МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Институт транспорта и логистики Кафедра подъемно-транспортной техники

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

Численные методы решения задач подъемно-транспортного, строительного,

дорожного машиностроения

(наименование учебной дисциплины, практики)

Направление подготовки 23.04.02 Наземные транспортно-технологические комплексы

Магистерская программа «Подъемно-транспортные, строительные, дорожные машины и оборудование»

(наименование профиля подготовки (специальности, магистерской программы); при отсутствии ставится прочерк)

Разработчики: доцент А.П. Киркин	
ФОС рассмотрен и одобрен на заседании каф от « // »	едры подъемно-транспортной техники (наименование кафедры)
01 « <u>//</u> " <u>- 0 22 2025 1., протокол за </u>	
Заведующий кафедрой	_ В.А. Коструб

Комплект оценочных материалов по дисциплине «Численные методы решения задач подъемно-транспортного, строительного, дорожного машиностроения»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа

1. Выберите один правильный ответ	
Цифра числа называется верной (в широком смысле).	•

Цифра числа называется верной (в широком смысле), если абсолютная погрешность этого числа не превосходит _____ разряда, в котором стоит цифра:

- А) единицы
- Б) десятка
- В) сотни
- Г) тысячи

Правильный ответ: А

Компетенции (индикаторы): ОПК-1 (ОПК – 1.1, ОПК – 1.2, ОПК – 1.3)

2. Выберите один правильный ответ

 $a=2,91385,\Delta a=0,0097$. В числе а верны в широком смысле цифры:

- A) 0,9,7
- Б) 2,9,1
- B) 2,9,1,3
- Γ) 0,0,90,7

Правильный ответ: Б

Компетенции (индикаторы): ОПК-1 (ОПК – 1.1, ОПК – 1.2, ОПК – 1.3)

3. Выберите один правильный ответ

Традиционно при получении квадратных формул Гаусса в исходном интеграле выполняется замена переменной, переводящая интеграл по отрезку [a;b] в интеграл по отрезку:

- A) [b;a]
- Б) [-1;1]
- B) [0;1]
- Γ) [1;2]

Правильный ответ: Б

Компетенции (индикаторы): $O\Pi K-1$ ($O\Pi K-1.1$, $O\Pi K-1.2$, $O\Pi K-1.3$)

4. Выберите правильные ответы

При решении задачи приближенного, численного отыскания корней уравнения f(x) = 0 необходимо определить количество корней уравнения и изолировать каждый из них. Какие методы используют для отделения корней уравнения?

А) аналитический

- Б) эвристический
- В) табличный
- Г) графический

Правильные ответы: А, Г

Компетенции (индикаторы): ОПК-1 (ОПК – 1.1, ОПК – 1.2, ОПК – 1.3)

Задания закрытого типа на установление соответствия

1. Установите правильное соответствие между названием численного метода и областью применения. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Метод		Область применения
1)	Метод Эйлера	A)	конечноразностный многоша-
			говый метод численного инте-
			грирования обыкновенных
			дифференциальных уравнений
			первого порядка
2)	Метод Рунге-Кутта	Б)	итерационный метод решения
			системы линейных алгебраиче-
			ских уравнений
3)	Метод Адамса	B)	простейший численный метод
			решения систем обыкновенных
			дифференциальных уравнений
4)	Метод Зейделя	Γ)	большой класс численных ме-
			тодов решения задачи Коши
			для обыкновенных дифферен-
			циальных уравнений и их си-
			стем

Правильный ответ:

TIPWDINIDIDII 01D01.			
1	2	3	4
В	Γ	Α	Б

Компетенции (индикаторы): ОПК-1 (ОПК – 1.1, ОПК – 1.2, ОПК – 1.3)

2. Установите правильное соответствие между типами погрешностей численных методов с их описанием. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Тип погрешности		Описание	
1)	Абсолютная погрешность	A)	Разница между точным и приближенным значением	
2)	Относительная погрешность	Б)	Отношение абсолютной по-	
2)	отпосительная погрешность		грешности к точному значению	
3)	Вычислительная погрешност	ь В)	Погрешность, возникающая из-	
			за ограниченной точности вы-	

			числений	
4)	Методическая погрешность	Γ)	Погрешность,	связанная с
	_		упрощением	математической
			модели	

Правильный ответ:

1	2	3	4
A	Б	В	Γ

Компетенции (индикаторы): ОПК-1 (ОПК – 1.1, ОПК – 1.2, ОПК – 1.3)

3. Установите правильное соответствие между методами оптимизации и их описанием. Каждому элементу левого столбца соответствует только один элемент правого столбца.

	Методы оптимизации		Описание
1)	Градиентный спуск	A)	Поиск минимума функции с использованием градиента
2)	Метод Ньютона	Б)	Использование второй производной для ускорения сходимости
3)	Метод золотого сечения	B)	Одномерный метод поиска минимума на заданном интервале
4)	Генетический алгоритм	Γ)	Эволюционный метод, основанный на принципах естественного отбора

Правильный ответ:

1	2	3	4
A	Б	В	Γ

Компетенции (индикаторы): ОПК-1 (ОПК – 1.1, ОПК – 1.2, ОПК – 1.3)

Задания закрытого типа на установление правильной последовательности

- 1. Установите правильную последовательность этапов решения задачи численного интегрирования методом трапеций. Запишите правильную последовательность букв слева направо.
 - А) Разбиение отрезка интегрирования на равные части
 - Б) Вычисление значения функции в узлах разбиения
 - В) Применение формулы трапеций для вычисления интеграла
 - Г) Оценка погрешности результата

Правильный ответ: A, Б, B, Γ

Компетенции (индикаторы): ОПК-1 (ОПК – 1.1, ОПК – 1.2, ОПК – 1.3)

- 2. Установите правильную последовательность шагов при решении системы линейных уравнений методом Гаусса. Запишите правильную последовательность букв слева направо.
 - А) Приведение матрицы системы к треугольному виду
 - Б) Обратный ход метода Гаусса для нахождения неизвестных
 - В) Проверка системы на совместность
 - Г) Выбор ведущего элемента для уменьшения погрешности

Правильный ответ: Г, А, В, Б

Компетенции (индикаторы): ОПК-1 (ОПК – 1.1, ОПК – 1.2, ОПК – 1.3)

- 3. Установите правильную последовательность этапов решения дифференциального уравнения методом Эйлера. Запишите правильную последовательность букв слева направо.
 - А) Задание начальных условий
 - Б) Выбор шага интегрирования
 - В) Вычисление значения функции на следующем шаге
 - Г) Повторение вычислений до достижения конечной точки

Правильный ответ: А, Б, В, Г

Компетенции (индикаторы): ОПК-1 (ОПК – 1.1, ОПК – 1.2, ОПК – 1.3)

- 4. Установите правильную последовательность этапов интерполяции функции. Запишите правильную последовательность букв слева направо.
 - А) Выбор узлов интерполяции
 - Б) Построение интерполяционного многочлена
 - В) Вычисление значений функции в новых точках
 - Г) Оценка погрешности интерполяции

Правильный ответ: А, Б, В, Г

Компетенции (индикаторы): ОПК-1 (ОПК – 1.1, ОПК – 1.2, ОПК – 1.3)

Задания открытого типа

Задания открытого типа на дополнение

	1. Напишите пропущенное слово (словосочетание). Если функция $f(x)$ представляет собой многочлен, то уравнение $f(x) = 0$
назын	вается
	Правильный ответ: алгебраическим
	Компетенции (индикаторы): ОПК-1 (ОПК – 1.1 , ОПК – 1.2 , ОПК – 1.3)
	2. Напишите пропущенное слово (словосочетание).
	Методы Рунге - Кутта являются метода Эйлера и
позво	оляют достичь гораздо большей точности, чем методы Эйлера.
	Правильный ответ: обобщениями
	Компетенции (индикаторы): ОПК-1 (ОПК – 1.1 , ОПК – 1.2 , ОПК – 1.3)

3. Напишите результат вычислений.

Приближенное значение интеграла $\int_0^5 x dx$ (полагая n=5), вычисленное по формуле левых прямоугольников, равно.

Правильный ответ: 10

Компетенции (индикаторы): ОПК-1 (ОПК – 1.1, ОПК – 1.2, ОПК – 1.3)

Задания открытого типа с кратким свободным ответом

1. Напишите пропущенное слово (словосочетание).

Метод _____ используется для численного интегрирования функций и основан на разбиении интервала на мелкие отрезки.

Правильный ответ: прямоугольников / трапеций / Симпсона Компетенции (индикаторы): ОПК-1 (ОПК – 1.1, ОПК – 1.2, ОПК – 1.3)

2. Напишите пропущенное слово (словосочетание).

Для анализа динамики транспортных потоков применяют

Правильный ответ: дифференциальные уравнения / системы дифференциальных уравнений / уравнения состояния

Компетенции (индикаторы): ОПК-1 (ОПК – 1.1, ОПК – 1.2, ОПК – 1.3)

3. Дайте ответ на вопрос.

Какова последовательность действий, на каждом промежуточном этапе расчетной таблицы в вычислениях по правилам подсчета цифр с пооперационным учетом ошибок на заключительном этапе? (Приведите три-четыре этапа).

Правильный ответ должен содержать следующие смысловые элементы (обязательный минимум):

- 1). Округлять значение с одной запасной цифрой и вносить его в таблицу. При этом возникает погрешность округления.
- 2). Вычислять полную погрешность полученного результата (погрешность действия плюс погрешность округления), которую также вносить в таблицу.
- 3). Выполнять все последующие действия аналогично с применением соответствующих формул для предельных абсолютных погрешностей.
- 4). Округлить окончательный результат до последней верной в строгом смысле цифры, а также округлить погрешность до соответствующих разрядов результата.

Компетенции (индикаторы): ОПК-1 (ОПК – 1.1, ОПК – 1.2, ОПК – 1.3)

Задания открытого типа с развернутым ответом

1. Решите задачу:

Определить, какое равенство точнее: 9/11=0.818; $\sqrt{18}=4.24$.

Привести расширенное решение.

Время выполнения – 30 мин.

Критерии оценивания:

Необходимо найти значения данных выражений с большим числом десятичных знаков, вычислить предельные абсолютные погрешности, затем определить предельные относительные погрешности по которым и сделать требуемый вывод.

Ожидаемый результат:

Находим значения данных выражений с большим числом десятичных знаков: а1

= 9/11 = 0.81818...; $a_2 = \sqrt{18} = 4.2426...$. Затем вычисляем предельные абсолютные погрешности, округляя их с избытком:

$$\alpha_{a_1} = |0.81818 - 0.818| \le 0.00019$$

 $\alpha_{a_2} = |4.2426 - 4.24| \le 0.0027$

Предельные относительные погрешности составляют:
$$\delta_{a_1} = \frac{\alpha_{a_1}}{a_1} = \frac{0,00019}{0,818} = 0,00024 = 0,024\%$$

$$\delta_{a_2} = \frac{\alpha_{a_2}}{a_2} = \frac{0,0027}{4,24} = 0,00064 = 0,064\%$$

Так как $\delta_{a_1} < \delta_{a_2}$, то равенство 9/11 = 0.818 является более точным. Компетенции (индикаторы): ОПК-1 (ОПК – 1.1, ОПК – 1.2, ОПК – 1.3)

2. Решите задачу:

Округлить сомнительные цифры числа, оставив верные знаки: а) в узком смысле; б) в широком смысле. Определить абсолютную погрешность результата.

a)
$$72,353(\pm0,026)$$
; 6) $2,3544$; $\delta=0,2\%$

Привести расширенное решение.

Время выполнения – 30 мин.

Критерии оценивания:

Выполнить округление чисел, предварительно определив верные знаки по вычисленному значению абсолютной погрешности, согласно условию задания.

Ожидаемый результат:

а) Пусть $72,353(\pm0,026) = a$. Согласно условию, абсолютная погрешность, $\alpha_a = 0.026 < 0.05$; это означает, что в числе 72,353 верными (в узком смысле) являются цифры 7, 2, 3 (5 и 3 сомнительны, так как могут изменяться, так цифра 5 меняется от 3 до 7).

По правилам округления найдем приближенное значение числа, сохранив десятые доли: $\alpha_1 = 72,4$

 $\alpha_{a_1} = (|72,\!4-72,\!353|) + 0,\!026 = 0,\!047 + 0,\!026 = 0,\!073 > 0,\!05, \,\,$ зна-

чит нужно уменьшить число цифр в приближенном числе до двух: α_2 = 72 α_{a_2} = (|72 - 72,353|) + 0,026 = 0,353 + 0,026 = 0,379 < 0.5, этом, обе оставшиеся цифры верны в узком смысле.

б) Пусть a=2,3544, а относительная погрешность δ_a =0,2% , тогда абсолютная погрешность (в широком смысле) будет равна α_a = $a\cdot\delta_a=2,3544\cdot(0,2/100)=0,0047088\approx0,00471$, это означает, что в числе 2,3544 верными (в широком смысле) являются цифры 2, 3, 5.

По правилам округления найдем приближенное значение числа, сохранив сотые доли: $\alpha_1 = 2,35$

 $\alpha_{a_1} = (|2,35-2,3544|) + 0,026 = 0,0044 + 0,00471 = 0,00911 < 0,01$ при этом, в округленном числе 2,35 все цифры верны в широком смысле.

Компетенции (индикаторы): ОПК-1 (ОПК – 1.1, ОПК – 1.2, ОПК – 1.3)

3. Решите задачу:

Найти предельные абсолютные и относительные погрешности чисел, если они имеют только верные цифры: а) в узком смысле; б) в широком смысле.

Привести расширенное решение.

Время выполнения – 30 мин.

Критерии оценивания:

Выполнить расчеты по заданию.

Ожидаемый результат:

а) Так как все четыре цифры числа a=0,4357 верны в узком смысле, то абсолютная погрешность будет равна половине меньшего разряда: α_a = 0,00005.

Предельная относительная погрешность (в узком смысле) будет равна предельной абсолютной погрешности, разделенной на число: $\delta_a = 0.00005/0.4357 \approx 0.0000115$ или 0.0115%.

б) Так как все пять цифр числа a = 12,384 верны в широком смысле, то предельная абсолютная погрешность будет равна: $\alpha_a = 0,001$, поскольку любая цифра после запятой может измениться на 1.

Предельная относительная погрешность (в широком смысле) будет равна предельной абсолютной погрешности, разделенной на число: $\delta_a = 0.001/12,384 \approx 0.00000807$ или 0.001%.

Компетенции (индикаторы): ОПК-1 (ОПК – 1.1, ОПК – 1.2, ОПК – 1.3)

Экспертное заключение

Представленный фонд оценочных средств (далее - ФОС) по дисциплине «Численные методы решения задач подъемно-транспортного, строительного, дорожного машиностроения» соответствует требованиям ФГОС ВО.

Предлагаемые формы и средства текущего и промежуточного контроля адекватны целям и задачам реализации основной образовательной программы по направлению подготовки 23.04.02 Наземные транспортно-технологические комплексы.

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы обучающегося представлены в полном объеме.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанный и представленный для экспертизы фонд оценочных средств рекомендуется к использованию в процессе подготовки магистров, по указанному направлению.

Председатель учебно-методической комиссии института транспорта и логистики

Е.И. Иванова

Лист изменений и дополнений

No	Виды дополнений и	Дата и номер протокола	Подпись (с расшиф-
Π/Π	изменений	заседания кафедры (ка-	ровкой) заведующего
		федр), на котором были	кафедрой (заведую-
		рассмотрены и одобрены	щих кафедрами)
		изменения и дополнения	