-52         | H <sub>2</sub>  | 66        | 160        | 6,5 | 3000                        | n=const | T=const | 1,35 |
| A-53         | O <sub>2</sub>  | 13        | 101        | 9,0 | 1200                        | n=const | dq=0    | 1,35 |
| A-54         | воздух          | 25        | 101        | 7,5 | 1400                        | n=const | dq=0    | 1,35 |
| A-55         | CH <sub>4</sub> | 50        | 140        | 7,0 | 3800                        | n=const | dq=0    | 1,35 |
| A-56         | CO              | 70        | 170        | 6,5 | 1300                        | n=const | dq=0    | 1,35 |
| A-57         | $H_2$           | 15        | 101        | 9,5 | 9500                        | n=const | n≔const | 1,30 |
| A-58         | He              | 20        | 101        | 8,0 | 4800                        | n=const | n=const | 1,30 |
| A-59         | O2              | 18        | 150        | 7,0 | 1200                        | n=const | n=const | 1,30 |
| A-60         | SO <sub>2</sub> | 80        | 170        | 6,5 | 1000                        | n=const | n=const | 1,30 |

| Bapu-<br>aut | Газ             | ta,<br>°C | ра,<br>кПа | 3   | λ    | а-с     | z-b     | n    |
|--------------|-----------------|-----------|------------|-----|------|---------|---------|------|
| A-13         | H2              | 40        | 101        | 8,5 | 3,2  | dq=0    | dq=0    | 940  |
| A-14         | N <sub>2</sub>  | 66        | 160        | 8,5 | 3,9  | dq=0    | dq=0    | -    |
| A-15         | CO <sub>2</sub> | 20        | 101        | 9,0 | 4,1  | dq=0    | n=const | 1,26 |
| 4-16         | CH4             | 42        | 130        | 7,0 | 4,3  | dq=0    | n=const | 1,26 |
| A-17         | O2              | 15        | 101        | 9,5 | 4.0  | dq=0    | n≔const | 1,26 |
| 4-18         | SO <sub>2</sub> | 66        | 160        | 5,0 | 4.2  | dq=0    | n=const | 1,26 |
| A-19         | CH4             | 15        | 101        | 8,5 | 4,1  | n=const | T=const | 1,35 |
| A-20         | CO              | 20        | 101        | 8,0 | 3,8  | n=const | T≃const | 1,35 |
| A-21         | CO <sub>2</sub> | 25        | 101        | 7,5 | 4,3  | n=const | T=const | 1,35 |
| A-22         | H <sub>2</sub>  | 42        | 130        | 7,0 | 3,7  | n=const | T=const | 1,35 |
| 4-23         | He              | 66        | 160        | 6,5 | 3,2  | n=const | T≃const | 1,35 |
| 4-24         | N <sub>2</sub>  | 86        | 190        | 6,0 | 3,4  | n=const | T≈const | 1,35 |
| 4-25         | O <sub>2</sub>  | 15        | 101        | 9,0 | 3.7  | n=const | dq=0    | 1,35 |
| A-26         | SO <sub>2</sub> | 20        | 101        | 8,0 | 4.2  | n=const | dq=0    | 1,35 |
| A-27         | воздух          | 25        | 101        | 7,5 | 3,9  | n=const | dg=0    | 1,35 |
| A-28         | CH4             | 50        | 140        | 7,0 | 4,0  | n=const | dq=0    | 1,35 |
| A-29         | CO              | 70        | 170        | 6,5 | 3,9  | n=const | dq=0    | 1,35 |
| A-30         | CO <sub>2</sub> | 67        | 200        | 6,0 | 4.0  | n=const | dq=0    | 1,35 |
| A-31         | H <sub>2</sub>  | 15        | 101        | 9.5 | 3,6  | n=const | n≈const | 1,30 |
| A-32         | H <sub>2</sub>  | 20        | 101        | 8,0 | 3,3  | n=const | n=const | 1,30 |
| 4-33         | N <sub>2</sub>  | 25        | 101        | 7,5 | 3,8  | n=const | n≂const | 1,30 |
| 4-34         | O <sub>2</sub>  | 58        | 150        | 7,0 | 3,5  | n=const | n≃const | 1,30 |
| A-35         | SO <sub>2</sub> | 80        | 180        | 6,5 | 3,9  | n=const | n=const | 1,30 |
| A-36         | воздух          | 67        | 210        | 6,0 | 13,6 | n=const | n=const | 1,30 |

Выполняется по методическим указаниям к выполнению индивидуального задания по дисциплине "Теоретические основы теплотехники" [Электронный ресурс]: для студентов всех специальностей / Сост.: Н.Г. Банников, В.А. Волков, Ю.А.Куликов, А.Н.Кинщак, В.А. Рыбальченко - Луганск: Изд-во ВНУ им. Даля, 2010.-25 с.

# Критерии и шкала оценивания по оценочному средству индивидуальное задание

| Шкала оценивания (интервал баллов) | Критерий оценивания                                                                                                                                                                                                                                                                                             |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5                                  | Задание представлено на высоком уровне (студент полностью представил рассматриваемую проблематику, привел аргументы в пользу своих суждений, владеет профильным понятийным (категориальным) аппаратом и т.п.). Изложение и оформление текста полностью соответствует требованиям оформления технического текста |
| 4                                  | Задание представлено на среднем уровне (студент в целом изложил рассматриваемую проблематику, привел мало аргументов в пользу своих суждений, допустив некоторые неточности и т.п.). Изложение и оформление текста в основном соответствует требованиям оформления технического текста                          |
| 3                                  | Задание ие представлено на низком уровне (студент допустил существенные неточности, изложил материал с ошибками, не владеет в достаточной степени профильным категориальным аппаратом и т.п.). Изложение и оформление текста частично соответствует требованиям оформления технического текста                  |
| 2                                  | Задание представлено на неудовлетворительном уровне или не представлено (студент не готов, не выполнил задание и т.п.). Изложение и оформление текста полностью не соответствует требованиям оформлению технического текста                                                                                     |

# Оценочные средства для промежуточной аттестации (зачет):

#### БИЛЕТ № 1

# Теоретическая часть.

- 1. Предмет термодинамики. Термодинамический метод. Термодинамические параметры состояния.
- 2. Дифференциальные уравнения конвективного теплообмена.

# Практическая часть.

В сосуде емкостью 1000 литров содержится при давлении p=1,2 атм , температуре  $t=20\square C$  газовая смесь, состоящая по объему из 20% азота и 80% окиси углерода. Определить вес составляющей газовой смеси.

#### БИЛЕТ № 2

## Теоретическая часть:

- 1. Рабочее тело и его параметры. Уравнение состояния.
- 2 Компрессионная холодильная установка. Еt цикл и холодильный коэффициент..

#### Практическая часть:

Определить удельный расход пара в паросиловой установке, работающей по циклу Ренкина, если параметры пара перед турбиной  $p = 30 \delta ap$ , t = 460 C, а давление в конденсаторе  $p = 0.04 \delta ap$ .

#### БИЛЕТ № 3

#### Теоретическая часть.

- 1. Работа газа. Вычисление работы. Графическое представление.
- 2. Анализ условия подобия на примере дифференциального уравнения теплоотдачи.

# Практическая часть.

Манометр, установленный на барабане парового котла, показывает 8 кг/ см. Чему равно абсолютное давление в котле, если барометрическое давление В =700 мм.рт.ст.

#### БИЛЕТ № 4

#### Теоретическая часть:

- 1. Основные законы идеальных газов.
- 2. Моделирование на основе теории подобия.

#### Практическая часть:

На изобарное сжатие 1 кг кислорода (O) затрачена работа  $100 \ \kappa \mathcal{Д}$ ж. Определить давление кислорода, если в начале сжатия его объем равен 0,4 м/кг, а температура в конце сжатия равна  $30\square$  C.

#### БИЛЕТ № 5

# Теоретическая часть.

- 1. Смеси идеальных газов. Уравнение состояния для газовой смеси.
- 2. Сравнение термодинамических циклов поршневых ДВС при  $\epsilon =$  idem **Практическая часть.**

В 1 кг воздуха в изохорном процессе подводится  $500\kappa Дж$  тепла. Давление газа при этом возрастает от 30~бар до 70~бар. Определить конечную температуру воздуха, считая теплоемкость постоянной.

#### БИЛЕТ № 6

# Теоретическая часть:

- 1. Первый закон термодинамики.
- 2. Цикл поршневых ДВС с подводом тепла p = const.

# Практическая часть:

Определить абсолютное давление в сосуде, если показание присоединенного к нему ртутного манометра равно 1*бар*, а атмосферное давление по барометру составляет 750 мм.рт.ст. Температура в месте установки приборов равно 0 С. **БИЛЕТ № 7 Теоретическая часть.** 

# 1. Смеси идеальных газов. Уравнение состояния для газовой смеси.

2. Сравнение термодинамических циклов поршневых ДВС при  $\epsilon =$  idem **Практическая часть.** 

В 1 кг воздуха в изохорном процессе подводится  $500\kappa Дж$  тепла. Давление газа при этом возрастает от 30~бар до 70~бар. Определить конечную температуру воздуха, считая теплоемкость постоянной.

#### БИЛЕТ № 8

### Теоретическая часть:

- 1. Анализ изохорного и изобарного процессов.
- 2. Сопло и диффузор. Изменение параметров газа по длине сопла. Профиль сопла.

### Практическая часть:

Вследствие адиабатного сжатия воздуха его температура повышается с 30 С до 310 С; при этом затрачена работа  $0.2 \, \kappa \cancel{Д} ж$ . Определить массу сжигаемого воздуха, считая теплоемкость постоянной.

#### БИЛЕТ № 9

#### Теоретическая часть.

- 1. Энтропия.
- 2. Цикл поршневых ДВС со смешанным подводом теплоты.

### Практическая часть.

Массовая теплоемкость воздуха при постоянном давлении C = 1000 Дж/(кг град). Найти модульную теплоемкость воздуха в процессе при постоянном объеме (M=29 кг/кмоль).

#### БИЛЕТ № 10

### Теоретическая часть:

- 1. Круговые процессы. Прямой цикл и его термический к.п.д.
- 2. Теплопередача. Элементарные виды теплообмена. Общий вид уравнения теплопередачи.

# Практическая часть:

Определить полезную работу и цикла Карно, если при адиабатном сжатии абсолютная температура рабочего тела повысилась в 2,5 раза, а в цикле подводится  $350 \ \kappa \text{Дж}$  тепла.

#### БИЛЕТ № 11

# Теоретическая часть.

- 1. Обратный круговой процесс. Холодильный коэффициент.
- 2. Температурное поле и температурный градиент. Закон Фурье.

# Практическая часть.

Определить средний температурный напор в противоточном воздушногелиевом теплообменнике энергетического атомного реактора. Гелий охлаждается от 730 до 440 С и нагревается воздух от 390 до 670 С.

#### БИЛЕТ № 12

# Теоретическая часть:

- 1. Цикл Карно. Его значение. Термический к.п.д. цикла Карно.
- 2. Теплопроводность плоской стенки. Коэффициент теплопроводности.

#### Практическая часть:

Каково значение коэффициента теплопроводности материала стенки, если при d=30мм и t=30 С. Количество теплоты, проходящее через стенку 100Bт/м $^2$ 

#### БИЛЕТ № 13

#### Теоретическая часть.

- 1. Общие свойства обратимых и необратимых циклов. Энтропия. Принцип возрастания энтропии.
- 2. Дифференциальное уравнение теплопроводности. Условия однозначности. Практическая часть.

Определить работу цикла Карно, если при адиабатном сжатии абсолютная температура рабочего тела повысилась в 2 раза, в цикле проводится 180 *кДж* тепла.

#### БИЛЕТ № 14

### Теоретическая часть:

- 1. Содержание II закона термодинамики и его формулировки.
- 2. Теплопроводность плоской стенки.

#### Практическая часть:

Определить подведенное тепло q в цикле газотурбинной установки со сгоранием при p =const, если степень повышения в компрессоре 10, а показатель адиабата K=1,4. Тепло, отданное холодному источнику, q = 25 кДж/кг.

#### БИЛЕТ № 15

# Теоретическая часть.

- 1. Особенности и схемы энергобаланса характерных групп политропных процессов.
- 2. Теплопередача при омывании плиты.

# Практическая часть.

Определить потерю теплоты путем конвекции вертикальным паропроводом диаметром 15 мм и высотой 2 м, если температура наружной стенки 160 C, а температура окружающего воздуха 30 C.

#### БИЛЕТ № 16

# Теоретическая часть:

- 1. Диаграммы состояния воды и водяного пара p-v, T-S, h-S.
- 2. Основы теории подобия. Критерий подобия. Критериальные зависимости.

# Практическая часть:

Манометр, установленный на сосуде с кислородом, показывает давление 820 мм.рт.ст., а барометрическое давление равно 740 мм.рт.ст. Определить плотность кислорода при температуре 20 С.

#### БИЛЕТ № 17

#### Теоретическая часть.

- 1. Графический метод расчета паровых процессов.
- 2. Общий вид критериального уравнения теплоотдачи. Определяющие и определяемые критерии. **Теоретическая часть.**

Определить потерю теплоты путем конвекции вертикальным паропроводом диаметром 15 мм и высотой 2 м, если температура наружной стенки 160 C, а температура окружающего воздуха 30 C.

#### БИЛЕТ № 18

#### Теоретическая часть:

- 1. Географический метод расчета паровых процессов.
- 2. Общий вид критериального уравнения теплоотдачи. Определяющие и определяемые критерии.

#### Практическая часть:

Определить потерю теплоты путем конвекции вертикальным паропроводом диаметром d=15 мм и высотой h=2 м, если температура наружной стенки t-160 C, а температура окружающего воздуха t=30 C

#### БИЛЕТ № 19

#### Теоретическая часть.

- 1. Работа идеального поршневого компрессора. Влияние вредного объема.
- 2. Лучистый теплообмен. Закон Стефана-Больцмана. Учет лучистого теплообмена в расчетах.

# Практическая часть.

При расширении азота совершается работа 150 кДж. Определить конечное давление газа, если его начальное давление равно 650 кПа, а температура газа в процессе расширения не изменяется 0,5м.

#### БИЛЕТ № 20

# Теоретическая часть:

- 1. Цикл компрессорной холодильной машины.
- 2. Т- Ѕ диаграмма водяного пара.

# Практическая часть:

Температура воздуха 10 С. Определить относительную влажность воздуха при нагреве его до температуры 40 С, если влагосодержание воздуха при 10 С, равно 2 г/кг.

Критерии и шкала оценивания по оценочному средству промежуточный контроль (зачет)

| Шкала      | Критерий оценивания |
|------------|---------------------|
| оценивания |                     |
| (интервал  |                     |
| баллов)    |                     |

|            | Студент глубоко и в полном объёме владеет программным материалом. Грамотно,  |  |  |  |  |
|------------|------------------------------------------------------------------------------|--|--|--|--|
|            | исчерпывающе и логично его излагает в устной или письменной форме. При этом  |  |  |  |  |
|            | знает рекомендованную литературу, проявляет творческий подход в ответах на   |  |  |  |  |
|            | вопросы и правильно обосновывает принятые решения, хорошо владеет умениями   |  |  |  |  |
|            | и навыками при выполнении практических задач.                                |  |  |  |  |
|            | Студент знает программный материал, грамотно и по сути излагает его в устной |  |  |  |  |
|            | или письменной форме, допуская незначительные неточности в утверждениях,     |  |  |  |  |
|            | трактовках, определениях и категориях или незначительное количество ошибок.  |  |  |  |  |
|            | При этом владеет необходимыми умениями и навыками при выполнении             |  |  |  |  |
|            | практических задач.                                                          |  |  |  |  |
|            | Студент знает только основной программный материал, допускает неточности,    |  |  |  |  |
|            | недостаточно чёткие формулировки, непоследовательность в ответах, излагаемых |  |  |  |  |
|            | в устной или письменной форме. При этом недостаточно владеет умениями и      |  |  |  |  |
| зачтено    | навыками при выполнении практических задач. Допускает до 30% ошибок в        |  |  |  |  |
|            | излагаемых ответах.                                                          |  |  |  |  |
| не зачтено | Студент не знает значительной части программного материала. При этом         |  |  |  |  |
|            | допускает принципиальные ошибки в доказательствах, в трактовке понятий и     |  |  |  |  |
|            | категорий, проявляет низкую культуру знаний, не владеет основными умениями и |  |  |  |  |
|            | навыками при выполнении практических задач. Студент отказывается от ответов  |  |  |  |  |
|            | на дополнительные вопросы                                                    |  |  |  |  |

# Лист изменений и дополнений

| №   | Виды дополнений и | Дата и номер протокола    | Подпись (с расшифровкой) |
|-----|-------------------|---------------------------|--------------------------|
| /   | изменений         | заседания кафедры         | заведующего кафедрой     |
| п/п |                   | (кафедр), на котором были | (заведующих кафедрами)   |
|     |                   | рассмотрены и одобрены    |                          |
|     |                   | изменения и дополнения    |                          |
|     |                   |                           |                          |
|     |                   |                           |                          |
|     |                   |                           |                          |
|     |                   |                           |                          |
|     |                   |                           |                          |
|     |                   |                           |                          |
|     |                   |                           |                          |
|     |                   |                           |                          |
|     |                   |                           |                          |
|     |                   |                           |                          |
|     |                   |                           |                          |
|     |                   |                           |                          |

#### Экспертное заключение

Представленный фонд оценочных средств (далее - ФОС) по дисциплине «История России» соответствует требованиям ГОС ВО.

Предлагаемые формы и средства текущего и промежуточного контроля адекватны целям и задачам реализации основной образовательной программы по направлению подготовки 23.03.03 Эксплуатация транспортно-технологических машин и комплексов.

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы обучающегося представлены в полном объеме.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанный и представленный для экспертизы фонд оценочных средств рекомендуется к использованию в процессе подготовки специалистов, по указанному направлению.

Председатель учебнометодической комиссии института транспорта и логистики

Е.И. Иванова