МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля»

Институт транспорта и логистики Кафедра «Подъемно-транспортная техника»

УТВЕРЖДАЮ:
Директор института
транспорта и логистики
В.В. Быкадоров
(полись)
2023 года

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ В ЗАДАЧАХ ПОДЪЕМНО-ТРАНСПОРТНОГО, СТРОИТЕЛЬНОГО, ДОРОЖНОГО МАШИНОСТРОЕНИЯ»

Специальность 23.05.01 Наземные транспортно-технологические средства Специализация «Подъемно-транспортные, строительные, дорожные средства и оборудование»

Лист согласования РПУД

Рабочая программа учебной дисциплины «Имитационное моделирование в задачах подъемно-транспортного, строительного, дорожного машиностроения» по специальности 23.05.01 Наземные транспортно-технологические средства. – 23 с.

Рабочая программа учебной дисциплины «Имитационное моделирование в задачах подъемно-транспортного, строительного, дорожного машиностроения» составлена с учетом Федерального государственного образовательного стандарта высшего образования по специальности 23.05.01 Наземные транспортно-технологические средства утвержденного приказом Министерства науки и высшего образования Российской Федерации от 12 августа 2020 года № 954.

СОСТАВИТЕЛЬ: канд. техн. наук, доцент Киркин А.П.
Рабочая программа дисциплины утверждена на заседании кафедры подъемнотранспортной техники « $\underline{11}$ » $\underline{04}$ 20 $\underline{23}$ г., протокол № $\underline{8}$
Заведующий кафедрой подъемно-транспортной техники Коструб В.А.
Переутверждена: «»20 г., протокол №
Согласована (для обеспечивающей кафедры):
Директор института транспорта и логистики Быкадоров В.В.
Переутверждена: «»20 года, протокол №
Рекомендована на заседании учебно-методической комиссии института транспорта и логистики « <u>14</u> » <u>04</u> 20 <u>23</u> г., протокол № <u>8</u> .
Председатель учебно-методической комиссии института транспорта и логистики — В.И. Иванова

© Киркин А.П., 2023 год © ФГБОУ ВО «ЛГУ им. В. Даля», 2023 год

Структура и содержание дисциплины

1. Цели и задачи дисциплины, ее место в учебном процессе

Цели изучения дисциплины:

- формирование у студентов знаний, умений и навыков в области методов решения математических задач с помощью имитационных моделей.
- обучение приемам и методам имитационного представления как исходных данных в задаче, так и ее решения.

Задачи изучения дисциплины:

- овладение комплексом знаний и проблем, касающихся относительно подъемно-транспортных машин;
 - овладение основными имитационными методами решения задач;
 - овладение методами математического аппарата.

2. Место дисциплины в структуре ООП ВО

Дисциплина «Имитационное моделирование в задачах подъемнотранспортного, строительного, дорожного машиностроения» относится к вариативной части (по выбору студента) математического и естественнонаучного цикла дисциплин учебного плана.

Необходимыми условиями для освоения дисциплины являются: знания: основных принципов и положений математики и информатики; умения: выполнять математические расчеты; навыки: работы с персональным компьютером и литературой.

Содержание дисциплины является логическим продолжением содержания дисциплин: математика, информатика, сопротивление материалов. Служит основой для освоения дисциплин: математическое моделирование подъемно-транспортных, строительных, дорожных машин; динамика грузоподъемных кранов, а также является инструментом для выполнения выпускной квалификационной работы.

3. Требования к результатам освоения содержания дисциплины

Код и наименование компетенции	Индикаторы достижений компетенции (по реализуемой дисциплине)	Перечень планируемых результатов
ПК-1. Способен управлять разработкой конструкций наземных транспортнотехнологических средств и их компонентов	ПК-1.2 Проведение инженерных расчетов, в том числе с применением вычислительной техники. ПК-1.3 Осуществление контроля над соблюдением установленных требований, действующих норм, правил и стандартов.	знать: современные методы исследований машин, механических, гидравлических и пневматических систем, устройств и рабочего оборудования; современное оборудование для исследований характеристик и свойств наземных транспортно-

ПК-1.6 Работа с пакетами компьютерных программ и средствами автоматизированного проектирования конструкций, деталей и узлов транспортных средств.

технологических средств; методы проведения модель-И натурных экспериментальных работ исследования характеристик и свойств наземных транспортнотехнологических средств; методы обработки и анализа полученных результатов; методы обеспечения безопасности при проведении исследований наземных транспортнотехнологических средств; этапы методику И информационного поиска и анализа полученных современные данных; методы анализа конструкции документы регламентирующие требования к критериям оценки наземных транспортнотехнологических средств;

уметь: применять современные методы исследований машин, механических, гидравлических и пневматических систем, устройств и рабочего оборудования; настраивать и использовать современное оборудование для исследований характеристик и свойств, наземных транспортнотехнологических средств; выполнять модельные и натурные экспериментальные работы по исследованию характеристик и свойств наземных транспортнотехнологических средств; обеспечивать обработку и анализ полученных результатов; применять методы обеспечения безопасности при проведении исследований

наземных транспортнотехнологических средств; применять теоретические знания в своей профессиональной практической деятельности; осуществлять методологическое обоснование научного исследования; владеть: стандартами, условиями, техническими нормативными и руководящими материалами на проведение испытаний и исследований; методами и средствами выполнения экспериментальных работ; основными принципами и методами анализа полученных экспериментальных результатов средств; методами анализа состояния и перспектив развития, средств механизации и автоматизации подъёмнотранспортных, строительных и дорожных работ, их технологического оборудования и комплексов на их базе; методами осуществления патентного поиска.

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

	O	Объем часов (зач. ед.		
Вид учебной работы	Очная форма	Очно- заочная форма	Заочная форма	
Общая учебная нагрузка (всего)	144 (4 зач. ед)	144 (4 зач. ед)	144 (4 зач. ед)	
Обязательная контактная работа (всего)	34		8	
в том числе:				
Лекции	17		4	
Семинарские занятия	-		-	
Практические занятия	17		4	

Лабораторные работы	-		-
Курсовая работа (курсовой проект)	-		-
Другие формы и методы организации образовательного процесса (расчетно-графические работы, индивидуальные задания и т.п.)	-		-
Самостоятельная работа студента (всего)	110		136
Форма аттестации	экзамен	экзамен	экзамен

4.2. Содержание разделов дисциплины

Семестр 5

Тема 1. Общие сведенья об имитационном моделировании.

Имитационные модели основных задач транспортной механики. Краевые задачи для дифференциальных уравнений, задачи линейной алгебры, задачи математического программирования. Обзор методов имитационного моделирования транспортной и строительной механики.

Тема 2. Метод конечных разностей.

Основные положения МКР на примере одномерной задачи. Пример расчета.

Тема 3. Метод конечных элементов. Идея метода. Основные понятия. Алгоритм использования в динамике сооружений. Основные понятия, применение МКЭ к расчету конструкций.

Основные понятия, применение МКЭ к расчету конструкций. Уравнения метода конечных элементов. Разложение по собственным функциям. Шаговый путь решения МКЭ. Применение МКЭ в САЕ системах. Расчет металлоконструкции крана. Расчет шарнирной балки МКЭ. Расчет прямоугольной пластины МКЭ.

Тема 4. Растяжение стержня.

Статическое растяжение.

Тема 5. Кручение стержня.

Простые виды сопротивления. Кручение. Расчеты на прочность и жесткость при кручении.

4.3. Лекции

No	Название темы Объем час			i
п/п		Очная форма	Очно- заочная форма	Заочная форма
1.	Общие сведенья об имитационном 4 моделировании			
2.	Метод конечных разностей 4			
3.	Метод конечных элементов. Идея метода. Основные понятия. Алгоритм использования в динамике сооружений	4		
4.	Растяжение стержня	2		
5.	Кручение стержня	3		
Итого	:	17		4

4.4. Практические (семинарские) занятия

No	Название темы	(3	
п/п		Очная форма	Очно- заочная форма	Заочная форма
1.	Применение МКЭ в САЕ системах. Расчет металлоконструкции крана в SolidWorks Simulation	4		2
2.	Расчет шарнирной балки МКЭ в пакете Mathcad	4		2
3.	Расчет прямоугольной пластины МКЭ в пакете Mathcad	4		
4.	Определение геометрических характеристик фигуры, заданной несколькими математическими выражениями. Расчет геометрических характеристик. Сечение задано массивом точек. Расчет геометрических характеристик составного сечения.	5		
Итого		17		4

4.5. Лабораторные работы по дисциплине «Имитационное моделирование в задачах подъемно-транспортного, строительного, дорожного машиностроения» не предусмотрены учебным планом

4.6. Самостоятельная работа студентов

No	Название темы	Вид СРС	Объем часов		
п/п			Очная форма	Очно- заочная форма	Заочная форма
1.	Общие сведенья об имитационном моделировании. Области применения.	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний.	10		12
2.	Метод конечных разностей. Области применения.	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний.	10		12
3.	Метод конечных элементов. Области применения. Условия перехода к системам, состоящих из конечных элементов.	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний.	10		12
4.	Уравнения метода конечных элементов. Разложение по собственным функциям	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний.	10		12

5.	Шаговый путь решения МКЭ	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний.	10		12
6.	Определение частот и форм колебания МКЭ	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний.	10		12
7.	Анализ условий сходимости МКЭ	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний.	10		12
8.	Алгебраические и нелинейные уравнения.	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний.	10		12
9.	Численное интегрирование и методы математической статистики	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний.	10		12
10.	Дифференциальные уравнения состояния с начальными условиями	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний.	10		12
11.	Проекционные методы. Метод моментов. Метод Галеркина.	Подготовка к практическим занятиям, к текущему и промежуточному контролю знаний.	6		12
12	Экзамен		4	4	4
Итог	го:		110		136

4.7. Курсовые работы/проекты по дисциплине «Имитационное моделирование в задачах подъемно-транспортного, строительного, дорожного машиностроения» не предполагаются учебным планом.

5. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

• традиционные объяснительно-иллюстративные технологии, которые обеспечивают доступность учебного материала для большинства студентов, системность, отработанность организационных форм и привычных методов, относительно малые затраты времени;

- технологии проблемного обучения, направленные на развитие познавательной активности, творческой самостоятельности студентов и предполагающие последовательное и целенаправленное выдвижение перед студентом познавательных задач, разрешение которых позволяет студентам активно усваивать знания (используются поисковые методы; постановка познавательных задач);
- технологии развивающего обучения, позволяющие ориентировать учебный процесс на потенциальные возможности студентов, их реализацию и развитие;
- технологии концентрированного обучения, суть которых состоит в создании максимально близкой к естественным психологическим особенностям человеческого восприятия структуры учебного процесса и которые дают возможность глубокого и системного изучения содержания учебных дисциплин за счет объединения занятий в тематические блоки;
- технологии модульного обучения, дающие возможность обеспечения гибкости процесса обучения, адаптации его к индивидуальным потребностям и особенностям обучающихся (применяются, как правило, при самостоятельном обучении студентов по индивидуальному учебному плану);
- дифференцированного обучения, обеспечивающие • технологии возможность создания оптимальных условий для развития интересов и способностей особыми студентов, TOM числе И студентов образовательными потребностями, что позволяет реализовать в культурноуниверситета образовательном пространстве идею создания возможностей для получения образования;
- технологии активного (контекстного) обучения, с помощью которых осуществляется моделирование предметного, проблемного и социального содержания будущей профессиональной деятельности студентов (используются активные и интерактивные методы обучения) и т.д.

Максимальная эффективность педагогического процесса достигается путем конструирования оптимального комплекса педагогических технологий и (или) их элементов на личностно-ориентированной, деятельностной, диалогической основе и использования необходимых современных средств обучения.

6. Формы контроля освоения дисциплины

Текущая аттестация студентов производится в дискретные временные интервалы лектором и преподавателем(ями), ведущими практические занятия по дисциплине в следующих формах:

разноуровневые задачи;

доклады.

Промежуточная аттестация по результатам освоения дисциплины проходит в форме устного/письменного экзамена (включает в себя ответ на

теоретические вопросы и решение задач). Студенты, выполнившие 75% текущих и контрольных мероприятий на «отлично», а остальные 25% на «хорошо», имеют право на получение итоговой оценки.

В экзаменационную ведомость и зачетную книжку выставляются оценки по шкале, приведенной в таблице.

Шкала оценивания	Характеристика знания предмета и	Зачеты
(экзамен)	ответов	
отлично (5)	Студент глубоко и в полном объёме владеет программным материалом. Грамотно, исчерпывающе и логично его излагает в устной или письменной форме. При этом знает рекомендованную литературу, проявляет творческий подход в ответах на вопросы и правильно обосновывает принятые решения, хорошо владеет умениями и навыками при выполнении практических задач.	
хорошо (4)	Студент знает программный материал, грамотно и по сути излагает его в устной или письменной форме, допуская незначительные неточности в утверждениях, трактовках, определениях и категориях или незначительное количество ошибок. При этом владеет необходимыми умениями и навыками при выполнении практических задач.	зачтено
удовлетворительно (3)	Студент знает только основной программный материал, допускает неточности, недостаточно чёткие формулировки, непоследовательность в ответах, излагаемых в устной или письменной форме. При этом недостаточно владеет умениями и навыками при выполнении практических задач. Допускает до 30% ошибок в излагаемых ответах.	
неудовлетворительно (2)	Студент не знает значительной части программного материала. При этом допускает принципиальные ошибки в доказательствах, в трактовке понятий и категорий, проявляет низкую культуру знаний, не владеет основными умениями и навыками при выполнении практических задач. Студент отказывается от ответов на дополнительные вопросы.	не зачтено

7. Учебно-методическое и информационное обеспечение дисциплины:

а) основная литература:

- 1 Альсова О.К., Имитационное моделирование систем в среде ExtendSim: учебное пособие / Альсова О.К. Новосибирск: Изд-во НГТУ, 2016. 104 с. ISBN 978-5-7782-2840-5 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785778228405.html.
- 2 . Эльберг М.С., Имитационное моделирование : учеб. пособие / Эльберг М. С. Красноярск : СФУ, 2017. 128 с. ISBN 978-5-7638-3648-6 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785763836486.html.

б) дополнительная литература:

- 1. Березовская Е.А., Имитационное моделирование: учеб. пособие / Березовская Е. А. Ростов н/Д: Изд-во ЮФУ, 2018. 76 с. ISBN 978-5-9275-2426-6 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785927524266.html.
- 2. Строгалев В.П., Имитационное моделирование : учебное пособие / В.П. Строгалев, И.О. Толкачева М. : Издательство МГТУ им. Н. Э. Баумана, 2018. 295 с. ISBN 978-5-7038-4825-8 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/

http://www.studentlibrary.ru/book/ISBN9785703848258.html.

- 3. Решмин Б.И., Имитационное моделирование и системы управления: учебное пособие. / Решмин Б.И. М.: Инфра-Инженерия, 2018. 74 с. ISBN 978-5-9729-0120-3 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785972901203.html
- 4. Черняева С.Н., Имитационное моделирование систем: учеб. пособие / С.Н. Черняева, Л.А. Коробова, В.В. Денисенко Воронеж: ВГУИТ, 2016. 94 с. ISBN 978-5-00032-180-5 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785000321805.html
- 5. Черепашков А.А., Компьютерные технологии, моделирование и автоматизированные системы в машиностроении : Учебник / А. А. Черепашков, Н. В. Носов. СПб : Проспект Науки, 2018. 592 с. ISBN 978-5-906109-61-3 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785906109613.html
- 6. Алексеев Г.В., Численные методы при моделировании технологических машин и оборудования : учеб. пособие / Г.В. Алексеев, Б.А. Вороненко, М.В. Гончаров СПб. : ГИОРД, 2014. 200 с. ISBN 978-5-98879-177-5 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785988791775.html
- 7. Селезнев В.А., Структурные свойства математического языка : учебное пособие / Селезнев В.А. Новосибирск : Изд-во НГТУ, 2016. 116 с. ISBN 978-5-7782-3059-0 Текст : электронный // ЭБС "Консультант студента":[сайт].- URL : http://www.studentlibrary.ru/book/ISBN9785778230590.html

- 8. Меняйлов А.И., Математический практикум: Учебное пособие для высшей школы / Меняйлов А.И., Меняйлова М.А. М.: Академический Проект, 2020. 92 с. ("Gaudeamus") ISBN 978-5-8291-2774-9 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ ISBN 9785829127749.html.
- 9. Киркинский А.С., Математический анализ : Учебное пособие для вузов / Киркинский А.С. М.: Академический Проект, 2020. 526 с. (Gaudeamus) ISBN 978-5-8291-3040-4 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785829130404.html.
- 10. Твердохлебова Е.В., Исследование функций : задачник / Е.В. Твердохлебова. М. : МИСиС, 2019. 179 с. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/Misis_430.html
- 11. Горушкина Н.В., Математика: теория функций комплексного переменного: практикум / Н.В. Горушкина, В.А. Карасев, Г.Д. Левшина. М.: МИСиС, 2019. 101 с. ISBN 978-5-907061-15-6 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN 9785907061156.html
- 12. Коннова Л.П., Математический анализ. Практико-ориентированный курс с элементами кейсов : Учебник для бакалавриата по направлениям подготовки 38.03.01 "Экономика" и 38.03.02 "Менеджмент" / Л.П. Коннова, А.А. Рылов, И.К. Степанян М. : Прометей, 2019. 280 с. ISBN 978-5-907100-61-9 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785907100619.html.
- 13. Крупин В.Г., Высшая математика. Функции нескольких переменных. Элементы дифференциальной геометрии. Сборник задач с решениями: учебное пособие / Крупин В.Г., Павлов А.Л., Попов Л.Г. М.: Издательский дом МЭИ, 2019. ISBN 978-5-383-01396-0 Текст: электронный // ЭБС "Консультант

студента": [сайт]. - http://www.studentlibrary.ru/book/

ISBN9785383013960.html.

14. Аверина Т.А., Верификация численных методов решения систем со случайной структурой: учеб. пособие / Аверина Т.А. - Новосибирск: РИЦ НГУ, 2015. - 178 с. - ISBN -- - Текст: электронный // ЭБС "Консультант студента": [сайт]. - URL: http://www.studentlibrary.ru/book/ngu001.html.

в) методические рекомендации:

URL

1. Методические указания к индивидуальным заданиям по дисциплине «Численные методы в задачах подъемно-транспортного, строительного, дорожного машиностроения» (для студентов очного и заочного отделений, по специальности 23.05.01 Наземные транспортно-технологические средства) / Сост. А.А. Мирошников. – Луганск: ЛГУ им. В. Даля, 2021. – 21 с.

2. Методические указания к практическим занятиям по дисциплине «Численные методы в задачах подъемно-транспортного, строительного, дорожного машиностроения» (для студентов очного и заочного отделений, по специальности 23.05.01 Наземные транспортно-технологические средства) / Сост. А.А. Мирошников. – Луганск: ЛГУ им. В. Даля, 2018. – 48 с.

г) интернет-ресурсы:

Министерство образования и науки Российской Федерации – http://минобрнауки.pф/

Федеральная служба по надзору в сфере образования и науки – http://obrnadzor.gov.ru/

Портал Федеральных государственных образовательных стандартов высшего образования – http://fgosvo.ru

Федеральный портал «Российское образование» – http://www.edu.ru/

Информационная система «Единое окно доступа к образовательным ресурсам» – http://window.edu.ru/

Федеральный центр информационно-образовательных ресурсов – http://fcior.edu.ru/

Электронные библиотечные системы и ресурсы

Электронно-библиотечная система «StudMed.ru» - https://www.studmed.ru

Электронно-библиотечная система «Консультант студента» - http://www.studentlibrary.ru/cgi-bin/mb4x

Информационный ресурс библиотеки образовательной организации

Научная библиотека имени А. Н. Коняева – http://biblio.dahluniver.ru/

8. Материально-техническое и программное обеспечение дисциплины

Освоение дисциплины «Экономическая теория и макроэкономика» предполагает использование академических аудиторий, соответствующих действующим санитарным и противопожарным правилам и нормам.

Прочее: рабочее место преподавателя, оснащенное компьютером с доступом в Интернет.

Программное обеспечение:

Функциональное назначение	Бесплатное программное обеспечение	Ссылки
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu
Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx
Браузер	Opera	http://www.opera.com
Почтовый клиент	Mozilla Thunderbird	http://www.mozilla.org/ru/thunderbird
Файл-менеджер	Far Manager	http://www.farmanager.com/download.php
Архиватор	7Zip	http://www.7-zip.org/
Графический редактор	GIMP (GNU Image Manipulation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator
Аудиоплейер	VLC	http://www.videolan.org/vlc/

9. Оценочные средства по дисциплине

Паспорт оценочных средств по учебной дисциплине

«Имитационное моделирование в задачах подъемно-транспортного, строительного, дорожного машиностроения»

Перечень компетенций (элементов компетенций), формируемых в результате освоения учебной дисциплины (модуля) или практики

$N_{\underline{0}}$	Код	Формулировка	Индикаторы	Контролируемые	Этапы
Π/Π	контролируемой	контролируемой	достижений	темы	формирования
	компетенции	компетенции	компетенции	учебной	(семестр
			(по	дисциплины,	изучения)
			реализуемой	практики	
			дисциплине)		
1	ПК-1	Способен управлять	ПК-1.2	Тема 1. Общие	5
		разработкой		сведенья об	
		конструкций	ПК-1.3	имитационном	
		наземных		моделировании	
		транспортно- технологических	ПК-1.6	Тема 2. Метод	5
		средств и их		конечных	
		компонентов		разностей	
				Тема 3. Метод	5
				конечных	
				элементов. Идея	
				метода.	
				Основные	
				понятия.	
				Алгоритм	
				использования в	
				динамике	
				сооружений	
				Тема 4.	5
				Растяжение	
				стержня	
				Тема 5.	5
				Кручение	
				стержня	

Показатели и критерии оценивания компетенций, описание шкал оценивания

№	Код	Индикаторы	Перечень	Контролируемые	Наименование
,	контролируемой	достижений	планируемых	темы учебной	оценочного
п/п	компетенции	компетенции	результатов	дисциплины	средства
		(по			
		реализуемой			
		дисциплине)			
1.	ПК-1	ПК-1.2	знать:	Тема 1,	Разноуровневые
			современные		задачи,

ПУ 1 2	MOTOTY	Tayra 2	номножу
ПК-1.3	методы	Тема 2,	доклады,
ПК-1.6	исследований	Тема 3,	промежуточная
11K-1.0	машин,	Tema 3,	аттестация
	механических,	Тема 4,	(экзамен)
	гидравлических и	1 cma ⊣,	
	пневматических	Тема 5	
	систем, устройств и		
	рабочего		
	оборудования;		
	современное		
	оборудование для		
	исследований		
	характеристик и		
	свойств наземных		
	транспортно-		
	технологических		
	средств; методы		
	проведения модель-		
	ных и натурных		
	экспериментальных		
	работ для		
	исследования		
	характеристик и		
	свойств наземных		
	транспортно-		
	технологических		
	средств; методы		
	обработки и		
	анализа		
	полученных		
	результатов;		
	методы		
	обеспечения		
	безопасности при		
	проведении		
	исследований		
	наземных		
	транспортно-		
	технологических		
	средств; этапы и		
	методику		
	информационного		
	поиска и анализа		
	полученных		
	данных; сов-		
	ременные методы		
	анализа		
	конструкции		
	документы		
	регламентирующие		
	требования к		
	критериям оценки		

наземных транспортнотехнологических средств; уметь: применять современные методы исследований машин, механических, гидравлических и пневматических систем, устройств и рабочего оборудования; настраивать и использовать современное оборудование для исследований характеристик и свойств, наземных транспортнотехнологических средств; выполнять модельные и натурные экспериментальные работы по исследованию характеристик и свойств наземных транспортнотехнологических средств; обеспечивать обработку и анализ полученных результатов; применять методы обеспечения безопасности при проведении исследований наземных транспортнотехнологических средств; применять теоретические знания в своей профессиональной практической деятельности;

	T		1	
		осуществлять		
		методологическое		
		обоснование		
		научного		
		исследования;		
		владеть:		
		стандартами,		
		техническими		
		условиями,		
		нормативными и		
		руководящими		
		материалами на		
		проведение		
		испытаний и		
		исследований;		
		методами и		
		средствами		
		выполнения		
		экспериментальных		
		работ; основными		
		принципами и		
		методами анализа		
		полученных		
		экспериментальных		
		результатов		
		средств; методами		
		анализа состояния и		
		перспектив		
		развития, средств		
		механизации и		
		автоматизации		
		подъёмно-		
		транспортных,		
		строительных и		
		дорожных работ, их		
		технологического		
		оборудования и		
		комплексов на их		
		базе; методами		
		осуществления		
		патентного поиска.		
•	•			

Фонды оценочных средств по дисциплине «Численные методы в задачах подъемно-транспортного, строительного, дорожного машиностроения»

Темы разноуровневых задач:

- 1. Применение МКЭ в CAE системах. Расчет металлоконструкции крана в SolidWorks Simulation.
- 2. Расчет шарнирной балки МКЭ в пакете Mathcad.
- 3. Расчет прямоугольной пластины МКЭ в пакете Mathcad.

4. Определение геометрических характеристик фигуры, заданной несколькими математическими выражениями. Расчет геометрических характеристик. Сечение задано массивом точек. Расчет геометрических характеристик составного сечения.

Критерии и шкала оценивания по оценочному средству разноуровневые задачи

Шкала оценивания	Критерий оценивания	
(интервал баллов).		
5	Решение разноуровневых задач выполнены на высоком уровне	
	(правильные ответы даны на 90-100% задач)	
4	Решение разноуровневых задач выполнены на среднем уровне	
	(правильные ответы даны на 75-89% задач)	
3	Решение разноуровневых задач выполнены на низком уровне	
	(правильные ответы даны на 50-74% задач)	
2	Решение разноуровневых задач выполнены на неудовлетворительном	
	уровне (правильные ответы даны менее чем на 50% задач)	

Темы докладов:

- 1. Метод конечных элементов. Области применения. Условия перехода к системам, состоящих из конечных элементов.
- 2. Уравнения метода конечных элементов. Разложение по собственным функциям
 - 3. Шаговый путь решения МКЭ
 - 4. Определение частот и форм колебания МКЭ
 - 5. Анализ условий сходимости МКЭ
 - 6. Алгебраические уравнения.
 - 7. Численное интегрирование
 - 8. Дифференциальные уравнения с начальными условиями
 - 9. Проекционные методы. Метод моментов. Метод Галеркина.

Критерии и шкала оценивания по оценочному средству доклады

reprint it makes exemplation to exemple the my epeciety generally			
Шкала оценивания	Критерий оценивания		
(интервал баллов)			
5	Доклад представлен на высоком уровне (студент полно осветил рассматриваемую проблематику, привел аргументы в пользу своих суждений, владеет профильным понятийным (категориальным) аппаратом и т.п.)		
4	Доклад представлен на среднем уровне (студент в целом осветил рассматриваемую проблематику, привел аргументы в пользу своих суж-		
	дений, допустив некоторые неточности и т.п.)		
3	Доклад представлен на низком уровне (студент допустил существенные неточности, изложил материал с ошибками, не владеет в достаточной степени профильным категориальным аппаратом и т.п.)		
2	Доклад представлен на неудовлетворительном уровне или не представлен (студент не готов, не выполнил задание и т.п.)		

Вопросы к промежуточной аттестации (экзамен):

- 1. Имитационное моделирование это? Общие сведения.
- 2. Основой для методов имитационного моделирования являются (численные методы и вероятностные модели).
- 3. Задача. К закреплённому в стене концу стержня подводится тепловой поток заданной интенсивности q. На свободном конце стержня происходит конвективный теплообмен тепла. Коэффициент теплообмена h. Температура окружающей среды Т среды. Стержень теплоизолирован, так что потерь тепла через боковую поверхность не происходит. Изобразить рисунок. Вывести математическую постановку задачи с граничными условиями.
 - 4. Понятие корректности численного метода.
 - 5. Численное интегрирование методами Монте-Карло.
- 6. Задача. В модели 520 узлов и 800 конечных элементов. 50 узлов "жестко" закреплены, а другие 100 закреплены только от смещений по оси X. В каждом узле 3 степени свободы. Чему равно число неизвестных модели?
 - 7. Численное интегрирование на базе формул Эйлера.
 - 8. Раскрыть понятие о методе Лобачевского.
 - 9. Раскрыть понятие численные методы линейной алгебры.
 - 10. Прямые методы решения систем линейных уравнений.
- 11. Раскрыть понятие о итерационных методах решения систем линейных уравнений.
 - 12. Раскрыть понятие о численных методах строительной механик.
 - 13. Раскрыть понятие о методе конечных разностей.
 - 14. Раскрыть понятие о вариационно-разностном методе.
- 15. Задача. Балка загружена своим собственным весом (масса распределена в узлах). Перемещения в узлах и внутри элементов были получены методом конечных элементов. В какой точке прогиб максимальный?
 - 16. Раскрыть понятие о методе Ритца.
 - 17. Основные положения о метод конечных элементов.
 - 18. Основные достоинства метода конечных элементов.
- 19. Последовательность действий при решении задач методом конечных элементов.
 - 20. Раскрыть понятие о статическом учете граничных условий.
- 21. Основные положения о применение метода конечных элементов к расчета конструкций.
 - 22. Описать различные виды и формы метода конечных элементов.
 - 23. Описать формы метода конечных элементов.
- 24. Раскрыть понятие о элементах и аппроксимирующих функций метода конечных элементов.
 - 25. Описать одномерные, двумерные, трехмерные, конечные элементы.
 - 26. Раскрыть понятие о криволинейных конечных элементах.
 - 27. Раскрыть понятия о узловых точках метода конечных элементах.
- 28. Изложить аппроксимирующие функции метода конечных элементов.

- 29. Изложить ошибки метода конечных элементов.
- 30. Общий алгоритм статического расчета метода конечных элементов. Дискретизация конструкции.
 - 31. Построение глобальной матрицы жесткости и вектора узловых сил.
- 32. Способ непосредственного сложения жесткостей в методе конечных элементов.
- 33. Понятие о учете заданных граничных условиях в методе конечных элементов.

Критерии и шкала оценивания по оценочному средству промежуточная аттестация (экзамен)

Шкала оценивания	Характеристика знания предмета и ответов		
отлично (5)	Студент глубоко и в полном объеме владеет программным материа-		
	лом. Грамотно, исчерпывающе и логично его излагает в устной или		
	письменной форме. При этом знает рекомендованную литературу		
	проявляет творческий подход в ответах на вопросы и правильно		
	обосновывает принятые решения, хорошо владеет умениями		
	навыками при выполнении практических задач		
хорошо (4)	Студент знает программный материал, грамотно и по сути излагает его в устной или письменной форме, допуская незначительные неточности в утверждениях, трактовках, определениях и категориях или незначительное количество ошибок. При этом владеет необходимыми умениями и навыками при выполнении практических		
удовлетворительно (3)	Студент знает только основной программный материал, допускает неточности, недостаточно четкие формулировки, непоследовательность в ответах, излагаемых в устной или письменной форме. При этом недостаточно владеет умениями и навыками при выполнении практических задач. Допускает до 30% ошибок в излагаемых ответах.		
неудовлетворительно (2)	Студент не знает значительной части программного материала. При этом допускает принципиальные ошибки в доказательствах, в трактовке понятий и категорий, проявляет низкую культуру знаний, не владеет основными умениями и навыками при выполнении практических задач. Студент отказывается от ответов на дополнительные вопросы.		

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)

Экспертное заключение

Представленный фонд оценочных средств (далее – ФОС) по дисциплине «Имитационное моделирование в задачах подъемно-транспортного, строительного, дорожного машиностроения» соответствует требованиям ФГОС ВО.

Предлагаемые формы и средства текущего и промежуточного контроля адекватны целям и задачам реализации основной образовательной программы по специальности 23.05.01 Наземные транспортно-технологические средства (специализация «Подъемно-транспортные, строительные, дорожные средства и оборудование»).

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебнометодическое обеспечение самостоятельной работы обучающегося представлены в полном объеме.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанный и представленный для экспертизы фонд оценочных средств рекомендуется к использованию в процессе подготовки магистров, по указанному направлению.

Председатель учебно-методической комиссии института транспорта и логистики

Е.И. Иванова