МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Луганский государственный университет имени Владимира Даля» (ФГБОУ ВО «ЛГУ им. В. Даля»)

Краснодонский факультет инженерии и менеджмента (филиал) Кафедра информационных технологий и транспорта

УТВЕРЖДАЮ:

Директор

Панайотов К.К.

«21» апреля 2023 года

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ (модуля)

Лист согласования РПУД

Рабочая программа учебной дисциплины «Гидравлика специальных машин» по направлению подготовки 20.03.01 Техносферная безопасность, профиль «Защита в чрезвычайных ситуациях» -23 с.

Рабочая программа учебной дисциплины «Гидравлика специальных машин» разработана в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 20.03.01 Техносферная безопасность, утвержденного приказом Министерства образования и науки Российской Федерации от «25» мая 2020 года № 680.

СОСТАВИТЕЛЬ (СОСТАВИТЕЛИ)
к.т.н., доцент Верительник Е.А.

(ученая степень, ученое звание, должность, фамилия, инициалы)

Рабочая программа дисциплины утверждена на заседании кафедры информационных технологий и транспорта «15» марта 2023 г., протокол № 7.

Заведующий кафедрой

Бихдрикер А.С.

СОГЛАСОВАНО:

заведующий кафедрой социально-экономических дисциплин и техносферной безопасности

Черная А.М.

Рекомендована на заседании учебно-методической комиссии факультета «20» марта 2023 г., протокол № 8.

Председатель учебно-методической комиссии факультета

Замота О.Н.

[©] Верительник Е.А., 2023 год

[©] ФГБОУ ВО «ЛГУ им. В. ДАЛЯ» КФИиМ (филиал), 2023 год

Структура и содержание дисциплины

1. Цели и задачи учебной дисциплины, ее место в учебном процессе

Целью изучения дисциплины является приобретение студентами системы знаний и навыков в области гидравлики, гидромашин и гидропневмопривода.

Задачами изучения дисциплины являются: изучение гидромашин, устройств гидропневмопривода, их технико-экономических характеристик и областей применения; принципиальных схем типового оборудования, способов регулирования скорости движения выходных звеньев.

2. Место дисциплины в структуре ООП

Дисциплина «Гидравлика специальных машин» относится к блоку Б1.О25 базовой части программы бакалавриата по направлению подготовки 20.03.01 Техносферная безопасность, профиль «Защита в ЧС», относится к математическому и естественно-научному циклу.

Необходимыми условиями для освоения дисциплины являются знания

- знание основных физико-механических процессов и реакций;
- умение производить математические вычисления;
- навыки выполнения основных правил разработки и оформления машиностроительных чертежей;

Содержание дисциплины является логическим продолжением содержания дисциплин:

- «Физика» разделы: молекулярная физика, динамика, кинематика;
- «Математика» разделы: алгебра, элементы анализа, геометрия, дифференциальное и интегральное исчисление;
- «Теоретическая механика» разделы: статика (центр тяжести тела, момент инерции), динамика (импульс силы, теорема об изменении кинетической энергии), кинематика.

Служит основой для освоения дисциплин:

- «Пожарная безопасность в строительстве»;
- «Теплотехника в спасательных работах»;
- «Газодымозащитная служба»;
- «Экспертиза проектов»

3. Требования к результатам освоения содержания дисциплины

Результаты образования являются основой для формирования следующих компетенций (в соответствии с ГОС ВО 23.05.01 Наземные транспортно-технологические средства и требованиями к результатам освоения основной образовательной программы (ООП):

Код и наименование компетенции	Индикаторы достижений компетенции (по реализуемой дисциплине)	Перечень планируемых результатов
ОПК-1. Способен	ОПК-1.1. Учитывает	Знать:
учитывать современные	современные тенденции	Основные законы
тенденции развития	развития вычислительной	фундаментальных знаний.
техники и технологий в	техники, информационных	Информацию и результаты
области техносферной	технологий при решении	работ по совершенствованию
безопасности,	типовых задач в области	технологических процессов.
измерительной и	профессиональной	
вычислительной	деятельности, связанной с	Уметь:
техники,	защитой окружающей среды и	Применять методы
информационных	обеспечением безопасности	теоретических и
		экспериментальных исследований.

технологийпри решении	человека.	Использовать основные
типовых задач в области		законы фундаментальных знаний.
профессиональной		Владеть:
деятельности		Методами теоретических и
		экспериментальных исследований.
		Методами исследований по
		научно-техническому
		обоснованию.
		Системой фундаментальных
		знаний.
	ОПК-1.2 Использует научные	Знать:
	знания длярешения	Методы теоретических и
	профессиональных задач.	экспериментальных исследований.
		Инновационные технологии
		по эксплуатации транспортно-
		технологических машин.
		Методику проведения
		измерительных экспериментов.
		Уметь:
		Пользоваться
		измерительным оборудованием.
		Выполнять исследования по
		научно- техническому
		обоснованию.
		Использовать полученную
		информацию для
		совершенствования
		технологических процессов.
		Владеть:
		Технологиями по
		эксплуатации, обслуживанию и
		ремонта.
		Измерительным
		оборудованием.

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

	Объем часов (зач. ед.)		
Вид учебной работы	Очная форма	Очно- заочная форма	Заочная форма
Общая учебная нагрузка (всего)			144
	-	-	(4 зач. ед)
Обязательная аудиторная учебная нагрузка	-	-	12
(всего)			
в том числе:			
Лекции	-	-	6
Семинарские занятия	-	-	
Практические занятия	-	-	6
Лабораторные работы	-	-	
Курсовая работа (курсовой проект)	-	-	

Другие формы и методы организации образовательного процесса (расчетно-графические работы, групповые дискуссии, ролевые игры, тренинг, компьютерные симуляции, интерактивные лекции, семинары, анализ деловых ситуаций и т.п.)	-	-	
Самостоятельная работа студента (всего)	-	•	132
Форма аттестации	-	-	зачет

4.2. Содержание разделов дисциплины

Тема 1. ОБЩИЕ СВЕДЕНИЯ

1.1 Основные понятия гидравлики и физические свойства жидкостей и газов. Предмет гидравлики. История развития гидравлики как науки. Понятие о Ньютоновской жидкости и идеальной жидкости. Основные физические свойства жидкостей: удельный вес, плотность, сжимаемость, температурное расширение, вязкость жидкостей.

Тема 2. ОСНОВЫ ТЕОРИИ ЖИДКОСТЕЙ И ГАЗОВ

- 2.1 Общие законы и уравнения статики жидкостей и газов Гидростатическое давление. Свойство гидростатического давления. Уравнения равновесия жидкостей и газов (уравнения Эйлера). Основное уравнение гидростатики. Закон Паскаля. Гидростатический парадокс. Закон Архимеда. Силы гидростатического давления на плоские и криволинейные поверхности. Закон Архимеда. Основы теории плавания тел.
- 2.2 Одномерные потоки жидкостей и газов Основные виды движения жидкостей. Основные понятия струйчатого движения. Уравнение неразрывности для элементарной струйки и для потока. Дифференциальные уравнения движения невязкой (идеальной) жидкости (уравнения Эйлера). Уравнение Бернулли для элементарной струйки невязкой (идеальной) жидкости и для потока реальной жидкости. Два режима движения вязкой жидкости. Число Рейнольдса.
- 2.3 Гидравлические расчеты течения жидкостей в трубопроводах Гидравлические сопротивления. Основное уравнение равномерного движения жидкости. Расчет потерь напора при ламинарном и турбулентном режиме движения жидкости. Основы расчета трубопроводов. Формулы Шези и Дарси-Вейсбаха для расчета потерь в трубопроводах. Расчет гидравлически длинных и гидравлически коротких трубопроводов.

Тема 3. . ГИДРАВЛИЧЕСКИЕ МАШИНЫ (НАСОСЫ)

- 3.1 Общие сведения и классификация насосов Основные технические параметры насосов, классификация насосов. Динамические насосы и область их применения. Объемные насосы, конструкции объемных насосов и область их применения.
- 3.2 Основы расчета гидравлических машин Расчет динамических насосов. Основное уравнение центробежного насоса. Параллельная и последовательная работа насосов. Объемные насосы. Расчет технических параметров объемных насосов.

Тема 4. ГИДРОПНЕВМОПРИВОД

- 4.1 Общие сведения о гидропневмоприводе Общая характеристика гидропневмопривода. Рабочие жидкости для объемного гидпропневмопривода. Достоинство объемного гидропривода.
- 4.2 Основы расчета гидропневмопривода Расчет рабочих характеристик силовых гидроцилиндров. Расчет поворотных гидродвигателей. Подбор гидроаппаратуры для гидропривода.
- 4.3 Перспективы развития гидропневмопривода Создание гидропривода более экономичного и менее металлоемкого с применением современной гидропневмоаппаратуры. При проектировании гидропневмопривода применять более высокие давления рабочих жидкостей в гидросистеме.

4.3. Лекции

№ п/п	Название темы	O	бъем час	ОВ
		Очная форма	Очно- заочна я форма	Заочн ая форма
1	Общие сведения. Свойства жидкостей и газов. Основные законы гидростатики. Гидродинамика. Уравнение Д. Бернулли. Гидравлические потери. Режимы течения жидкости.	-	1	1
2	Истечение жидкости. Взаимодействие струи и преграды. Гидравлический удар. Расчет простых и сложных трубопроводов.	-	-	1
3	Гидравлические машины. Лопастные насосы. Объемные гидравлические машины (ОГМ). Поршневые и роторные насосы. Объемные гидродвигатели.	-	-	1
4	Объемные гидроприводы, их структура, область применения. Классификация. Рабочие жидкости гидропневмосистем.	-	-	
5	Гидроаппаратура. Основная и вспомогательная. Назначение и принцип действия, условное графическое обозначение в гидравлических схемах.	-		1
6	Простейшие схемы гидроприводов. Методы регулирования скорости выходного звена и их сравнительный анализ. Предварительный и статический расчет гидропривода поступательного и вращательного действия.	-	-	1
7	Пневматические приводы, их типовые схемы, особенности работы и предварительный расчет пневмоцилиндра.	-	-	1
Итого:		-	-	6

4.4. Практические занятия

№ п/п	Название темы	(Объем часов	
		Очная форма	Очно- заочная форма	Заочная форма
1	Общие сведения	-	-	0,5
2	Гидростатика	-	-	0,5
3	Гидродинамика	-	1	1
4	Гидравлические сопротивления и потеринапора на их преодоление	-	-	0,5
5	Гидравлический расчет напорных трубопроводов	-	-	1
6	Истечение жидкости через отверстия и насадки. Гидравлические струи	-	-	0,5
7	Движение жидкости в открытых каналах, безнапорных водоводах и в грунтах			0,5
8	Динамические (лопастные) насосы			0,5
9	Вихревые насосы			0,5
10	Другие типы насосов			0,5
Итого:			-	6

4.5. Лабораторные работы

Лабораторные работы учебным планом не предусмотрены

4.6. Самостоятельная работа студентов

No	4.00 Cumocionicibilan pe			Объем часов		
п/п	Название темы	Вид СРС	Очная форма	Очно- заочная форма	Заочная форма	
1	Расчет основных параметров системы гидропривода поступательного движения.	Подготовка к лабораторным работам, к текущему и промежуточному контролю знаний и умений.	-	-	20,5	
2	Определение параметров и зависимости от нагрузки и регулирования привода.	Подготовка к лабораторным работам, к текущему и промежуточному контролю знаний и умений.	-	-	20,5	
3	Расчет режимов насосной станции на систему ОГП.	Подготовка к лабораторным работам, к текущему и промежуточному контролю знаний и умений.	-	-	20,5	
4	Построение характеристик насосной системы гидропривода, определение эффективных показателей ОГП	Подготовка к лабораторным работам, к текущему и промежуточному контролю знаний и умений.	-	-	20,5	
5	Гидравлические следящие приводы различного назначения и их принципиальные схемы.	Подготовка к лабораторным работам, к текущему и промежуточному контролю знаний и умений.	-	-	20,5	
6	Выполнение индивидуальных заданий	Подготовка к лабораторным работам, к текущему и промежуточному контролю знаний и умений.	-	-	20,5	
Ито	го:			-	123	

4.7. Курсовые работы/проекты.

Курсовые работы не предусмотрены.

5. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

- традиционные объяснительно-иллюстративные технологии, которые обеспечивают доступность учебного материала для большинства студентов, системность, отработанность организационных форм и привычных методов, относительно малые затраты времени;
- технологии проблемного обучения, направленные на развитие познавательной активности, творческой самостоятельности студентов и предполагающие последовательное и целенаправленное выдвижение перед студентом познавательных задач, разрешение которых позволяет студентам активно усваивать знания (используются поисковые методы; постановка познавательных задач);
- технологии развивающего обучения, позволяющие ориентировать учебный процесс на потенциальные возможности студентов, их реализацию и развитие;
- технологии концентрированного обучения, суть которых состоит в создании максимально близкой к естественным психологическим особенностям человеческого восприятия структуры учебного процесса и которые дают возможность глубокого и системного изучения содержания учебных дисциплин за счет объединения занятий в тематические блоки;
- технологии модульного обучения, дающие возможность обеспечения гибкости процесса обучения, адаптации его к индивидуальным потребностям и особенностям обучающихся (применяются, как правило, при самостоятельном обучении студентов по индивидуальному учебному плану);
- технологии дифференцированного обучения, обеспечивающие возможность создания оптимальных условий для развития интересов и способностей студентов, в том числе и студентов с особыми образовательными потребностями, что позволяет реализовать в культурно-образовательном пространстве университета идею создания равных возможностей для получения образования
- технологии активного (контекстного) обучения, с помощью которых осуществляется моделирование предметного, проблемного и социального содержания будущей профессиональной деятельности студентов (используются активные и интерактивные методы обучения) и т.д.

Максимальная эффективность педагогического процесса достигается путем конструирования оптимального комплекса педагогических технологий и (или) их элементов на личностно-ориентированной, деятельностной, диалогической основе и использования необходимых современных средств обучения.

6. Учебно-методическое и программно-информационное обеспечение дисциплины

а) основная литература:

- 1. Никитин О.Ф., Гидравлика и гидропневмопривод / О.Ф. Никитин М. : Издательство МГТУ им. Н. Э. Баумана, 2012. 430 с. ISBN 978-5-7038-3591-3 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785703835913.html
- 2. Зуйков А.Л., Гидравлика: в 2 т. Т. 1. Основы механики жидкости : учебник / А.Л. Зуйков М.: Издательство МИСИ МГСУ, 2017. 519 с. ISBN 978-5-7264-1664-9 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785726416649.html
- 3. Ловкис 3.В., Гидравлика: учеб. пособие / 3.В. Ловкис Минск: Белорус. наука, 2012. 439 с. ISBN 978-985-08-1485-2 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9789850814852.html

4. Самарин О.Д., Гидравлические расчеты инженерных систем: Справоч. пособие / Самарин О.Д. - Издание второе, переработанное и дополненное - М.: Издательство АСВ, 2016. - 136 с. - ISBN 978-5-4323-0014-0 - Текст: электронный // ЭБС "Консультант студента": [сайт]. - URL: http://www.studentlibrary.ru/book/ISBN9785432300140.html

б) Дополнительная литература:

- 1. Камышев Л.А., Гидравлические приводы мобильных установок. Ч. 2: Элементы гидропривода мобильных установок : Учеб. пособие / Камышев Л.А., Зверев В.А., Ломакин В.В. М. : Издательство МГТУ им. Н. Э. Баумана, 2007. 104 с. ISBN 978-5-7038-2956-1 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785703829561.html
- 2. Сапухин А.А., Основы гидравлики : учебное пособие с задачами и примерами их решения / А.А. Сапухин, В.А. Курочкина М. : Издательство МИСИ МГСУ, 2017. 115 с. ISBN 978-5-7264-1627-4 Текст : электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785726416274.html
- 3. Ю.С. Васильев, Машиностроение. Гидравлические машины, агрегаты и установки. Т. IV-20 / Ю.С. Васильев, В.А. Умов, Ю.М. Исаев и др.; Под ред. Ю.С. Васильева М.: Машиностроение, 2015. 584 с. ISBN 978-5-94275-795-3 Текст : электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785942757953.html

в) интернет-ресурсы:

Министерство образования и науки Российской Федерации – http://минобрнауки.pф/
Федеральная служба по надзору в сфере образования и науки – http://obrnadzor.gov.ru/
Портал Федеральных государственных образовательных стандартов высшего образования – http://fgosvo.ru

Федеральный портал «Российское образование» – http://www.edu.ru/

Информационная система «Единое окно доступа к образовательным ресурсам» – http://window.edu.ru/

Федеральный центр информационно-образовательных ресурсов – http://fcior.edu.ru/

Электронные библиотечные системы и ресурсы

Электронно-библиотечная система «Консультант студента» – http://www.studentlibrary.ru/cgi-bin/mb4x

Электронно-библиотечная система «StudMed.ru» –https://www.studmed.ru

Информационный ресурс библиотеки образовательной организации

Научная библиотека имени А. Н. Коняева – http://biblio.dahluniver.ru/

7. Материально-техническое обеспечение дисциплины

Освоение дисциплины «Гидравлика и гидропневмопривод» предполагает использование академических аудиторий, соответствующих действующим санитарным и противопожарным правилам и нормам.

Прочее: рабочее место преподавателя, оснащенное компьютером с доступом в Интернет, рабочие места студентов, предназначенные для работы в аудитории.

Программное обеспечение:

Функциональное назначение	Бесплатное программное обеспечение	Ссылки
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu
Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx
Браузер	Opera	http://www.opera.com
Почтовый клиент	Mozilla Thunderbird	http://www.mozilla.org/ru/thunderbird
Файл-менеджер	Far Manager	http://www.farmanager.com/download.p hp
Архиватор	7Zip	http://www.7-zip.org/
Графический редактор	GIMP (GNU Image Manipulation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator
Аудиоплейер	VLC	http://www.videolan.org/vlc/
САПР	КОМПАС 3Д 12 V	https://kompas.ru

8. Фонд оценочных средств для проведения текущего контроля и промежуточной аттестации по дисциплине (модулю)

Паспорт

фонда оценочных средств по учебной дисциплине «Гидравлика и гидро- пневмоприводы»

Показатели и критерии оценивания компетенций, описание шкал оценивания

			Перечень	Контролируем	
		Индикаторы	планируемых	ые	
No	Код	достижений	результатов	разделы (темы)	Наименовани
п/	контролируемой	компетенций (по	pesjaibiuiob	учебной	е оценочного
П	компетенции	реализуемой		дисциплины	средства
11	компетенции	дисциплине)		(модуля),	ередетва
		диециплине		практики	
1	ОПК-1. Способен	ОПК-1.1.	Знать:	Тема 1	Собеседовани
1	учитывать	Учитывает	Основные	Тема 2	е (устный или
	современные	современные	законы	101114 2	письменный
	тенденции	тенденции	фундаментальных		опрос),
	развития техники	развития	знаний.		контрольная
	и технологий в	вычислительной	Информацию и		работа, тесты
	области	техники,	результаты работ		paoora, recibi
	техносферной	информационных	ПО		
	безопасности,	технологий при	совершенствовани		
	измерительной и	решении типовых	ю технологических		
	вычислительной	задач в области	процессов.		
	техники,	профессионально	Уметь:		
	информационных	й деятельности,	Применять		
	технологийпри	связанной с	методы		
	решении	защитой	теоретических и		
	типовых задач в	окружающей	экспериментальны		
	области	среды и	х исследований.		
	профессионально	обеспечением	Использовать		
	й деятельности	безопасности	основные законы		
	и деятельности	человека.	фундаментальных		
		16310Beka.	знаний.		
			Владеть:		
			Методами		
			теоретических и		
			экспериментальны		
			х исследований.		
			Методами		
			исследований по		
			научно-		
			техническому		
			обоснованию.		
			Системой		
			фундаментальных		
			знаний.		
		ОПК-1.3	Знать:	Тема 1	Собеседовани
		Использует	Методы	Тема 2	е (устный или
		научные знания	теоретических и	Тема 3	письменный

длярешения	экспериментальны	Тема 4	опрос),
профессиональны	х исследований.		контрольная
х задач.	Инновацион		работа, тесты
	ные технологии		
	по эксплуатации		
	транспортно-		
	технологических		
	машин.		
	Уметь:		
	Пользоватьс		
	я измерительным		
	оборудованием.		
	Выполнять		
	исследования по		
	научно-		
	техническому		
	обоснованию.		
	Использоват		
	ь полученную		
	информацию для		
	совершенствовани		
	я технологических		
	процессов.		
	Методику		
	проведения		
	измерительных		
	экспериментов.		
	Владеть:		
	Технологиям		
	И ПО		
	эксплуатации,		
	обслуживанию и		
	ремонта.		
	Измерительн		
	ЫМ		
	оборудованием.		

Перечень вопросов (для проведения собеседования (устный или письменный опрос))

- 1. Предмет гидравлики. История развития гидравлики как науки.
- 2. Основные физические свойства жидкостей. Понятие о невязкой (идеальной) жидкости.
- 3. Гидростатическое давление. Свойства гидростатического давления.
- 4. Дифференциальные уравнения равновесия жидкости (уравнения Эйлера).
- 5. Основное уравнение гидростатики.
- 6. Закон Паскаля.
- 7. Пьезометр и пьезометрическая высота.
- 8. Вакуум и вакууметрическая высота.
- 9. Гидростатический парадокс.
- 10. Давление жидкости на плоскую горизонтальную поверхность.
- 11. Давление жидкости на наклонную поверхность. Определение местоположения центра давления.

- 12. Эпюры гидростатического давления на плоские поверхности.
- 13.Сила гидростатического давления, действующая на криволинейные поверхности.
- 14. Закон Архимеда. Основы теории плавания тел.
- 15.Основные виды движения жидкости. Гидравлические элементы потока.
- 16. Линия тока, трубка тока и струйка.
- 17. Гидравлическое уравнение неразрывности для струйки.
- 18.Поток жидкости. Расход и средняя скорость движения жидкости в живом сечении потока.
- 19. Гидравлическое уравнение неразрывности для потока жидкости.
- 20. Дифференциальные уравнения движения невязкой (идеальной) жидкости. 21. Уравнение Бернулли для струйки невязкой (идеальной) жидкости.
- 22. Геометрический и энергетический смысл уравнения Бернулли для струйки невязкой (идеальной) жидкости.
- 23. Уравнение Бернулли для элементарной струйки реальной жидкости.
- 24. Уравнение Бернулли для потока реальной жидкости.
- 25. Понятие о гидравлическом и пьезометрическом уклонах.
- 26. Гидравлическое сопротивление. Виды гидравлических сопротивлений.
- 27. Два режима движения вязкой жидкости.
- 28. Число Рейнольдса. Определение режима движения жидкости.
- 29. Основное уравнение равномерного движения жидкости.
- 30. Распределение скоростей по живому сечению потока при ламинарном режиме в условиях установившегося движения.
- 31 Расход и средняя скорость течения в трубе при ламинарном режиме (формула Пуазейля).
- 32. Потери напора по длине при ламинарном режиме движения жидкости.
- 33. Турбулентный режим движения жидкости. Понятие о гидравлической шероховатости.
- 34. Коэффициент гидравлического сопротивления трения.
- 35.Определение местных потерь напора.
- 36.Основы расчета трубопроводов.
- 37. Расчет гидравлически длинных трубопроводов.
- 38. Расчет гидравлически коротких трубопроводов.
- 39.Истечение жидкости через отверстия и насадки.
- 40.Истечение жидкости через малое отверстие в тонкой стенке.
- 41. Истечение жидкости через насадки.
- 42.Основные технические параметры насосов.

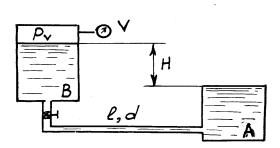
Критерии и шкала оценивания по оценочному средству собеседование (устный или письменный опрос)

Шкала оценивания	Характеристика знания предмета и ответов
отлично (5)	Студент глубоко и в полном объёме владеет программным
	материалом. Грамотно, исчерпывающе и логично его излагает в устной или письменной форме. При этом знает рекомендованную литературу, проявляет творческий подход
	в ответах на вопросы и правильно обосновывает принятые
	решения, хорошо владеет умениями и навыками при
	выполнении практических задач.
хорошо (4)	Студент знает программный материал, грамотно и по сути излагает его в устной или письменной форме, допуская
	незначительные неточности в утверждениях, трактовках,
	определениях и категориях или незначительное количество
	ошибок. При этом владеет необходимыми умениями и

	навыками при выполнении практических задач.		
удовлетворительно (3)	Студент знает только основной программный материал, допускает неточности, недостаточно чёткие формулировки, непоследовательность в ответах, излагаемых в устной или письменной форме. При этом недостаточно владеет умениями и навыками при выполнении практических задач.		
неудовлетворительно (2)	Допускает до 30% ошибок в излагаемых ответах. Студент не знает значительной части программного материала. При этом допускает принципиальные ошибки в доказательствах, в трактовке понятий и категорий, проявляет низкую культуру знаний, не владеет основными умениями и навыками при выполнении практических задач. Студент отказывается от ответов на дополнительные вопросы		

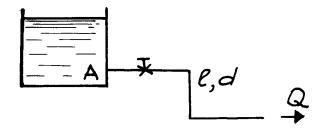
Вопросы к контрольным работам

Задача 1.

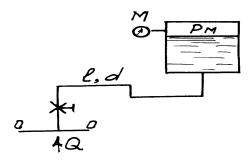

По трубопроводу размерами l_1 =5 м, d_1 =20 мм, l_2 =5 м, d_2 =40 мм подается бензин (плотность ρ =765 кг/м³, кинематическая вязкость v =0,005 Ст) из бака A с избыточным давлением $p_{\scriptscriptstyle M}$ =90 кПа в расположенный выше бак B, где поддерживается вакуум $p_{\scriptscriptstyle V}$ =30 кПа; разность уровней в баке h =6 м. Шероховатость трубопровода Δ =0,1 мм, коэффициент сопротивления вентиля ζ =4. Определить расход Q бензина.

Задача 2.

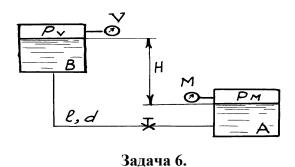
Определить расход воды (плотность $\rho=1000$ кг/м³ , кинематическая вязкость v=0.01 Ст) перетекающей из открытого бака A в бак B, где поддерживается вакуум $p_v=80$ кПа , если диаметр трубы d=20 мм, ее длина l=10 м, разница высот H=2 м, коэффициент сопротивления вентиля $\zeta_1=3$, колена


 $\zeta_2 = 1$. Шероховатость трубы $\Delta = 0.05$ мм.

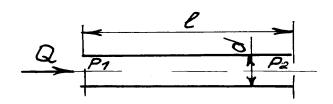
Задача 3.


Определить расход Q воды (плотность $\rho=1000$ кг/м³, кинематическая вязкость $\nu=0.01$ Ст) вытекающей из открытого бака A в атмосферу, если диаметр трубы d=20 мм, ее длина l=10 м, высота H=8 м, коэффициент сопротивления вентиля $\zeta_1=3$, колена $\zeta_2=1$. Шероховатость

трубы $\Delta = 0.05$ мм.

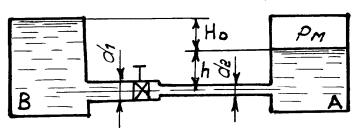

Задача 4.

Определить давление в сечении 0-0, которое необходимо создать для подачи воды (плотность $\rho=1000~{\rm kr/m^3}$, кинематическая вязкость $\nu=0,008~{\rm CT}$), если диаметр трубы $d=50~{\rm mm}$, ее длина $l=80~{\rm m}$, высота $H=30~{\rm m}$, расход жидкости $Q=15~{\rm n/c}$, давление в баке $p_{\rm M}=0,2~{\rm Mma}$, коэффициент сопротивления вентиля $\zeta_1=5$, колена $\zeta_2=0,8$. Шероховатость стенок трубы $\Delta=0,04~{\rm mm}$.

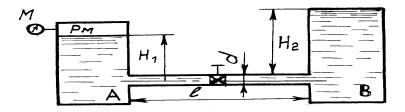


Задача 5.

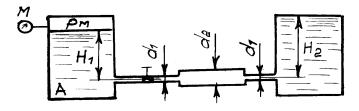
Определить расход Q воды (плотность $\rho=1000$ кг/м³, кинематическая вязкость v=0,01 Ст) вытекающей из бака A с избыточным давлением $p_{\scriptscriptstyle M}\!\!=\!\!170$ кПа в расположенный выше бак B, где поддерживается вакуум $p_{\scriptscriptstyle V}\!\!=\!\!30$ кПа; разность уровней в баке H=16 м, если диаметр трубы d=10 мм, ее длина l=20 м, коэффициент сопротивления вентиля $\zeta_I=3$, колена $\zeta_2=1$. Шероховатость трубы $\Delta=0,05$ мм.



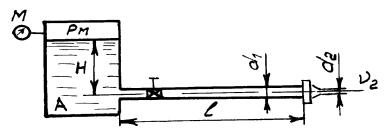
Жидкость (плотность ρ =800 кг/м³, кинематическая вязкость v =0,025 Ст) перекачивается по горизонтальной трубе длиной l=50 м, диаметром d=50 мм с расходом Q =9,8 л/с. Определить необходимый перепад давлений p_1 - p_2 для обеспечения данного расхода Q. Местные гидравлические сопротивления отсутствуют. Шероховатость стенок трубопровода Δ =0,05 мм.


Задача 7.

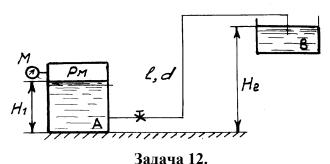
По короткому трубопроводу, участки которого имеют диаметры d_1 =70 мм, d_2 =100 мм, вода (плотность ρ =1000 кг/м³, кинематическая вязкость v =0,01 Ст) перетекает из бака A с избыточным давлением $p_{\rm M}$ =195 кПа в открытый бак B при постоянной разности уровней H_0 = 5 м. Ось трубопровода заглублена под уровень воды в правом баке на h =2 м. Определить расход Q (пренебрегая потерями на трение по длине трубы), если коэффициент сопротивления вентиля ζ =12.


Задача 8.

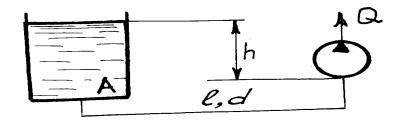
По трубопроводу, длиной l=10 м и диаметром d=100 мм, вода (плотность $\rho=1000$ кг/м³, кинематическая вязкость v=0,01 Ст) перетекает из бака A с избыточным давлением $p_{\scriptscriptstyle M}=200$ кПа в открытый бак B. Высоты уровней жидкости в баках равны соответственно $H_l=2$ м, $H_2=5$ м. . Определить расход Q, если коэффициент сопротивления вентиля $\zeta=5$, а коэффициент сопротивления гидравлического трения $\lambda=0,02$.


Задача 9.

По короткому трубопроводу, участки которого имеют диаметры d_1 =40 мм, d_2 =60 мм, вода (плотность $\rho=1000$ кг/м³, кинематическая вязкость v=0,01 Ст) перетекает из бака A с избыточным давлением $p_{\scriptscriptstyle M}$ =0,15 МПа в открытый бак B. Высоты уровней жидкости в баках равны соответственно H_1 =1 м, H_2 =2 м. Определить расход Q (считая режим движения турбулентным и пренебрегая потерями на трение по длине трубы), если коэффициент сопротивления вентиля $\zeta=3$.

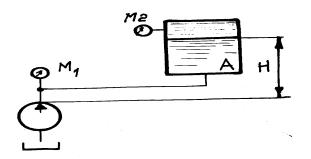

Задача 10.

Определить давление p_M в напорном баке A, необходимое для получения скорости истечения воды (плотность $\rho=1000$ кг/м³, кинематическая вязкость v=0,01 Cm) из брандспойта $v_2=20$ м/с. Длина шланга $v_3=20$ м, диаметр $v_3=20$ мм, диаметр выходного отверстия брандспойта $v_3=20$ мм. Уровень жидкости в баке находится на высоте $v_3=20$ м. Коэффициент сопротивления вентиля $v_3=20$, брандспойта (отнесенного к скорости $v_3=20$, Шланг считать гидравлически гладким.

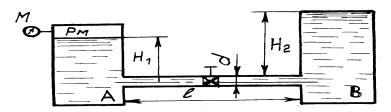


Задача 11.

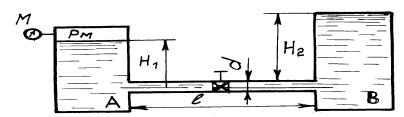
Определить расход Q воды (плотность $\rho=1000$ кг/м³, кинематическая вязкость $\nu=0.01$ Ст) вытекающей из бака A с избыточным давлением $p_{\scriptscriptstyle M}\!\!=\!\!300$ кПа в расположенный выше на высоту $H_2=\!15$ м открытый бак B; уровень жидкости в баке A - $H_1=\!6$ м, если диаметр трубы $d=\!25$ мм, ее длина $l=\!10$ м, коэффициент сопротивления вентиля $\zeta_1=\!4$, колена $\zeta_2=\!1$. Шероховатость трубы $\Delta=\!0.05$ мм.



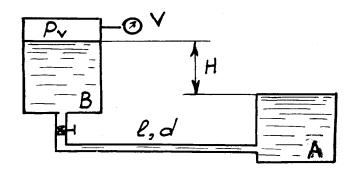
Определить избыточное давление на входе в шестеренный насос системы смазки, подающий расход Q=60 л/мин масла (относительная плотность масла δ =0,92, кинематическая вязкость v =2 Ст). Длина стального всасывающего трубопровода l=5 м, диаметр d=30 мм, шероховатость Δ =0,1 мм. Входное сечение насоса расположено ниже свободной поверхности в масляном баке на h=2 м. Местные потери напора в трубе принять равными 10% потерь на трение по длине.


Задача 13.

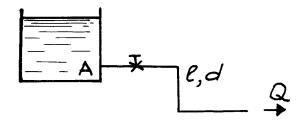
Насос подает жидкость (плотность $\rho=1000$ кг/м³, кинематическая вязкость v=0,015 Ст) в бак A, расположенный на высоте H=4 м, по трубопроводу, длиной l=10 м, шероховатость стенок $\Delta=0,05$ мм. Давление на выходе из насоса $p_{Ml}=90$ кПа , в баке A - $p_{M2}=30$ кПа. Определить диаметр трубопровода d, необходимый для подачи расхода Q=60 л/мин. Местными сопротивлениями пренебречь.


Задача 14.

По трубопроводу, длиной l=10 м, вода (плотность $\rho=1000$ кг/м³, кинематическая вязкость v=0,01 Ст) перетекает из бака A с избыточным давлением $p_{\scriptscriptstyle M}\!\!=\!\!200$ кПа в открытый бак B с расходом Q=80 л/с. Высоты уровней жидкости в баках равны соответственно $H_{\scriptscriptstyle I}\!\!=\!\!2$ м, $H_{\scriptscriptstyle 2}\!\!=\!\!5$ м. . Определить диаметр трубопровода d, если коэффициент сопротивления вентиля $\zeta=\!\!5$, а коэффициент сопротивления гидравлического трения $\lambda=\!\!0,\!\!02$.


Задача 15.

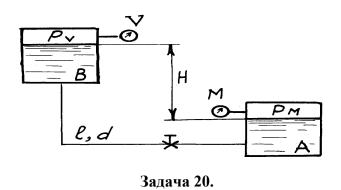
По трубопроводу, длиной l=10 м и диаметром d=100 мм, вода (плотность $\rho=1000$ кг/м³, кинематическая вязкость v=0,01 Ст) перетекает из бака A с избыточным давлением $p_{\scriptscriptstyle M}$ в открытый бак B с расходом Q=20 л/с. Высоты уровней жидкости в баках равны соответственно $H_{\scriptstyle I}=2$ м, $H_{\scriptstyle 2}=5$ м. . Определить избыточное давление $p_{\scriptscriptstyle M}$ в баке A, если коэффициент сопротивления вентиля $\zeta=5$.


Задача 16.

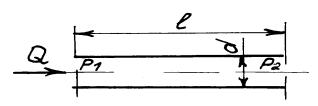
Определить диаметр трубопровода d, необходимого для пропуска расхода Q=0.5 л/с воды (плотность $\rho=1000$ кг/м³, кинематическая вязкость v=0.01 Ст) вытекающей из бака A в расположенный выше бак B, где поддерживается вакуум $p_v=70$ кПа; разность уровней в баке H=2 м, если длина трубы l=20 м, коэффициент сопротивления вентиля $\zeta_1=3$, колена $\zeta_2=1$. Шероховатость стенок трубы $\Delta=0.05$ мм.

Задача 17.

Определить диаметр трубопровода d, необходимой для пропуска расхода Q=2 л/с воды (плотность $\rho=1000$ кг/м 3 , кинематическая вязкость v=0,01 Ст) вытекающей из открытого бака A в атмосферу , если длина трубы l=10 м, высота H=8 м, коэффициент сопротивления вентиля $\zeta_1=3$, колена $\zeta_2=1$. Шероховатость трубы $\Delta=0,05$ мм.


Задача 18.

Определить диаметр трубопровода d, необходимой для пропуска расхода Q=1 л/с (плотность $\rho=1000$ кг/м³, кинематическая вязкость v=0,01 Ст) вытекающей из бака A с избыточным давлением $p_{\scriptscriptstyle M}=170$ кПа в расположенный выше бак B, где поддерживается вакуум $p_{\scriptscriptstyle V}=30$ кПа; разность уровней в баке H=16 м, если длина трубы l=20 м, коэффициент сопротивления вентиля $\zeta_I=3$, колена $\zeta_2=1$. Шероховатость трубы $\varDelta=0,05$ мм.



Задача 19.

Жидкость (плотность $\rho = 1000$ кг/м³, кинематическая вязкость v = 0.01 Ст), перетекает из бака A с избыточным давлением $p_{\scriptscriptstyle M}$ в расположенный выше бак B, где поддерживается вакуум $p_{\scriptscriptstyle V} = 30$ кПа с расходом Q = 1 л/с; разность уровней в баке H = 16 м, если длина трубы l = 20 м, диаметр d = 10 мм, коэффициент сопротивления вентиля $\zeta_{\scriptscriptstyle I} = 3$, колена $\zeta_{\scriptscriptstyle 2} = 1$. Шероховатость трубы $\Delta = 0.05$ мм. Определить необходимое давление $p_{\scriptscriptstyle M}$ в баке A.

Определить расход Q жидкости (плотность $\rho = 800$ кг/м³, кинематическая вязкость v = 0.02 Ст) в горизонтальной трубе длиной l = 40 м, диаметром d = 40 мм, если перепад давлений $p_1 - p_2$ для обеспечения данного расхода в начальном и конечном сечении трубы равен $p_1 - p_2 = 160$ кПа. Местные гидравлические сопротивления отсутствуют. Шероховатость стенок трубопровода $\Delta = 0.05$ мм.

Критерии и шкала оценивания по оценочному средству «контрольная работа»

Шкала	оценивания	Критерий оценивания	
	,	критерии оценивания	
(интервал баллов)			
	5	Контрольная работа выполнена на высоком уровне (правильные	
		ответы даны на 90-100% вопросов/задач)	
	4	Контрольная работа выполнена на среднем уровне (правильные	
		ответы даны на 75-89% вопросов/задач)	
3		Контрольная работа выполнена на низком уровне (правильные	
		ответы даны на 50-74% вопросов/задач)	
	2	2 Контрольная работа выполнена на неудовлетворительном	
		уровне (правильные ответы даны менее чем на 50%)	

Оценочные средства для промежуточной аттестации (зачёт)

- 1. Что такое линия тока и траектория частицы жидкости? Когда они совпадают? Что такое элементарная струйка, какими свойствами она обладает при установившемся лвижении жилкости?
- 2. Что называется потоком жидкости и живым сечением потока? Какими гидравлическими элементами характеризуется живое сечение потока?
- 3. Что называется расходом жидкости и средней скоростью потока?
- 4. Чем отличается движение установившееся от неустановившегося, равномерное от неравномерного, напорное от безнапорного? Приведите практические примеры.
- 5. Каково аналитическое выражение, геометрический и энергетический смысл уравнения Бернулли для элементарной струйки идеальной и реальной жидкости?
- 6. На чем основан принцип действия роторных насосов?
- 7. Какие существуют типы роторных насосов?
- 8. Какие преимущества имеют роторные насосы по сравнению с поршневыми?
- 9. Как определяется производительность шестеренчатого насоса?
- 10. Какие существуют способы регулирования производительности пластинчатых, пор-

шеньковых и шестерёнчатых насосов?

- 11. Что называется гидростатическим давлением в точке, какими двумя свойствами оно обладает?
- 12. Какие приборы называют манометрами и вакуумметрами, что они измеряют? Каким прибором измеряют разность давлений и двух различных точках жидкости?
- 13. Какие гидравлические машины называются насосами и гидравлическими двигателями?
- 14. Что называется напором насоса? Какие существуют способы определения напора? Когда какой способ применяется?
- 15. Что называется полезной, индикаторной и потребляемой мощностью насоса? Напишите выражение для этих мощностей.
- 16. Начертите схему центробежного насоса. Перечислите основные части. Укажите их назначение. В чем состоит принцип действия насоса?
- 17. Какие существуют способы регулирования производительности поршневых насосов? Почему подача этих насосов неравномерная?
- 18. Преимущества роторных насосов по сравнению с поршневыми.
- 19. Как определяется производительность шестерённого насоса?
- 20. Что такое малое отверстие и тонкая стенка?
- 21. Рабочие жидкости для гидросистем.
- 22. Силовые гидроцилиндры. Основные параметры.
- 23. Уплотнения в гидроцилиндрах.
- 24. Режимы движения жидкости в трубах.
- 25. Силовые гидроцилиндры. Основные параметры.
- 26. Уплотнения в гидроцилиндрах.
- 27. Режимы движения жидкости в трубах.
- 28. Конструкция и расчет мембранной пневмокамеры.
- 29. Порядок расчета маслопровода.
- 30. Вязкость жидкости. Приборы для определения вязкости.
- 31. Растворимость газов в жидкости. Кавитация.
- 32. Гидравлический следящий привод.
- 33. Шаговый электрогидропривод.

Критерии и шкала оценивания к промежуточной аттестации «зачёт»

Национальная шкала	Характеристика знания предмета и ответов		
Зачтено	Студент глубоко и в полном объёме владеет программным		
	материалом. Грамотно, исчерпывающе и логично его		
	излагает в устной или письменной форме. При этом знает		
	рекомендованную литературу, проявляет творческий подход		
	в ответах на вопросы и правильно обосновывает принятые		
	решения, хорошо владеет умениями и навыками при		
	выполнении практических задач.		
	Студент знает программный материал, грамотно и по сути		
	излагает его в устной или письменной форме, допуская		
	незначительные неточности в утверждениях, трактовках,		
	определениях и категориях или незначительное количество		
	ошибок. При этом владеет необходимыми умениями и		
	навыками при выполнении практических задач.		
	Студент знает только основной программный материал,		
	допускает неточности, недостаточно чёткие формулировки,		
	непоследовательность в ответах, излагаемых в устной или		
	письменной форме. При этом недостаточно владеет		

	умениями и навыками при выполнении практических задач.			
	Допускает до 30% ошибок в излагаемых ответах.			
Незачтено	Студент не знает значительной части программного			
	материала. При этом допускает принципиальные ошибки в			
	доказательствах, в трактовке понятий и категорий, проявляет			
	низкую культуру знаний, не владеет основными умениями и			
	навыками при выполнении практических задач. Студент			
	отказывается от ответов на дополнительные вопросы			

9. Особенности организации обучения для лиц с ограниченными возможностями здоровья и инвалидов

При необходимости рабочая программа учебной дисциплины может быть адаптирована для обеспечения образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья, в том числе с применением электронного обучения и дистанционных образовательных технологий.

Для этого требуется заявление студента (его законного представителя) и заключение психолого-медико-педагогической комиссии (ПМПК). В случае необходимости обучающимся из числа лиц с ограниченными возможностями здоровья (по заявлению обучающегося), а для инвалидов также в соответствии с индивидуальной программой реабилитации инвалида могут предлагаться следующие варианты восприятия учебной информации с учетом их индивидуальных психофизических особенностей:

- создание текстовой версии любого нетекстового контента для его возможного преобразования в альтернативные формы, удобные для различных пользователей;
- создание контента, который можно представить в различных видах без потери данных или структуры, предусмотреть возможность масштабирования текста и изображений без потери качества, предусмотреть доступность управления контентом с клавиатуры;
- создание возможностей для обучающихся воспринимать одну и ту же информацию из разных источников, например, так, чтобы лица с нарушениями слуха получали информацию визуально, с нарушениями зрения аудиально;
- применение программных средств, обеспечивающих возможность освоения навыков и умений, формируемых дисциплиной (модулем), за счёт альтернативных способов, в том числе виртуальных лабораторий и симуляционных технологий;
- применение электронного обучения, дистанционных образовательных технологий для передачи информации, организации различных форм интерактивной контактной работы обучающегося с преподавателем, в том числе вебинаров, которые могут быть использованы для проведения виртуальных лекций с возможностью взаимодействия всех участников дистанционного обучения, проведения семинаров, выступления с докладами и защиты выполненных работ, проведения тренингов, организации коллективной работы;
- применение электронного обучения, дистанционных образовательных технологий для организации форм текущего и промежуточного контроля;
- увеличение продолжительности сдачи обучающимся инвалидом или лицом с ограниченными возможностями здоровья форм промежуточной аттестации по отношению к установленной продолжительности их сдачи:
- продолжительность сдачи зачёта или экзамена, проводимого в письменной форме, не более чем на 90 минут;
- продолжительность подготовки обучающегося к ответу на зачёте или экзамене, проводимом в устной форме, не более чем на 20 минут; продолжительность выступления обучающегося при защите курсовой работы не более чем на 15 минут.

Лист изменений и дополнений

No	Виды дополнений и	Дата и номер протокола	Подпись (с расшифровкой)
п/п	изменений	заседания кафедры	заведующего кафедрой
		(кафедр), на котором были	(заведующих кафедрами)
		рассмотрены и одобрены	
		изменения и дополнения	