МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Институт технологий и инженерной механики Кафедра «Технология машиностроения и инженерный консалтинг»

УТВЕРЖДАЮ

Директор института технологий

и инженерной механики — Могильная Е.П.

Д5» О2 2025 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по учебной дисциплине

«Теоретическая механика»

23.05.03 Подвижной состав железных дорог

Локомотивы

Разработчик: старший преподаватель

Кузнецова М.Н.

ФОС рассмотрен и одобрен на заседании кафедры технологии машиностроения и инженерного консалтинга от « 25 » февраля 2025 г., протокол № 7

Заведующий кафедрой технологии машиностроения и инженерного консалтинга

Ясуник С.Н.

Луганск 2025 г.

Комплект оценочных материалов по дисциплине «Теоретическая механика»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа

Выберите один правильный ответ

- 1. Проекция силы на ось это:
- А) Алгебраическая величина, равная произведению силы на угол между силой и осью:
- Б) Вектор, заключенный между проекциями начала и конца вектора силы на ось:
- В) Алгебраическая величина, равная произведению модуля силы на косинус угла между вектором силы и положительным направлением оси;
- Г) Вектор, заключенный между проекциями начала и конца вектора силы на плоскость

Правильный ответ: В

Компетенции (индикаторы): ОПК-4

- 2. Плечом силы относительно центра называется
- А) Отрезок, соединяющий центр и силу
- Б) Отрезок, соединяющий центр и середину вектора силы
- В) Кратчайшее расстояние от центра до линии действия силы
- Г) Отрезок, соединяющий начало и конец вектора силы

Правильный ответ: В

Компетенции (индикаторы): ОПК-4

- 3. Какие способы задания движения применяются в кинематике точки
- А) Только векторный способ
- Б) Только координатный способ
- В) Векторный и графический способы
- Г) Векторный, координатный и естественный способы задания движения

Правильный ответ: Г

Компетенции (индикаторы): ОПК-4

- 4. Точка плоской фигуры, скорость которой в данный момент времени равна нулю, называется
- А) центром вращений
- Б) центром масс системы
- В) мгновенным центром
- Γ) мгновенным центром скоростей

Правильный ответ: Г

Компетенции (индикаторы): ОПК-4

Задания закрытого типа на установление соответствия

Установите правильное соответствие.

Каждому элементу левого столбца соответствует только один элемент правого столбца.

1. Установите соответствие между изображением и типом связи

	1. Эстановите соответствие между изооражением и типом связи				
1)	\vec{N}	А) Шарнирно-подвижная (скользящая) опора			
2)	\overline{R}_{A} α α	Б) Шарнирно-неподвижная опора			
3)	\overline{Y}_A \overline{X}_A \overline{X}_A	В) Гладкая поверхность			

Правильный ответ:

1	2	3
В	A	Б

Компетенции (индикаторы): ОПК-4

2. Установите соответствие между видом движения твердого тела и формулой для определения скорости точки этого тела

1)	Поступательное движение	A)	$v_B = v_A + v_{BA}$
2)	Вращательное движение	Б)	$v_A = v = \frac{ds}{dt}$
3)	Плоскопараллельное движение	B)	$v_A = \omega \cdot R$

Правильный ответ:

1	2	3
Б	В	A

Компетенции (индикаторы): ОПК-4

3. Установите соответствие между определением и понятием

1)	Движение тела, при котором любая	A)	вращательное движение
	прямая, соединяющая две точки тела,		вокруг неподвижной оси
	движется параллельно самой себе		
2)	Движение тела, при котором какие-	Б)	плоскопараллельное
	либо две его точки остаются		движение

	неподвижными во всё время движения		
3)	Движение твердого тела, при котором	B)	поступательное движение
	все его точки движутся параллельно		
	некоторой неподвижной плоскости		
	П		

Правильный ответ:

1	2	3
В	A	Б

Компетенции (индикаторы): ОПК-4

4. Установите соответствие между работами сил и формулами, по которым они определяются

1)	работа силы тяжести	A)	$A = mg(z_1 - z_2)$
2)	работа силы трения	Б)	$A = \frac{c}{2} \left(\lambda_1^2 - \lambda_0^2 \right)$
3)	работа силы упругости	B)	$A = -F_{mp}s$

Правильный ответ:

1	2	3
A	В	Б

Компетенции (индикаторы): ОПК-4

Задания закрытого типа на установление правильной последовательности

Установите правильную последовательность.

- 1. Запишите правильную последовательность изучения разделов в теоретической механике
- А) Динамика
- Б) Статика
- В) Кинематика

Правильный ответ: Б, В, А

Компетенции (индикаторы): ОПК-4

- 2. Решение задач статики на равновесие произвольной плоской системы сил выполняется в следующей последовательности
- А) Выбор тела (или тел), равновесие которого должно быть рассмотрено
- Б) Составление условий равновесия
- В) Изображение действующих сил
- Г) Определение искомых величин, проверка правильности решения и исследование полученных результатов

Правильный ответ: А, В, Б, Г

Компетенции (индикаторы): ОПК-4

- 3. Момент силы F относительно оси Oz определяется в следующей последовательности
- А) Построить плоскость π перпендикулярную данной оси Oz
- Б) Определить знак момента
- В) Построить проекцию силы F_{π} на плоскость π
- Γ) Вычислить момент проекции F_{π} относительно точки O точки пересечения оси Oz с плоскостью π .

Правильный ответ: А, В, Г, Б

Компетенции (индикаторы): ОПК-4

- 4. При решении задач на сложное движение точки следует придерживаться следующих этапов
- А) Выделить точку, совершающую сложное движение
- Б) Выбрать неподвижную и подвижную системы координат, и выявить переносное, относительное, абсолютное движения точки
- В) Записать теорему Кориолиса о сложении ускорений и определить составляющие абсолютного ускорения.
- Г) Вычислить переносную, относительную и абсолютные скорости точки

Правильный ответ: А, Б, Г, В

Компетенции (индикаторы): ОПК-4

Задания открытого типа

Задания открытого типа на дополнение

Напишите пропущенное слово (словосочетание).

1. Величина, являющаяся основной мерой механического взаимод	действия
материальных тел называется	
Правильный ответ: силой / сила	

2. Раздел механики, в котором изучаются геометрические свойства движения тел без учета их инертности (массы) и действующих на них сил

называется _____ Правильный ответ: кинематика / кинематикой Компетенции (индикаторы): ОПК-4

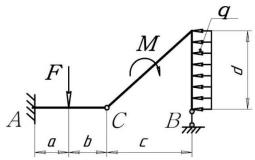
Компетенции (индикаторы): ОПК-4

3. «Уравнения: $x = f_1(t)$, $y = f_2(t)$, $z = f_3(t)$ используются при способе задания движения точки»

Правильный ответ: координатном / координатный

Компетенции (индикаторы): ОПК-4

4. Сила, приложенная к материальной точке, равна произведению массы на ускорение, вызываемое этой силой. Данное утверждение представляет собой закон динамики

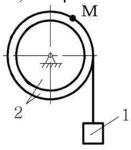

Правильный ответ: 2-й / второй / основной

Компетенции (индикаторы): ОПК-4

Задания открытого типа с кратким свободным ответом

Дайте ответ на вопрос

1. Тип связи в точке А:



Правильный ответ: заделка /жесткая заделка / защемление Компетенции (индикаторы):

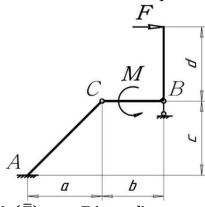
2. Какой знак имеет момент силы относительно точки, если сила стремится повернуть тело вокруг точки по часовой стрелке

Правильный ответ: минус / - / отрицательный Компетенции (индикаторы): ОПК-4

3. Как называется движение, совершаемое телом 2

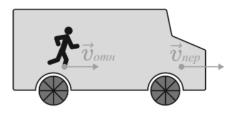
Правильный ответ: вращательное /вращательным Компетенции (индикаторы): ОПК-4

4. Точка плоской фигуры, скорость которой в данный момент времени равна нулю, называется


Правильный ответ: мгновенным центром скоростей / мгновенный центр скоростей / МЦС / мцс

Компетенции (индикаторы): ОПК-4

Задания открытого типа с развернутым ответом


Дайте ответ на вопрос

1. Момент силы F относительно точки A равен:

Правильный ответ: $M_A(\bar{F}) = -F(c+d)$ Компетенции (индикаторы): ОПК-4

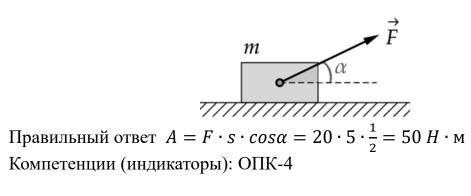
2. Автобус везёт пассажиров по прямой дороге со скоростью $v_{\rm nep}=10$ м/с. Пассажир равномерно идёт по салону автобуса со скоростью $v_{\rm отн}=1$ м/с относительно автобуса, двигаясь от задней двери к кабине водителя. Чему равен модуль v_{abc} скорости пассажира относительно дороги?

Правильный ответ: Так как пассажир идет в том же направлении, что и автобус, то векторы их скоростей складываются, поэтому абсолютная скорость равна $v_{a6c} = v_{\rm nep} + v_{\rm oth} = 10 + 1 = 11$ м/с

Компетенции (индикаторы): ОПК-4

3. Закон движения точки M задан уравнением $x=t^3+1$ м. Найти скорость v точки M в момент времени t=2 с

Правильный ответ:


Скорость точки M: $v = \frac{dx}{dt} = 3t^2$

В заданный момент времени: $v = 3 \cdot 2^2 = 12 \ \text{м/}c^2$

Компетенции (индикаторы): ОПК-4

4. Брусок двигают с помощью силы F по горизонтальной поверхности, при этом сила F=20 H и направлена под углом $\alpha=60^\circ$ к горизонту. Определите работу силы F при перемещении бруска на расстояние s=5 м.

7

Экспертное заключение

Представленный фонд оценочных средств (далее — Φ OC) по дисциплине «Теоретическая механика» соответствует требованиям Φ ГОС ВО.

Предлагаемые формы и средства текущего и промежуточного контроля адекватны целям и задачам реализации основной профессиональной образовательной программы по специальности 23.05.03 Подвижной состав железных дорог

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины представлены в полном объеме.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанный и представленный для экспертизы фонд оценочных средств рекомендуется к использованию в процессе подготовки обучающихся по указанной специальности.

Председатель учебно-методической комиссии института технологий и инженерной механики

Медин Ясуник С.Н.

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)
		-	