МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

Институт транспорта и логистики Кафедра транспортных технологий

УТВЕРЖДАЮ
Директор института

инстранспорта и логистики

транспорта
илогисты

(подпись)

(подпись)

(подпись)

(подпись)

(подпись)

(подпись)

(подпись)

(подпись)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по учебной дисциплине

Математическое моделирование систем и процессов

(наименование учебной дисциплины)

23.05.04 Эксплуатация железных дорог

(код и наименование спедиальности)

«Магистральный транспорт», «Транспортный бизнес и логистика», «Промышленный транспорт»

(наименование специалисации)

Разработчик: старший преподаватель (даживость)	(поливер) Петров А.Г.
ФОС рассмотрен и одобрен на от « 35 » фев рамо 20 2	заседании кафедры транспортных технологий ☑ г., протокол №
Заведующий кафедрой	Тарарычкин И.А.

Комплект оценочных материалов по дисциплине «Математическое моделирование систем и процессов»

Задания закрытого типа

Задания закрытого типа на выбор правильного ответа

- 1. Что является основной характеристикой детерминированной математической модели?
 - А) Случайность
 - Б) Неопределённость
 - В) Однозначность
 - Г) Вероятность

Правильный ответ: В

Компетенции (индикаторы): ОПК-1

- 2. Какой математический метод применяется для прогнозирования спроса на транспортные услуги?
 - А) Метод Монте-Карло
 - Б) Метод наименьших квадратов
 - В) Метод анализа иерархий
 - Г) Метод имитационного моделирования

Правильный ответ: Б

Компетенции (индикаторы): ОПК-1

- 3. Какой тип модели используется для описания поведения каждого отдельного транспортного средства в потоке?
 - А) Макроскопическая
 - Б) Микроскопическая
 - В) Мезоскопическая
 - Г) Статическая

Правильный ответ: Б

Компетенции (индикаторы): ОПК-2

- 4. Какой математический метод используется для анализа рисков и угроз в транспортных системах?
 - А) Теория вероятности и математическая статистика
 - Б) Линейное программирование
 - В) Теория массового обслуживания
 - Г) Теория игр

Правильный ответ: А

- 5. Что такое метод Монте-Карло?
- А) Выбор наилучшего решения из множества вариантов
- Б) Метод решения математических задач путем моделирования случайных величин
 - В) Оптимизация транспортных маршрутов
 - Г) Сбор статистических данных

Правильный ответ: Б

Компетенции (индикаторы): ОПК-2

- 6. Для моделирования какой системы часто используется теория массового обслуживания?
 - А) Организация дорожного движения
 - Б) Распределение пассажиропотока в метро
 - В) Система работы светофора
 - Г) Работа колл-центра на транспорте

Правильный ответ: Б

Компетенции (индикаторы): ОПК-2

- 7. Что описывает функция Лагранжа в контексте управления транспортными системами?
 - А) Распределение приоритетов на перекрестке
 - Б) Состояние светофора
 - В) Пробку на дороге
 - Г) Комбинированную целевую функцию с учетом ограничений

Правильный ответ: Г

Компетенции (индикаторы): ОПК-1

Задания закрытого типа на установление соответствия

1. Установите соответствие между типом математической модели и ее применением В транспортной сфере:

	Тип модели		Применение
1)	Макроскопическая модель	A)	оценка поведения отдельного
			водителя
2)	Микроскопическая модель	Б)	оптимизация маршрутов в
			транспортной сети
3)	Модель теории массового	B)	анализ времени ожидания в
	обслуживания		пункте пропуска

Правильный ответ:

1	2	3
Б	A	В

2. Установите соответствие между математическим методом и задачей, решаемой В транспортной логистике:

	Метод		Задача
1)	Линейное программирование	A)	определение оптимального
			расположения складов
2)	Теория графов	Б)	оптимизация маршрутов
			доставки
3)	Метод Монте-Карло	B)	оценка рисков при перевозке
	_		опасных грузов

Правильный ответ:

1	2	3
Б	A	В

Компетенции (индикаторы): ОПК-1

3. Установите соответствие между типом уравнения и процессом, который оно описывает:

	Тип уравнения		Процесс
1)	Дифференциальное уравнение	A)	изменение характеристик потока в транспортной сети
2)	Уравнение регрессии	Б)	определение факторов, влияющих на интенсивность транспортного потока
3)	Уравнение тренда	B)	описание динамики трафика на перекрестке

Правильный ответ:

1		
1	2	3
В	Б	A

Компетенции (индикаторы): ОПК-2

4. Установите соответствие между моделью транспортного спроса и фактором, определяющим этот спрос:

	Модель		Фактор
1)	Гравитационная модель	A)	уровень доходов населения
2)	Энтропийная модель	Б)	численность населения
3)	Модель выбора дискретного	B)	затраты времени на поездку
	типа		

Правильный ответ:

1	2	3	
Б	В	A	

Компетенции (индикаторы): ОПК-1

5. Установите соответствие между методом оптимизации и задачей, решаемой В транспортной логистике:

		Метод оптимизации		Задача
--	--	-------------------	--	--------

1)	Динамическое	A)	минимизация затрат на
	программирование		содержание складов
2)	Линейное программирование	Б)	минимизация времени
			доставки груза
3)	Теория массового обслуживания	B)	оптимальное распределение
			ресурсов в системе с
			очередями

Правильный ответ:

1	2	3
Б	A	В

Компетенции (индикаторы): ОПК-1

Задания закрытого типа на установление правильной последовательности

- 1. Расположите этапы разработки математической модели транспортной системы в правильной последовательности:
 - А) Калибровка и верификация модели
 - Б) Определение цели моделирования
 - В) Выбор математического аппарата
 - Г) Сбор данных и определение параметров модели
 - Д) Анализ и интерпретация результатов

Правильный ответ: $Б - \Gamma - B - A - Д$

Компетенции (индикаторы): ОПК-1

- 2. Расположите шаги в процессе проведения имитационного моделирования транспортного потока:
 - А) Определение логики работы модели
 - Б) Сбор информации о параметрах моделирования
 - В) Постановка задачи моделирования
 - Г) Проверка адекватности модели и корректировка параметров
 - Д) Анализ результатов моделирования

Правильный ответ: B - Б - А - Д – Γ

Компетенции (индикаторы): ОПК-1

- 3. Расположите этапы создания математической модели системы управления транспортными потоками:
 - А) Анализ имеющихся данных о транспортных потоках
 - Б) Выбор или разработка соответствующей математической модели
 - В) Формирование входных и выходных параметров модели
 - Г) Представление результатов моделирования в понятной форме
 - Д) Проверка адекватности модели реальным данным

Правильный ответ: A - B - F - A

- 4. Расположите шаги в процессе управления запасами в логистической системе:
 - А) Применение математического моделирования
 - Б) Определение целевых показателей эффективности
 - В) Анализ текущих запасов и затрат
 - Г) Анализ результатов и корректировка стратегии управления запасами
 - Д) Разработка стратегии управления запасами

Правильный ответ: В - Д - Б - А – Γ

Компетенции (индикаторы): ОПК-1

- 5. Расположите шаги по проверке и верификации модели:
- А) Проверка соответствия работы модели ожиданиям
- Б) Определение типа характеристик, необходимых для анализа
- В) Анализ влияния входных параметров на выходные
- Г) Поиск отклонений В работе модели
- д) Выбор подходящего метода проверки

Правильный ответ: $Б - Д - B - \Gamma - A$

Компетенции (индикаторы): ОПК-2

Задания открытого типа

Задания открытого типа на дополнение

Напишите пропущенное слово (словосочетание).				
1 — это математический метод, используемый для				
прогнозирования износа железнодорожного полотна на основе данных о				
нагрузках и частоте движения поездов.				
Правильный ответ: Регрессионный анализ				
Компетенции (индикаторы): ОПК-1, ОПК-2				
2. Модель применяется для оптимизации распределения поездов по путям с учетом ограничений пропускной способности. Правильный ответ: Линейное программирование Компетенции (индикаторы): ОПК-1, ОПК-2				
3. Метод позволяет оценить вероятность сбоев в движении поездов при изменении внешних условий (например, погоды).				
Правильный ответ: Метод Монте-Карло Компетенции (индикаторы): ОПК-1, ОПК-2				

Задания открытого типа с кратким свободным ответом

Дайте ответ на вопрос в виде слова или словосочетания.

1. Какой математический подход используется для минимизации времени ожидания поездов на станциях с учетом их частоты и пассажиропотока?

Правильный ответ: теория массового обслуживания

Компетенции (индикаторы): ОПК-1, ОПК-2

2. Назовите модель, которая применяется для прогнозирования нагрузки на железнодорожные узлы при увеличении количества грузовых перевозок.

Правильный ответ: имитационное моделирование

Компетенции (индикаторы): ОПК-1, ОПК-2

3. Какой метод анализа данных используется для моделирования влияния экстремальных погодных условий на график движения поездов?

Правильный ответ: стохастическое моделирование

Компетенции (индикаторы): ОПК-1, ОПК-2

Задания открытого типа с развернутым ответом

1. Опишите принцип работы GPS/ГЛОНАСС в системах мониторинга транспорта и то, как эти данные могут быть представлены в математической модели для анализа движения.

Время выполнения – 20 мин.

Ожидаемый результат:

GPS/ГЛОНАСС — глобальные навигационные спутниковые системы, использующие трилатерацию для определения местоположения. Приемник получает сигналы от нескольких спутников, измеряет время их прохождения и вычисляет расстояние до каждого спутника. На основе этих расстояний и координат спутников определяется местоположение приемника (широта, долгота, высота).

Математическая модель:

Координаты местоположения (широта, долгота) можно представить, как функции времени:

x(t), y(t).

Скорость можно вычислить как производную координат по времени:

 $v(t) = \operatorname{sqrt}((dx/dt)^2 + (dy/dt)^2).$

Ускорение можно вычислить как вторую производную координат по времени:

 $a(t) = sqrt((d^2x/dt^2)^2 + (d^2y/dt^2)^2).$

Данные о местоположении, скорости и ускорении можно использовать для анализа движения:

Критерии оценивания:

Определение средней скорости на маршруте.

Выявление участков с повышенной интенсивностью движения.

Прогнозирование времени прибытия.

Оценка стиля вождения (резкие ускорения/торможения).

Компетенции (индикаторы): ОПК-2

2. Назовите три ключевых компонента интеллектуальной транспортной системы (ИТС) и опишите, как можно разработать математические модели, описывающие их взаимодействие.

Время выполнения – 20 мин.

Ожидаемый результат:

Три ключевых компонента ИТС:

Транспортные средства: оборудованы датчиками, системами связи и управления.

Инфраструктура: дороги, светофоры, знаки, пункты оплаты проезда.

Центр управления: осуществляет сбор, обработку и анализ данных, а также принятие решений.

Математические модели взаимодействия:

Модель транспортного потока: описывает зависимость между интенсивностью движения, скоростью и плотностью потока. Примеры: модель Гриншилдса, модель Пайпса, модель Д'Анджело. Эти модели позволяют прогнозировать загруженность дорог и оптимизировать светофорное регулирование.

Критерии оценивания:

- модель распределения транспортных потоков: описывает, как транспортные средства выбирают маршруты между различными пунктами назначения. Используются принципы равновесия Вардропа, методы математического программирования.
- модель управления светофорным регулированием: описывает, как изменение параметров светофорного регулирования влияет на пропускную способность перекрестка и задержки транспорта.

Компетенции (индикаторы): ОПК-2

3. Объясните, как Big Data используется для оптимизации маршрутов грузовых перевозок и какие математические методы применяются для моделирования и решения этой задачи.

Время выполнения – 20 мин.

Ожидаемый результат:

Критерии оценивания: полное содержательное соответствие приведенному ниже пояснению:

Від Гата используется для оптимизации маршрутов грузовых перевозок путем анализа: исторических данных о трафике, погодных условиях, дорожных работах, ДТП, а также данных о местоположении транспортных средств и заказах на перевозку.

Математические методы:

алгоритмы поиска кратчайшего пути: Алгоритм Дейкстры, алгоритм А, алгоритм Флойда-Уоршелла. Используются для нахождения оптимального маршрута между двумя точками с учетом расстояния и времени в пути.

методы математического программирования: линейное программирование, целочисленное программирование. Используются для решения задач оптимизации загрузки транспортных средств, распределения грузов по маршрутам и планирования графиков движения.

Критерии оценивания:

- имитационное моделирование: создание компьютерной модели транспортной сети, позволяющей моделировать различные сценарии и оценивать их влияние на время доставки, расход топлива и другие параметры.
- методы машинного обучения: используются для прогнозирования времени в пути, выявления закономерностей в транспортных потоках и адаптации маршрутов к изменяющимся условиям.

Компетенции (индикаторы): ОПК-2

4. Какие функции выполняет телематическое оборудование в транспортных средствах и как эти данные могут быть использованы для построения математических моделей поведения водителя и транспортного средства?

Время выполнения – 20 мин.

Ожидаемый результат:

Телематическое оборудование выполняет функции: определения местоположения, сбора данных о работе TC (скорость, обороты, расход топлива), передачи данных и обеспечения связи.

Математические модели:

Модель поведения водителя:

Анализ стиля вождения: выявление резких ускорений и торможений, превышения скорости, небезопасных маневров.

Моделирование влияния усталости водителя на его реакцию и принятие решений.

Прогнозирование вероятности возникновения ДТП на основе анализа стиля вождения.

Модель транспортного средства:

Оценка технического состояния: выявление отклонений в работе двигателя, тормозной системы, трансмиссии.

Критерии оценивания:

- прогнозирование необходимости технического обслуживания и ремонта.
- оптимизация расхода топлива: выявление факторов, влияющих на расход топлива, и разработка рекомендаций по его снижению.

5. Чем отличаются локальные и глобальные сети в контексте транспортной инфраструктуры и как можно математически смоделировать передачу данных в этих сетях?

Время выполнения -20 мин.

Ожидаемый результат:

Различия LAN и WAN.

Математическое моделирование передачи данных:

модель сети массового обслуживания: представляет собой сеть, в которой запросы на передачу данных поступают с определенной интенсивностью, а каналы связи обслуживают эти запросы с определенной скоростью. Позволяет оценить задержки при передаче данных, вероятность потери пакетов и другие параметры качества обслуживания (QoS).

модель теории графов: представляет сеть в виде графа, в котором узлами являются устройства (например, компьютеры, датчики, маршрутизаторы), а ребрами - каналы связи. Позволяет анализировать связность сети, определять оптимальные маршруты передачи данных и выявлять "узкие места".

Критерии оценивания:

- модель дискретной передачи данных: модель позволяет оценивать задержки при передаче данных в зависимости от пропускной способности каналов связи.

Экспертное заключение

Представленный комплект оценочных материалов по дисциплине «Математическое моделирование систем и процессов» соответствует требованиям ФГОС ВО.

Предлагаемые оценочные материалы адекватны целям и задачам реализации основной профессиональной образовательной программы по специальности 23.05.04 Эксплуатация железных дорог.

Виды оценочных средств, включенные в представленный фонд, отвечают основным принципам формирования ФОС.

Разработанные и представленные для экспертизы оценочные материалы рекомендуются к использованию в процессе подготовки обучающихся по указанной специальности.

Председатель учебно-методической комиссии института транспорта и логистики

Иванова Е.И.

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)