МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Институт транспорта и логистики Кафедра транспортных технологий

УТВЕРЖДАЮ
Директор института

инститранепорта и догистики

ТРАНСПОРТА
и логистики

у дебраца

у де

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по учебной дисциплине

Компьютерные и информационные технологии в отрасли

(наименование учебной дисциплины)

23.04.01 Технология транспортных процессов

(код и наименование направления подготовки)

«Интеллектуальные транспортные системы», «Организация перевозок и управление на транспорте (автомобильный транспорт)», «Организация перевозок и безопасность движения»

(наименование магистерской программы)

Разработчик:	
старший преподаватель (должность)	Петров А.Г.
ФОС рассмотрен и одобрен на засе от « <u>45</u> » <i>февраца</i> 20 <u>45</u> г.,	дании кафедры транспортных технологий протокол № <u>///</u>
Заведующий кафедрой	<u>Тарарычкин И.А.</u>

Комплект оценочных материалов по дисциплине «Компьютерные и информационные технологии в отрасли»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа

Выберите один правильный ответ

- 1. Какой стандарт регулирует ИТС в РФ?
- A) ΓΟCT P 58850-2020
- Б) ISO 9001
- B) PCI DSS

Правильный ответ: А

Компетенции (индикаторы): ОПК-5

- 2. Для чего используется ПО TransCAD?
- А) Моделирование транспортных процессов
- Б) Шифрование данных
- В) Управление светофорами

Правильный ответ: А

Компетенции (индикаторы): УК-1

- 3. Какие данные собирают ОВД-датчики в транспорте?
- А) Скорость и расход топлива
- Б) Температуру груза
- В) Расписание рейсов

Правильный ответ: А

Компетенции (индикаторы): УК-1

- 4. Выберите верные утверждения об ИТС:
- А) ИТС управляют только светофорами
- Б) ИТС включают системы мониторинга транспорта
- В) ИТС не требуют интеграции с GPS

Правильные ответы: Б

Компетенции (индикаторы): ОПК-5

- 5. Какая технология используется для автоматической идентификации подвижного состава?
 - A) Wi-Fi
 - Б) RFID
 - B) Bluetooth

Правильный ответ: Б

Компетенции (индикаторы): ОПК-5

- 6. Основная задача систем диспетчерской централизации на железнодорожном транспорте:
- А) для управления движением поездов на большом участке железной дороги из единого центра
 - Б) для развлечения диспетчера
 - В) для учета рабочего времени диспетчера
 - Г) для всего вышеперечисленного

Правильный ответ: А

Компетенции (индикаторы): УК-1

Задания закрытого типа на установление соответствия

Установите правильное соответствие.

Каждому элементу левого столбца соответствует только один элемент правого столбца.

1. Установите соответствие между компонентом ИТС и его функцией:

	Компонент ИТС		Функция
1)	Лотинки	A)	Передача данных о
	Датчики		транспортных средствах
2)	Системы связи	Б)	Обработка и анализ данных
3)	Центр управления	B)	Сбор информации о дорожной обстановке
			оостановке

Правильный ответ:

1	2	3
В	A	Б

Компетенции (индикаторы): УК-1

2. Установите соответствие между технологией и ее применением для повышения безопасности на транспорте:

	Технология		Применение
1)	Система распознавания лиц	A)	Предотвращение столкновений
2)	Система предупреждения о	Б)	Поиск угнанных автомобилей
	выезде с полосы движения		поиск угнанных автомоониси
3)	Автоматический круиз-контроль	B)	Обнаружение лиц,
	льтоматический круиз-контроль		находящихся в розыске

Правильный ответ:

1	2	3
В	A	Б

Компетенции (индикаторы): ОПК-5

3. Установите соответствие между этапом моделирования и его целью:

	Этап		Цель
1)	Калибровка	A)	Оценка адекватности модели
	Калиоровка		реальным данным
2)	Domydyygayyg	Б)	Проверка соответствия модели
	Верификация		поставленной задаче
3)		B)	Настройка параметров модели
	Валидация		на основе экспериментальных
			данных

Правильный ответ:

1	2	3
В	Б	A

Компетенции (индикаторы): ОПК-5

4. Установите соответствие между оборудованием и сферой его применения на транспорте:

	Оборудование		Сфера применения
1)	Датчики температуры	A)	Контроль за состоянием трассы
2)	GPS трекеры	Б)	Контроль за соблюдением режима движения
3)	Видеокамеры	B)	Контроль за состоянием перевозимых грузов

Правильный ответ:

1	2	3
В	Б	A

Компетенции (индикаторы): УК-1

5. Установите соответствие между используемым программным обеспечением и выполняемыми задачами на железнодорожном транспорте

	ПО		Задача
1)	Системы управления	A)	Планирование и учет
	движением поездов		использования вагонов
2)	Системы управления вагонным	Б)	Оптимизация графика
	парком		движения поездов
3)	Системы управления	B)	Ведение базы данных
	пассажирскими перевозками		пассажиров и билетов

Правильный ответ:

1	2	3
Б	A	В

Компетенции (индикаторы): ОПК-5

6. Установите соответствие между типом автоматизации и ж/д объектом

	Тип автоматизации		Объект ж/д
1)	Автоматизированная сортировка	A)	Перегон
2)	Автоматическая блокировка	Б)	Железнодорожный состав
3)	Автоведение	B)	Сортировочная горка

Правильный ответ:

1	2	3
В	A	Б

Компетенции (индикаторы): УК-1

7. Установите соответствие между оборудованием на транспорте и и его функциями:

	Оборудование		Функция
1)	Тауограф	A)	Определение местоположения
	Тахограф		транспортного средства
2)	Терминал сбора данных	Б)	Оплата проезда
3)		B)	Регистрация скорости
	GPS трекер		движения и режима труда и
			отдыха водителя

Правильный ответ:

TIPUDIDIDITI OTDET.		
1	2	3
В	Б	A

Компетенции (индикаторы): УК-1

8. Установите соответствие между видом имитационного моделирования и задачами транспорта

	Вид имитационного моделирования		задача
1)	Агентное моделирование	A)	Моделирование поведения пешеходов
2)	Динамическое моделирование	Б)	Оценка влияния инвестиций
3)	Дискретно-событийное	B)	Прогнозирование спроса на
	моделирование		такси

Правильный ответ: 1-А, 2-Б, 3-В

117 (1211) 111 (1211) 111 (12) 2 (12)		
1	2	3
A	Б	В

Компетенции (индикаторы): УК-1

9. Установите соответствие между названием программного обеспечения и его применением в транспортной сфере:

	ПО		Применение
1)	1С:Логистика	A)	Моделирование транспортных

			потоков
2)	TransCAD	Б)	Управление автотранспортом
3)	АСУ-ЖТ	B)	Автоматизация логистических
	ACJ-MI		процессов

Правильный ответ:

1	2	3
В	A	Б

Компетенции (индикаторы): ОПК-5

Задания закрытого типа на установление правильной последовательности

Установите правильную последовательность.

Запишите правильную последовательность букв слева направо.

- 1. Расположите типы компьютерных сетей в порядке возрастания зоны покрытия:
 - A) LAN (Local Area Network)
 - Б) MAN (Metropolitan Area Network)
 - B) WAN (Wide Area Network)
 - Γ) PAN (Personal Area Network)

Правильный ответ: Г, А, Б, В

Компетенции (индикаторы): ОПК-5

- 2. Расположите этапы обработки данных в системе управления транспортными процессами в правильной последовательности:
 - А) Анализ и интерпретация
 - Б) Сбор данных
 - В) Хранение данных
 - Г) Обработка данных

Правильный ответ: Б, Г, В, А

Компетенции (индикаторы): УК-1

- 3. Расположите поколения языков программирования в порядке их исторического появления (от старых к новым):
 - А) Языки высокого уровня (например, C++, Python)
 - Б) Машинные коды
 - В) Ассемблеры
 - Г) Языки четвертого поколения (например, SQL)

Правильный ответ: Б, В, А, Γ

Компетенции (индикаторы): ОПК-5

- 4. Расположите компоненты информационной системы транспортного предприятия в порядке возрастания их уровня абстракции (от аппаратного обеспечения к пользователю):
 - А) Прикладное программное обеспечение (например, TMS)
 - Б) Операционная система
 - В) Аппаратное обеспечение (серверы, компьютеры)
 - Г) База данных

Правильный ответ: В, Б, Г, А Компетенции (индикаторы): УК-1

Задания открытого типа

Задания открытого типа на дополнение

1. Напишите пропущенное слово (словосочетание) это процесс преобразования данных в формат, который невозможно прочитать без знания ключа шифрования. Правильный ответ: Шифрование. Компетенции (индикаторы): ОПК-5
2. Напишите пропущенное слово (словосочетание). это система, предназначенная для автоматизации управления транспортными процессами, включающая планирование, оптимизацию, контроль и анализ. Правильный ответ: TMS (Transportation Management System). Компетенции (индикаторы): УК-1
3. Напишите пропущенное слово (словосочетание). ———— - это совокупность взаимосвязанных компонентов, осуществляющих сбор, обработку, хранение и распространение информации в организации. Правильный ответ: Информационная система. Компетенции (индикаторы): ОПК-5
4. Напишите пропущенное слово (словосочетание). это глобальная компьютерная сеть, объединяющая миллионы локальных сетей по всему миру. Правильный ответ: Интернет. Компетенции (индикаторы): УК-1

Задания открытого типа с кратким свободным ответом

1. Укажите результат выполнения логической операции И (AND) между двумя значениями: A = Истина (True), B = Ложь (False)... (Ответ запишите в виде True или False).

Правильный ответ: False.

Компетенции (индикаторы): ОПК-5

2. Преобразовать двоичное число 101101 в десятичное... (Запишите число в десятичной системе счисления)

Правильный ответ: 45.

Компетенции (индикаторы): УК-1

3. Если размер изображения 1920х1080 пикселей, и каждый пиксель кодируется 24 битами, то общий размер файла изображения (без учета сжатия) равен ... (Ответ запишите в мегабайтах, округлив до двух знаков после запятой)

Правильный ответ: 5.93

Компетенции (индикаторы): ОПК-5

Задания открытого типа с развернутым ответом

1. Опишите принцип работы GPS/ГЛОНАСС в системах мониторинга транспорта

Время выполнения – 20 мин.

Ожидаемый результат:

Описание принципа работы: GPS (США) и ГЛОНАСС (Россия) являются глобальными навигационными спутниковыми системами, работающими на основе трилатерации (определение местоположения по расстояниям до известных точек).

Работа спутников: Спутники постоянно передают сигналы, содержащие информацию о точном времени отправки сигнала и своих координатах (эфемериды).

Работа приемника: Приемник на транспорте принимает сигналы как минимум от четырёх спутников. Измеряя время прохождения сигнала от каждого спутника, приемник вычисляет расстояние до каждого из них (псевдодальность).

Расчет местоположения: Зная расстояния (псевдодальности) до спутников и их координаты, приемник определяет свои координаты (широта, долгота, высота) путем решения системы уравнений.

Передача данных: Полученные данные о местоположении и времени передаются в систему мониторинга транспорта.

Критерии оценивания:

- Описание принципа трилатерации.
- Упоминание спутников и передаваемых ими данных.

- Объяснение работы приемника и расчета расстояний.
- Описание получения координат и передачи данных в систему мониторинга.

Компетенции (индикаторы): ОПК-5

2. Назовите три ключевых компонента интеллектуальной транспортной системы (ИТС).

Время выполнения – 30 мин.

Ожидаемый результат:

Перечисление компонентов: Три ключевых компонента ИТС включают в себя:

Датчики и сенсоры: для сбора информации о состоянии транспортной сети, транспортных средствах, окружающей среде (камеры, радары, датчики движения, датчики погодных условий, датчики транспортных средств - OBD).

Коммуникационные сети: для передачи данных между компонентами системы, включая беспроводные сети (Wi-Fi, 4G/5G) и проводные сети (оптоволокно).

Центр управления: для обработки данных, поступающих от датчиков, анализа информации, принятия решений и управления транспортными потоками (диспетчерские центры, системы управления трафиком).

Взаимодействие компонентов: Краткое описание взаимосвязи компонентов (например, датчики передают данные в центр управления, который принимает решения и передает команды на исполнительные устройства).

Критерии оценивания:

- Перечисление трех ключевых компонентов ИТС.
- Указание на функции каждого компонента.
- Краткое описание взаимодействия компонентов.

Компетенции (индикаторы): УК-1

3. Объясните, как Big Data используется для оптимизации маршрутов грузовых перевозок.

Время выполнения – 30 мин.

Ожидаемый результат:

Определение Big Data: Описание Big Data как больших объемов данных, характеризующихся высокой скоростью поступления, разнообразием форматов и сложностью обработки (Volume, Velocity, Variety, Veracity, Value).

Источники данных: Указание на различные источники данных, используемые для оптимизации маршрутов:

Данные GPS: местоположение транспортных средств, скорость, пробег.

Информация о пробках: данные с навигационных сервисов, данные с датчиков на дорогах.

Погодные условия: информация о погоде, влияющая на дорожные условия.

Данные о заказах на перевозки: пункты отправления и назначения, объемы, сроки доставки.

Данные о транспортных средствах: техническое состояние, расход топлива.

Анализ и оптимизация: Объяснение, что анализ Big Data позволяет:

Выбирать оптимальные маршруты с учетом различных факторов (расстояние, время в пути, пробки, погодные условия, требования к доставке).

Прогнозировать задержки и оптимизировать загрузку транспортных средств.

Оптимизировать расход топлива и снижать эксплуатационные затраты.

Примеры применения: Краткое описание практических примеров (например, использование данных о пробках для перенаправления транспорта, использование прогноза погоды для выбора маршрута).

Критерии оценивания:

- Определение Big Data.
- Перечисление источников данных.
- -Объяснение процесса анализа и оптимизации маршрутов.
- Приведение примеров практического применения.

Компетенции (индикаторы): УК-1.

4. Какие функции выполняет телематическое оборудование в транспортных средствах?

Время выполнения – 20 мин.

Ожидаемый результат:

Мониторинг местоположения: Определение текущего местоположения транспортного средства с использованием GPS/ГЛОНАСС и передача данных в систему мониторинга.

Контроль параметров движения: Сбор и передача данных о скорости, ускорении, направлении движения, пройденном расстоянии.

Диагностика состояния ТС: Сбор данных о работе двигателя, уровне топлива, температуре, давлении и других параметрах, позволяющих оценивать техническое состояние транспортного средства.

Связь с диспетчером: Обеспечение двусторонней связи между водителем и диспетчером для обмена информацией и координации действий.

Обеспечение безопасности: Передача сигналов тревоги в случае возникновения аварийных ситуаций, контроль соблюдения правил дорожного движения.

Контроль расхода топлива: Точный учет потребления топлива и выявление отклонений от нормы.

Критерии оценивания:

- Перечисление основных функций телематического оборудования.
- Краткое описание каждой функции.

- Понимание роли телематики в управлении транспортом. Компетенции (индикаторы): УК-1.
- 5.Опишите этапы внедрения ІоТ-решений на складе логистической компании.

Время выполнения – 20 мин.

Ожидаемый результат:

Анализ бизнес-процессов: Определение целей внедрения IoT-решений, выявление проблемных зон и неэффективных процессов на складе.

Выбор технологий: Выбор подходящих ІоТ-устройств (датчики, метки, сканеры, роботы) и платформ для сбора, обработки и анализа данных.

Разработка архитектуры системы: Проектирование системы IoT, включая сетевую инфраструктуру, хранилище данных и программное обеспечение.

Установка оборудования: Монтаж и настройка ІоТ-устройств на складе.

Разработка ПО: Разработка или адаптация программного обеспечения для управления IoT-устройствами, сбора и анализа данных, интеграции с существующими системами.

Тестирование: Проверка работоспособности системы IoT и ее соответствия требованиям.

Обучение персонала: Обучение сотрудников склада работе с новыми технологиями.

Ввод в эксплуатацию: Запуск системы ІоТ в реальных условиях работы склада.

Анализ данных и оптимизация: Мониторинг работы системы IoT, анализ собранных данных и внесение корректировок для оптимизации складских процессов.

Критерии оценивания:

- Перечисление основных этапов внедрения ІоТ-решений.
- Краткое описание каждого этапа.
- Понимание целей и задач каждого этапа.

Компетенции (индикаторы): УК-1.

6.Чем отличаются локальные и глобальные сети в контексте транспортной инфраструктуры?

Время выполнения – 20 мин.

Ожидаемый результат:

Локальная сеть (LAN):

Определение: Компьютерная сеть, объединяющая устройства на ограниченной территории (например, в офисе, здании, на складе).

Преимущества: Высокая скорость передачи данных, низкая задержка, простота управления.

Примеры в транспортной инфраструктуре: Локальная сеть на складе для обмена данными между устройствами автоматизации, локальная сеть в офисе транспортной компании.

Глобальная сеть (WAN):

Определение: Компьютерная сеть, охватывающая большие территории (страны, континенты).

Особенности: Более низкая скорость передачи данных, более высокая задержка, сложное управление.

Примеры в транспортной инфраструктуре: Сеть для связи между филиалами транспортной компании, сеть для обмена данными между транспортными средствами и диспетчерским центром на больших расстояниях.

Сравнение:

Дальность: LAN - небольшая территория, WAN - большие территории

Скорость: LAN - Высокая, WAN - Более низкая

Критерии оценивания:

- Определение локальной и глобальной сети.
- Описание преимуществ и особенностей каждой сети.
- -Приведение примеров использования в транспортной инфраструктуре. Компетенции (индикаторы): УК-1.
- 7. Как алгоритмы машинного обучения применяются для прогнозирования ДТП?

Время выполнения – 20 мин.

Ожидаемый результат:

Сбор данных: Описание источников данных, используемых для обучения моделей машинного обучения:

Данные о ДТП: место, время, причины, последствия.

Дорожные условия: тип дороги, покрытие, освещенность, наличие знаков.

Транспортные средства: тип ТС, техническое состояние.

Водители: возраст, стаж, нарушения ПДД.

Погодные условия: температура, осадки, видимость.

Анализ данных: Объяснение, что анализ данных позволяет выявить факторы риска и закономерности, связанные с ДТП.

Применение алгоритмов машинного обучения: Описание применения алгоритмов для:

Выявления факторов риска ДТП.

Прогнозирования вероятности ДТП в конкретном месте и в конкретное время.

Выявление опасных участков дорог.

Алгоритмы: Алгоритмы машинного обучения применяются для выявления факторов риска и прогнозирования вероятности ДТП

Критерии оценивания:

- Перечисление источников данных для машинного обучения.

- Описание анализа данных и выявление факторов риска.
- Описание прогнозирования вероятности ДТП.

Компетенции (индикаторы): УК-1.

8. Как используются системы поддержки принятия решений (DSS) для управления транспортными потоками?

Время выполнения – 20 мин.

Ожидаемый результат:

Прогнозирование транспортных потоков: DSS позволяют анализировать исторические и текущие данные о транспортных потоках (данные с датчиков, камер, навигационных систем) для прогнозирования изменений интенсивности движения в различные периоды времени и на различных участках дорожной сети.

Оптимизация маршрутов: DSS предоставляют пользователям (диспетчерам, водителям) рекомендации по выбору оптимальных маршрутов с учетом текущей дорожной обстановки, пробок, погодных условий и других факторов.

Управление светофорным регулированием: DSS могут использоваться для автоматической адаптации режимов работы светофоров к изменяющимся транспортным потокам, минимизируя задержки и увеличивая пропускную способность дорог.

Принятие решений при нештатных ситуациях: DSS помогают диспетчерам принимать оперативные решения при возникновении нештатных ситуаций (аварии, ремонтные работы, стихийные бедствия), предлагая варианты объездных маршрутов, изменения режимов работы светофоров и другие меры.

Анализ последствий: DSS позволяют оценивать последствия различных управленческих решений на транспортные потоки, что помогает выбирать наиболее эффективные стратегии управления.

Критерии оценивания:

- Описаны возможности прогнозирования транспортных потоков.
- Указана оптимизация маршрутов.
- Упомянуто управление светофорным регулированием.
- Рассмотрено принятие решений при нештатных ситуациях.
- Указан анализ последствий управленческих решений.

Компетенции (индикаторы): УК-1

9. Какие технологии применяются для обеспечения информационной безопасности на железнодорожном транспорте?

Время выполнения – 20 мин.

Ожидаемый результат:

Межсетевые экраны (Firewalls): Контроль и фильтрация сетевого трафика для предотвращения несанкционированного доступа к системам управления железнодорожным транспортом.

Системы обнаружения вторжений (Intrusion Detection Systems/Intrusion Prevention Systems - IDS/IPS): Мониторинг сетевой активности для выявления атак и несанкционированных действий.

Антивирусное ПО: Защита от вредоносного программного обеспечения (вирусы, трояны, черви).

Системы шифрования: Защита конфиденциальности данных путем шифрования при передаче и хранении.

Контроль доступа (Access Control): Ограничение доступа к системам и данным на основе ролей и привилегий пользователей.

Аутентификация и авторизация: Проверка подлинности пользователей и разрешение доступа к ресурсам на основе их идентификационных данных.

Резервное копирование данных: Создание резервных копий данных для восстановления работоспособности систем в случае сбоев или атак.

Физическая защита: Организация физической защиты критически важного оборудования и инфраструктуры.

Критерии оценивания:

- Перечислены основные технологии обеспечения информационной безопасности.
 - Кратко описано назначение каждой технологии.
 - Учтены как программные, так и физические меры защиты.

Компетенции (индикаторы): УК-1

10. Объясните роль и функции систем управления взаимоотношениями с клиентами (CRM) в транспортном бизнесе.

Время выполнения – 20 мин.

Ожидаемый результат:

Сбор и хранение информации о клиентах: CRM системы позволяют собирать и хранить полную информацию о клиентах (контактные данные, история заказов, предпочтения, отзывы).

Управление продажами и маркетингом: CRM системы помогают автоматизировать процессы продаж, планировать маркетинговые кампании и оценивать их эффективность.

Обслуживание клиентов: CRM системы обеспечивают быстрый и эффективный ответ на запросы клиентов, решение проблем и предоставление информации.

Анализ данных о клиентах: CRM системы позволяют анализировать данные о клиентах для выявления закономерностей, прогнозирования спроса и улучшения качества обслуживания.

Персонализация: CRM системы позволяют персонализировать взаимодействие с клиентами, предлагая им индивидуальные условия и услуги.

Удержание клиентов: CRM системы помогают укреплять отношения с клиентами и повышать их лояльность.

Критерии оценивания:

- Указаны функции сбора и хранения информации.

- Описаны возможности управления продажами и маркетингом.
- Указано обеспечение обслуживания клиентов.
- Рассмотрен анализ данных о клиентах.
- Упомянута персонализация взаимодействия.

Компетенции (индикаторы): УК-1

11. Какие требования предъявляются к программному обеспечению, используемому для управления безопасностью движения поездов?

Время выполнения – 20 мин.

Ожидаемый результат:

Надежность: ПО должно быть устойчивым к сбоям и обеспечивать непрерывную работу системы.

Безопасность: ПО должно быть защищено от несанкционированного доступа и атак.

Предсказуемость: ПО должно вести себя предсказуемо в любых ситуациях, в том числе при возникновении ошибок.

Соответствие нормативным требованиям: ПО должно соответствовать всем применимым нормативным требованиям и стандартам в области железнодорожной безопасности.

Выполнение необходимых функций: ПО должно обеспечивать выполнение всех необходимых функций управления движением поездов (контроль скорости, управление сигналами, предотвращение столкновений).

Тестируемость: ПО должно быть легко тестируемым для выявления и устранения ошибок.

Верификация и валидация: Подтверждение соответствия требованиям безопасности.

Критерии оценивания:

- Перечислены требования к надежности и безопасности.
- Указано соответствие нормативным требованиям.
- Упомянуто выполнение необходимых функций.
- Указаны требования к тестируемости.

Компетенции (индикаторы): УК-1

12. Опишите основные принципы моделирования транспортных процессов с использованием современных информационных технологий.

Время выполнения – 20 мин.

Ожидаемый результат:

Адекватность: Модель должна достаточно точно отражать реальные транспортные процессы.

Точность: Модель должна обеспечивать достаточную точность результатов моделирования.

Реалистичность: Модель должна учитывать основные факторы, влияющие на транспортные процессы (интенсивность движения, характеристики транспортных средств, дорожные условия, погодные условия).

Гибкость: Модель должна позволять легко изменять параметры и сценарии моделирования.

Наглядность: Модель должна обеспечивать наглядное представление результатов моделирования (графики, диаграммы, анимация).

Масштабируемость: Модель должна позволять моделировать транспортные процессы различного масштаба (от отдельного перекрестка до городской транспортной сети).

Верификация и валидация: Обоснование адекватности модели.

Критерии оценивания:

- Перечислены принципы моделирования транспортных процессов.
- Кратко описано содержание каждого принципа.
- Указана важность адекватности модели.

Компетенции (индикаторы): УК-1

Экспертное заключение

Представленный комплект оценочных материалов по дисциплине «Компьютерные и информационные технологии в отрасли» соответствует требованиям ФГОС ВО.

Предлагаемые оценочные материалы адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 23.04.01 Технология транспортных процессов.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанные и представленные для экспертизы оценочные материалы рекомендуются к использованию в процессе подготовки обучающихся по указанному направлению подготовки.

Elleg

Председатель учебно-методической комиссии института транспорта и логистики

Иванова Е.И.

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)