МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Институт технологий и инженерной механики Кафедра «Технология машиностроения и инженерный консалтинг»

УТВЕРЖДАЮ Директор института технологий и инженерной механики Могильная Е.П.

«25» 02 2025 г.

ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ по учебной дисциплине

«Теория механизмов и машин»

23.05.01 Наземные транспортно-технологические средства

Автомобильная техника в транспортных технологиях

Разработчик: Муховатый А.А.

ФОС рассмотрен и одобрен на заседании кафедры технологии машиностроения

и инженерного консалтинга от «25» <u>02</u> 20.25 г., протокол № 7

Заведующий кафедрой технологии машиностроения и инженерного консалтинга

Ясуник С.Н.

Комплект оценочных материалов по дисциплине «Теория механизмов и машин»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа

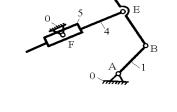
Выберите один правильный ответ

- 1. Какое звено рычажного механизма образует вращательную пару со стойкой и совершает относительно нее неполный оборот?
- А) кулиса;
- Б) кривошип;
- В) коромысло;
- Г) шатун;
- Д) правильного ответа нет.

Правильный ответ: В

Компетенции (индикаторы): ОПК-1, ОПК-5

- 2. Сколько кинематических пар образуют звенья 5 и 4 кинематической цепи, изображенной на рисунке?
 - A) 1;
 - Б) 2;
 - B) 0;
 - Γ) 3;
 - Д) правильного ответа нет.


Правильный ответ: А

Компетенции (индикаторы): ОПК-1, ОПК-5

- 3. Как называется звено 4 рычажного механизма, изображенного на рисунке?
 - А) шатун;
 - Б) ползун;
 - В) кулиса;
 - Г) кривошип;
 - Д) правильного ответа нет.

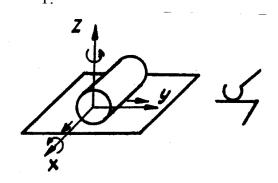
Правильный ответ: А

Компетенции (индикаторы): ОПК-1, ОПК-5

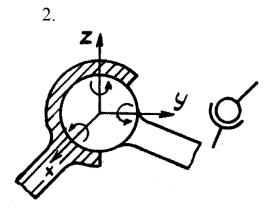
- 4. Что такое p_5 в формуле определения степени подвижности механизма (П.Л.Чебышева) $W=3n-2p_5-p_4$?
 - А) число подвижных звеньев;
 - Б) число кинематических пар 5-го класса;

- В) число поступательных пар;
- Г) число кинематических пар 4-го класса;
- Д) правильного ответа нет.

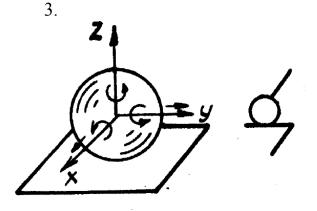
Правильный ответ: А


Компетенции (индикаторы): ОПК-1, ОПК-5

Задания закрытого типа на установление соответствия

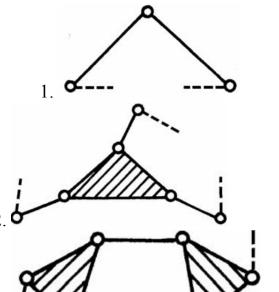

Установите правильное соответствие.

- 1. Установить соответствие схем кинематических пар их классу.
 - овить соответствие схем кинематических пар их классу.


 1. А) кинематическая

A) кинематическая пара 1 класса

Б) кинематическая пара 2 класса



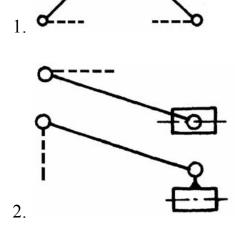
В) кинематическая пара 3 класса

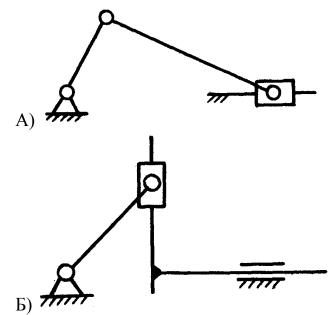
Правильный ответ: 1-Б, 2-В, 3-А

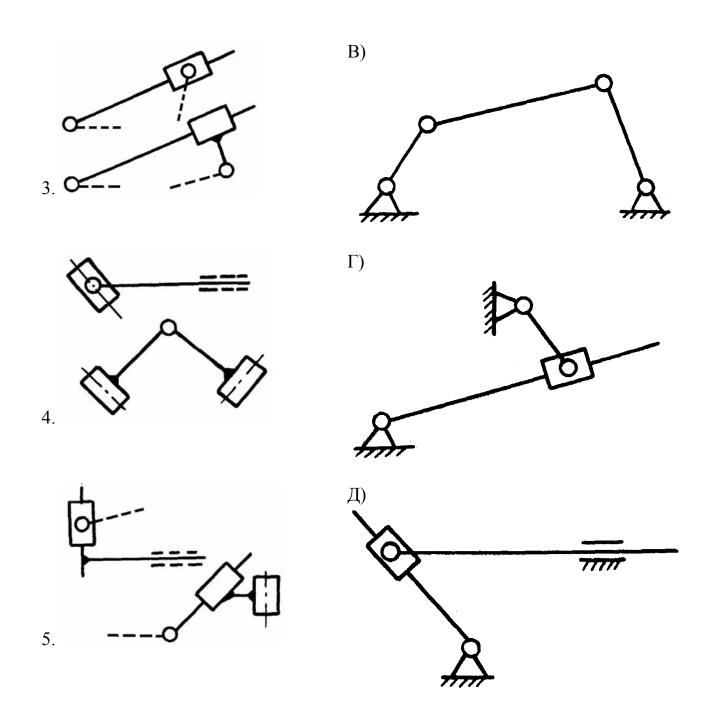
Компетенции (индикаторы): ОПК-1, ОПК-5

2. Установить соответствие схемы структурной группы классу группы.

А) 4 класс структурной группы

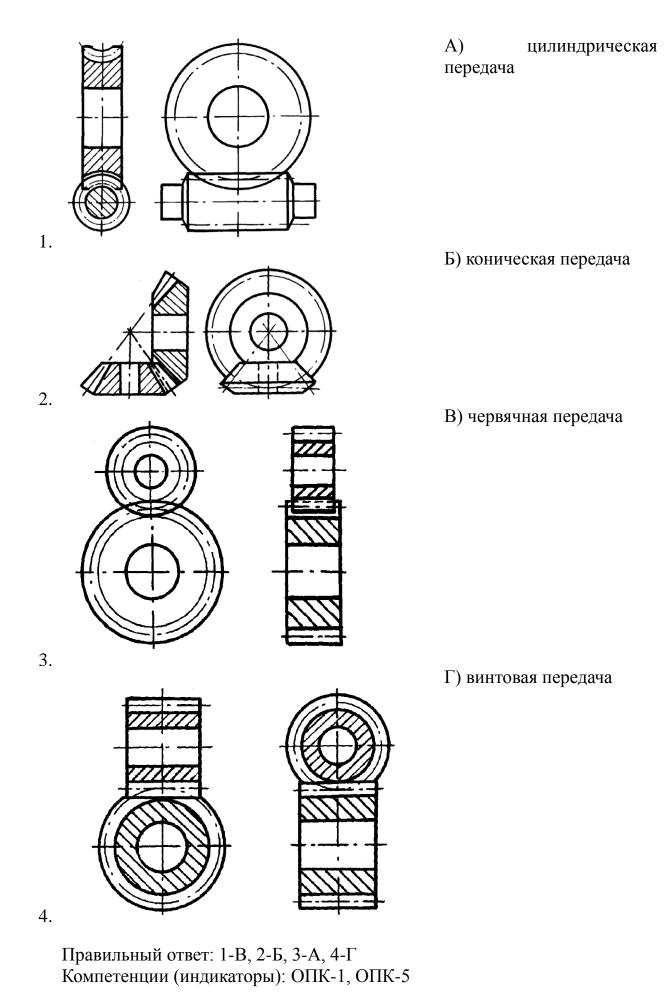

Б) 2 класс структурной группы


В) 3 класс структурной группы


Правильный ответ: 1-Б, 2-В, 3-А

Компетенции (индикаторы): ОПК-1, ОПК-5

3. Установить соответствие схемы структурной группы указанным схемам механизмов.



Правильный ответ: 1-В, 2-А, 3-Г, 4-Д, 5-Б Компетенции (индикаторы): ОПК-1, ОПК-5

4. Расставить соответствие номеров схем передач зацеплением их названиям

Задания закрытого типа на установление правильной последовательности

Установите правильную последовательность.

Запишите правильную последовательность букв.

- 1. Установите правильную последовательность этапов кинематического анализа рычажного механизма
- А) Составление векторных уравнений для ускорений и построение плана ускорений для одного из положений рычажного механизма;
- Б) Определение численных значений линейных ускорений точек и угловых ускорений звеньев;
 - В) Построение совмещённых планов положений рычажного механизма;
- Г) Составление векторных уравнений для скоростей точек рычажного механизма и построение для них планов скоростей;
- Д) Определение значений линейных скоростей точек и угловых скоростей звеньев.

Правильный ответ: В, Г, Д, А, Б

Компетенции (индикаторы): ОПК-1, ОПК-5

- 2. Установите правильную последовательность этапов расчета структурной группы механизма при выполнении силового анализа
- А) Определение: величин для сил тяжести и сил инерции звеньев; равнодействующей силы давления газов на поршень; момента от сил инерции, которые действуют на звенья структурной группы в данном положении механизма;
- Б) Составление векторного уравнения равновесия по методу кинетостатики и его графическое решение относительно неизвестных реакций в опорах построением плана сил;
- В) Определение величин найденных сил реакций опор умножением длин соответствующих векторов на принятый масштабный коэффициент плана сил;
- Г) Изображение структурной группы в масштабе совмещённых планов положений;
- Д) Выявление действующих на структурную группу сил и моментов сил, реакций в опорах, обозначение их векторами на структурной группе.

Правильный ответ: Г, Д, А, Б, В

Компетенции (индикаторы): ОПК-1, ОПК-5

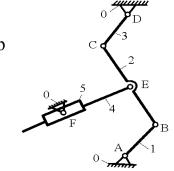
- 3. Установите правильную последовательность этапов синтеза зубчатой передачи
 - А) Определение качественных показателей зацепления;
 - Б) Графические построения зубчатого зацепления;

В) Геометрический расчёт передачи и профилирование зубьев колеса и				
шестерни;				
Г) Выбор параметров исходного контура и коэффициентов смещения Правильный ответ: Г, В, Б, А Компетенции (индикаторы): ОПК-1, ОПК-5				
4. Установите правильную последовательность этапов синтеза				
кулачкового механизма				
A) профилирование кулачка и определение параметров выходного звена;Б) определение начальных параметров и основных размеров механизма;				
В) выбор конструктивного типа кулачкового механизма;				
Г) выбор закона движения выходного звена.				
Правильный ответ: Г, В, Б, А				
Компетенции (индикаторы): ОПК-1, ОПК-5				
Задания открытого типа				
Задания открытого типа на дополнение				
Напишите пропущенное слово (словосочетание).				
1. Совмещенные планы планы,				
выполненные в одной системе координат для ряда последовательных				
значений обобщенной координаты, т.е. для ряда последовательных				
положений начального звена.				
Правильный ответ: механизм / механизма				
Компетенции (индикаторы): ОПК-1, ОПК-5				
2. Графоаналитический метод кинематического анализа механизмов предполагает аналитическую запись и				
графическое их решение, т.е. построение планов скоростей и ускорений.				
правильный ответ, векторное уравнение / векторных уравнении				
Компетенции (индикаторы): ОПК-1, ОПК-5				
3. Принцип Д-Аламбера заключается в том, что находится в равновесии под действием внешних сил, реакций связей и сил				
инерции.				
Правильный ответ: механическая система Компетенции (индикаторы): ОПК-1, ОПК-5				
4. Приведенный момент сил - условный момент сил, приложенный к				

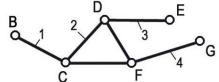
звену приведения, элементарная работа или мощность, которого равна

8

Правильный ответ: сумме / сумма

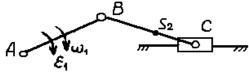

Компетенции (индикаторы): ОПК-1, ОПК-5

Задания открытого типа с кратким свободным ответом


Дайте ответ на вопрос

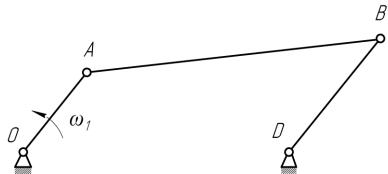
1. Сколько вращательных кинематических пар изображено на рисунке Правильный ответ: 6.

Компетенции (индикаторы): ОПК-1, ОПК-5


2. Какого класса структурная группа, представленная на рисунке

Правильный ответ: 3 класса.

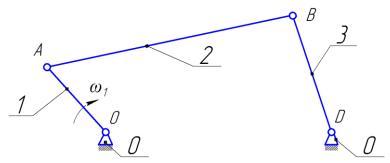
Компетенции (индикаторы): ОПК-1, ОПК-5


3. Определить линейную скорость точки В для механизма на рисунке, если угловая скорость звена 1 ω_1 = 10 рад/с, длина звена 1 1_{AB} = 0,25 м

Правильный ответ: 4 м/с

Компетенции (индикаторы): ОПК-1, ОПК-5

4. Определить линейное нормальное ускорение точки A для механизма на рисунке, если угловая скорость звена 1 $\omega_1 = 5$ рад/с, длина звена 1 $1_{\scriptscriptstyle AB} = 0.2\,\mathrm{M}$



Правильный ответ: $5 \text{ m}^2/\text{c}$

Задания открытого типа с развернутым ответом

Дайте ответ на вопрос

1. Определить название звеньев и степень подвижности кинематической цепи.

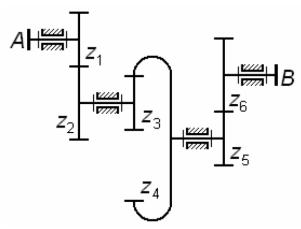
Время выполнения – 20 мин.

Ожидаемый результат:

Решение

Название звеньев: 0-стойка; 1-кривошип; 2-шатун; 3-коромысло

Число подвижных звеньев n=3, число кинематических пар 5-го класса $p_5=4$; число кинематических пар 4-го класса $p_4=0$.


Тогда степень подвижности кинематической цепи будет равна

$$W = 3n - 2p_5 - p_4 = 3 \cdot 3 - 2 \cdot 4 - 0 = 1.$$

Правильный ответ: Название звеньев: 0-стойка; 1-кривошип; 2-шатун; 3-коромысло, $W\!=\!1$.

Компетенции (индикаторы): ОПК-1, ОПК-5

2. Для представленной схемы определить передаточное отношение. В качестве исходных данных заданы: числа зубьев элементов z_1 =20; z_2 =40; z_3 =10; z_4 =30; z_5 =22; z_6 =66.

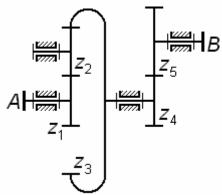
Время выполнения – 20 мин.

Ожидаемый результат:

Решение

Общее передаточное отношение равно произведению передаточных отношений отдельных одноступенчатых механизмов

$$\mathbf{i}_{AB} = \mathbf{i}_{12} \cdot \mathbf{i}_{34} \cdot \mathbf{i}_{56} = \left(-\frac{\mathbf{Z}_2}{\mathbf{Z}_1}\right) \cdot \frac{\mathbf{Z}_4}{\mathbf{Z}_3} \cdot \left(-\frac{\mathbf{Z}_6}{\mathbf{Z}_5}\right) = \frac{\mathbf{Z}_2}{\mathbf{Z}_1} \cdot \frac{\mathbf{Z}_4}{\mathbf{Z}_3} \cdot \frac{\mathbf{Z}_6}{\mathbf{Z}_5}$$


Подставив в последнее выражение значение числа зубьев получим

$$i_{AB} = \frac{40}{20} \cdot \frac{30}{10} \cdot \frac{66}{22} = 18$$

Правильный ответ: $i_{AB} = 18$.

Компетенции (индикаторы): ОПК-1, ОПК-5

3. Для представленной схемы определить передаточное отношение. В качестве исходных данных заданы: числа зубьев элементов z_1 =20; z_2 =40; z_3 =60; z_4 =20; z_5 =80.

Время выполнения – 20 мин.

Ожидаемый результат:

Решение

Общее передаточное отношение равно произведению передаточных отношений отдельных одноступенчатых механизмов

$$\mathbf{i}_{AB} = \mathbf{i}_{12} \cdot \mathbf{i}_{23} \cdot \mathbf{i}_{45} = \left(-\frac{\mathbf{Z}_2}{\mathbf{Z}_1}\right) \cdot \frac{\mathbf{Z}_3}{\mathbf{Z}_2} \cdot \left(-\frac{\mathbf{Z}_5}{\mathbf{Z}_4}\right) = \frac{\mathbf{Z}_3}{\mathbf{Z}_1} \cdot \frac{\mathbf{Z}_5}{\mathbf{Z}_4}.$$

Подставив в последнее выражение значение числа зубьев получим

$$i_{AB} = \frac{40}{20} \cdot \frac{80}{20} = 8.$$

Правильный ответ: $i_{AB} = 8$

Компетенции (индикаторы): ОПК-1, ОПК-5

4. Цилиндрическая прямозубая передача имеет числа зубьев колес z_1 =17 и z_2 =85; диаметр вершин зубьев шестерни d_{a1} =95мм; коэффициент смещения равен x_1 =0. Определить модуль зацепления m и межосевое расстояние a_W .

Время выполнения – 25 мин.

Ожидаемый результат:

Решение

Определим модуль зубчатой передачи из следующего соотношения

$$d_{a1} = d_1 + 2m(1 + x_1);$$

$$d_{a1} = mz_1 + 2m(1 + x_1);$$

$$d_{a1} = mz_1 + 2m(1 + x_1);$$

$$d_{_{a1}}=m\!\big(z_{_{1}}+2+x_{_{1}}\big).$$

$$m = \frac{d_{a1}}{z_1 + 2 + x_1} = \frac{95}{17 + 2 + 0} = 5 \text{ MM}.$$

Тогда межосевое расстояние будет равно

$$a_{w} = \frac{d_{_{1}} + d_{_{2}}}{2} = \frac{mz_{_{1}} + mz_{_{2}}}{2} = \frac{5 \cdot 17 + 5 \cdot 85}{2} = 255 \text{ mm}.$$

Правильный ответ: m = 5 мм; $a_w = 255$ мм.

Компетенции (индикаторы): ОПК-1, ОПК-5

Экспертное заключение

Представленный фонд оценочных средств (далее – ФОС) по дисциплине «Теория механизмов и машин» соответствует требованиям ФГОС ВО.

Предлагаемые формы и средства текущего и промежуточного контроля адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 23.05.01 Наземные транспортно-технологические средства.

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины представлены в полном объеме.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанный и представленный для экспертизы фонд оценочных средств рекомендуется к использованию в процессе подготовки обучающихся по указанному направлению.

Председатель учебно-методической комиссии института технологий и инженерной механики

вези Ясуник С.Н.

Лист изменений и дополнений

/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)