МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Луганский государственный университет имени Владимира Даля»

Стахановский инженерно-педагогический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Луганский государственный университет имени Владимира Даля»

Кафедра электромеханики и транспортных систем

		УТВЕРЖДАЮ:
)	Директо	р СИПИ (филиала)
ΦГБ	ОУ ВО	«ЛГУ им. В. Даля»
		А.А. Авершин
	(п	одпись)
‹ ‹	>>	2023 года

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ «ОСНОВЫ ГИДРАВЛИКИ И ТЕПЛОТЕХНИКИ»

по направлению подготовки: 13.03.02 Электроэнергетика и электротехника профиль: «Электроснабжение»

Лист согласования РПУД

Рабочая программа учебной дисциплины «Основы гидравлики и теплотехники» по направлению подготовки 13.03.02 Электроэнергетика и электротехника – $28\,$ с.

Рабочая программа учебной дисциплины «Основы гидравлики и теплотехники» разработана в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 13.03.02 Электроэнергетика и электротехника, утвержденного приказом Министерства образования и науки Российской Федерации от 28 февраля 2018 года № 144 (с изменениями и дополнениями от 26 ноября 2020 г., 8 февраля 2021 г., 19 июля 2022 г.).

СОСТАВИТЕЛИ:

канд. техн. наук, доцент Петров А.Г. канд. психол. наук, доцент Авершин А.А.

Рабочая программа дисциплины утверждена на заседании	кафе	дры элек-
тромеханики и транспортных систем «»202	3г.,	протокол
$\mathcal{N}_{\underline{0}}$		
Заведующий кафедрой электромеханики и		
транспортных системА.Г.П етров		
Переутверждена: «» 20 г., протокол №		
переутверждена. «»20т., протокол №		•
Переутверждена: «»20 г., протокол №		
Рекомендована на заседании учебно-методической комис	есии (Стаханов-
ского инженерно-педагогического института (филиала) федер		
дарственного бюджетного образовательного учреждения высп	-	•
ния «Луганский государственный университет имени Владимир		•
2023 г., протокол №	ла да	
2023 1., hpotokosi 312		
Председатель учебно-методической комиссии		
СИПИ (фициала) ФГБОУ ВО «ЛГУ им В Лаля»	ΗВ	Банник

[©] Петров А.Г., Авершин А.А., 2023 год

[©] ФГБОУ ВО «ЛГУ им. В. Даля», 2023 год

Структура и содержание дисциплины

1. Цели и задачи дисциплины, ее место в учебном процессе

Цель изучения дисциплины — получение знаний основных закономерностей равновесия и движения жидкостей, законов термодинамики и теплообмена для решения практических задач в области проектирования, создания и эксплуатации гидравлических и теплотехнических систем.

Задачи: изучение теоретических основ гидравлики и теплотехники, основных расчетных формул и методов их применения к решению задач инженерной практики.

2. Место дисциплины в структуре ООП ВО

Дисциплина «Основы гидравлики и теплотехники» входит часть дисциплин, формируемую участниками образовательных отношений.

Содержание дисциплины является логическим продолжением содержания дисциплин: «Высшая математика», «Физика», «Химия» и является основой для изучения следующих дисциплин: «Электромеханические установки», «Теоретическая и прикладная механика».

3. Требования к результатам освоения содержания дисциплины

Код и наименование компетенции	Индикаторы достижений компе- тенции (по реализуемой дисци- плине)	Перечень планируемых результатов
УК-2. Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	УК-2.1. Проводит декомпозицию поставленной цели проекта в задачах УК-2.2. Демонстрирует знание правовых норм достижения поставленной цели в сфере реализации проекта УК-2.3. Демонстрирует умение определять имеющиеся ресурсы для достижения цели проекта УК-2.4. Осуществляет поиск необходимой информации для достижения задач проекта УК-2.5. Выявляет и анализирует различные способы решения задач в рамках цели проекта и аргументирует их выбор	Знать: правовую структуру общества и место выполняемой профессиональной деятельности в этой структуре; знает основы действующего законодательства Российской Федерации применительно к профессиональной деятельности. Уметь: планировать собственную деятельность с учетом ограниченности ресурсов в рамках допустимых законодательством средств и методов; осуществлять поиск информации для решения поставленных задач и критически ее анализировать; применять методы критического анализа и синтеза информации, необходимой для решения поставленных задач; грамотно, логично, аргументированно формировать собственные суждения и оценки; отличать факты от мнений, интерпретаций и оценок; применять методы системного подхода при решении поставленных задач.

ОПК-3. Способен применять соответствующий физико- математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	ОПК-3.1. Применяет математический аппарат аналитической геометрии, линейной алгебры, дифференциального и интегрального исчисления функции одной переменной. ОПК-3.2. Применяет математический аппарат теории функции нескольких переменных, теории функций комплексного переменного, теории рядов, теории дифференциальных уравнений. ОПК-3.3. Применяет математиче-	Владеть: практическим опытом подбора правовых норм и определения экономических условий для решения конкретных профессиональных задач; методами системного и критического мышления. Знать: основы и законы физических явлений гидравлики и теплотехники; основные законы равновесия жидкости и газа; основные закономерности теплопроводности, переноса теплоты и теплообмена; величины, характеризующие указанные процессы; основные величины гидравлики и теплотехники; Уметь: решать уравнения гидравлики и теплотехники на основе современного математического аппарата; пользоваться
	ский аппарат теории вероятностей и математической статистики. ОПК-3.4. Применяет математический аппарат численных методов. ОПК-3.5. Демонстрирует понимание физических явлений и применяет законы механики, термодинамики, электричества и магнетизма. ОПК-3.6. Демонстрирует знание элементарных основ оптики, квантовой механики и атомной физики.	справочной научно- технической литературой; оце- нивать полученные результаты расчетов; составлять рекомен- дации для эффективной работы гидравлических и теплотехни- ческих систем при решении профессиональных задач; Владеть: навыками работы с современной научно- технической литературой по гидравлике и теплотехнике; навыками и основными мето- дами решения математических задач молекулярной физики; первичными навыками и ос- новными методами решения задач гидравлики и теплотех-
ПК-3 — Способен обеспечить инженернотехническое сопровождение деятельности по техническому обслуживанию и ремонту устройств РЗА	ПК 3.1 Способен выполнить работы по техническому обслуживанию и ремонту устройств РЗА. ПК 3.2 Осуществляет расчет уставок устройств РЗА. ПК 3.3 Обеспечивает ведение нормативно-технической документации по техническому обслуживанию устройств РЗА.	ники. Знать: действующие стандарты, технические условия, положения и инструкции по эксплуатации оборудования, программы испытаний; материальнотехническую базу, обслуживаемого оборудования РЗА; Уметь: выбирать изоляционные расстояния, оценивать надежность открытых распределительных устройств и воздушных линий электропередачи, определять необходимые параметры нелинейных ограничителей перенапряжений и вентильных разрядников; Владеть: высокой мотивацией к выполнению профессиональной деятельности; широкой общей подготовкой (базовыми знаниями) для решения практи-

			гидравлике и
теплоте	хнике;	Н	авыками рабо-
ТЫ	c		контрольно-
измерит	гельны	ИИ	приборами.

4. Структура и содержание дисциплин

4.1. Объем учебной дисциплины и виды учебной работы

	Объем часов (зач. ед.)			
Вид учебной работы	Очная форма	Очно- заочная форма	Заочная форма	
Общая учебная нагрузка (всего)	252 (7,0 3.e.)	-	252 (7,0 3.e.)	
Обязательная аудиторная учебная нагрузка	124	-	32	
(всего)				
в том числе:				
Лекции	70	ı	14	
Семинарские занятия	-	ı	-	
Практические занятия	36		12	
Лабораторные работы	18	-	6	
Курсовая работа (курсовой проект)	-	-	-	
Другие формы и методы организации образователь-		-		
НОГО ПРОЦЕССА (расчетно-графические работы, групповые дискус- сии, ролевые игры, тренинг, компьютерные симуляции, интерактивные лекции, семинары, анализ деловых ситуаций и т.п.)				
Самостоятельная работа студента (всего)	128	-	220	
Форма аттестации	зачет	_	зачет	
Форма аттестации	экзамен	ı	экзамен	

4.2. Содержание разделов дисциплины

- Тема 1. Введение. Применение гидравлики и теплотехники в промышленности. Задачи курса.
- Тема 2. Гидростатика. Давление в точке неподвижной жидкости. Основные физические свойства жидкости. Силы, действующие в жидкости.
- Тема 3. Основы кинематики жидкости. Гидравлические элементы потока. Виды потока: живое сечение потока, расход, средняя скорость.
- Тема 4. Основы гидродинамики. Уравнение Бернулли. Энергетический смысл уравнения Бернулли. Практическое применение уравнений Бернулли в гидравлике.
- Тема 5. Гидравлические сопротивления. Режимы движения. Потери напора по длине потока и в местных сопротивлениях. Эксперименты Рейнольдса. Ламинарные и турбулентные режимы движения и их закономерности. Общая методика определения режима работы центробежного насоса.
- Тема 6. Гидропривод. Основные элементы гидропривода. Область применения. Баланс мощностей в гидроприводе. Объемный гидропривод. Объемные насосы и гидродвигатели.
- Teма 7. Термодинамические процессы. Понятие об обратимых и необратимых процессах.

Тема 8. Законы термодинамики. Циклы. Первый закон термодинамики и его аналитические выражения. Вычисление работы процесса. Тепловая диаграмма. Второй закон термодинамики и его основные формулировки. Понятие о циклах.

Тема 9. Циклы тепловых двигателей и холодильных установок. Термический КПД и методы его повышения. Холодильный коэффициент.

Тема 10. Способы теплообмена. Способы распространения теплоты. Сложный теплообмен.

Тема 11. Определение тепловых потоков. Закон Фурье. Гипотеза Ньютона-Рихмана. Уравнение теплопередачи. Физический смысл коэффициентов теплоотдачи и теплопередачи.

Тема 12. Теплопроводность. Дифференциальное уравнение теплопроводности. Коэффициент теплопроводности. Теплопроводность плоских и цилиндрических стенок. Изоляционные материалы.

Тема 13. Конвективный теплообмен. Основные понятия и определения. Природа движения теплоносителя. Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи.

Тема 14. Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопередачи.

Тема 15. Расчет теплообменного аппарата.

4.3. Лекции

			Объем часо)B
№ п/п	Наименование	Очная форма	Очно- заочная форма	Заочная форма
	3 семестр			
1	Введение. Применение гидравлики и теплотехники в промышленности. Задачи курса.	4	-	1
2	Гидростатика. Давление в точке неподвижной жидкости. Основные физические свойства жидкости. Силы, действующие в жидкости.	6	-	2
3	Основы кинематики жидкости. Гидравлические элементы потока. Виды потока: живое сечение потока, расход, средняя скорость.	6	-	2
4	Основы гидродинамики. Уравнение Бернулли. Энергетический смысл уравнения Бернулли. Практическое применение уравнений Бернулли в гидравлике.	6	-	1
5	Гидравлические сопротивления. Режимы движения. Потери напора по длине потока и в местных сопротивлениях. Эксперименты Рейнольдса. Ламинарные и турбулентные режимы движения и их закономерности. Общая методика определения режима работы центробежного насоса.	6	-	1
6	Гидропривод. Основные элементы гидропривода.	6	-	1

воде. Объемный гидропривод. Объемные насосы и гидродвигатели. 4 семстр 7 Термодинамические процессы. Понятие об обратимых и необратимых процессах. 8 Законы термодинамики. Циклы. Первый закон термодинамики и его аналитические выражения. 9 Вычисление работы процесса. Тепловая диаграмма. Второй закон термодинамики и его основные формулировки. Понятие о щиклах. 10 Способы теплообмена. Способы распространения теплоты. Сложный теплообмен. 11 Определение тепловых потоков. Закон Фурье. Гипотеза Ньютона-Рихмана. Уравнение теплопередачи. Физический смысл коэффициентов теплоотдачи и теплопроводность. Дифференциальное уравнение теплопроводность плоских и цилиндрических стенок. Изоляционные материалы. 13 Конвективный теплообмен. Основные понятия и определения. Природа движения теплопосителя. Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнении подобия. Частные задачи процессов теплоотдачи. 14 Теплопередача. Теплообменные аппараты. Теплопередачи через плоские и цилиндрические стенки. Интенсификация теплопоские и цилиндрические стенки. Интенсификация теплопередачи. 15 Расчет теплообменного аппарата. 4 - Итого 70 - 14		Область применения. Баланс мощностей в гидропри-			
4 семестр 7 Термодинамические процессы. Понятие об обратимых и необратимых и рего аналитические выражения. 4 - 1 8 Законы термодинамики. Циклы. Первый закон термодинамики и его аналитические выражения. 4 - 1 9 Вычисление работы процесса. Тепловая диаграмма. Второй закон термодинамики и его основные формулировки. Понятие о циклах. 4 - 1 10 Способы теплообмена. Способы распространения теплоты. Сложный теплообмен. 4 - 1 11 Определение тепловых потоков. Закон Фурье. Гипотеза Ньютона-Рихмана. Уравнение теплопередачи. Физический смысл коэффициенто теплопередачи и теплопроводность. Дифференциальное уравнение теплопроводности. Теплопроводность плоских и цилиндрических стенок. Изолящионные материалы. 4 - 1 12 Теплопроводность плоских и цилиндрических стенок. Изолящионные материалы. 4 - 1 13 Конвективный теплообмен. Основные понятия и определения. Природа движения теплоносителя. Ссвободное и вынужденное движения Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопоередачи. 4 - 1 15 Расчет теплообменного аппарата. 4 1		воде. Объемный гидропривод. Объемные насосы и			
7 Термодинамические процессы. Понятие об обратимых и необратимых процессах. 4 - 1 8 Законы термодинамики. Циклы. Первый закон термодинамики и его аналитические выражения. 4 - 1 9 Вычисление работы процесса. Тепловая диаграмма. Второй закон термодинамики и его основные формулировки. Понятие о циклах. 4 - 1 10 Способы теплообмена. Способы распространения теплоты. Сложный теплообмен. 4 - 1 11 Определение тепловых потоков. Закон Фурье. Гипотеза Ньотона-Рихмана. Уравнение теплопередачи. Физический смысл коэффициентов теплоотдачи и теплопроводность. Дифференциальное уравнение теплопроводности. Коэффициент теплопроводности. Теплопроводности. Коэффициент теплопроводности. Теплопроводность плоских и цилиндрических стенок. Изоляционные материалы. 4 - 1 13 Конвективный теплообмен. Основные понятия и определения. Природа движения теплоносителя. Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 4 - - 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплонобменного аппарата. 4 - 1 15 Расчет теплообменного аппарата. 4 - -		*			
мых и необратимых процессах. 8 Законы термодинамики. Циклы. Первый закон термодинамики и его аналитические выражения. 9 Вычисление работы процесса. Тепловая диаграмма. Второй закон термодинамики и его основные формулировки. Понятие о циклах. 10 Способы теплообмена. Способы распространения теплоты. Сложный теплообмен. 11 Определение тепловых потоков. Закон Фурье. Гипотеза Ньютона-Рихмана. Уравнение теплопередачи. Физический смысл коэффициентов теплоотдачи и теплопередачи. 12 Теплопроводность. Дифференциальное уравнение теплопроводности. Коэффициент теплопроводности. Теплопроводность плоских и цилиндрических стенок. Изоляционные материалы. 13 Конвективный теплообмен. Основные понятия и определения. Природа движения теплоносителя. Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопосредачи. 15 Расчет теплообменного аппарата.					
8 Законы термодинамики. Циклы. Первый закон термодинамики и его аналитические выражения. 4 - 1 9 Вычисление работы процесса. Тепловая диаграмма. Второй закон термодинамики и его основные формулировки. Понятие о циклах. 4 - 1 10 Способы теплообмена. Способы распространения теплоты. Сложный теплообмен. 4 - 1 11 Определение тепловых потоков. Закон Фурье. Гипотеза Ньютона-Рихмана. Уравнение теплопередачи. Физический смысл коэффициентов теплоотдачи и теплопередачи. 4 - - 12 Теплопроводность. Дифференциальное уравнение теплопроводности. Теплопроводность плоских и цилиндрических стенок. Изоляционные материалы. 4 - 1 13 Конвективный теплообмен. Основные понятия и определения. Природа движения теплоносителя. Свободное и вынужденное движения Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 4 - 1 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопередачи. 4 - 1 15 Расчет теплообменного аппарата. 4 - - -	7	•	4	-	1
модинамики и его аналитические выражения. 9 Вычисление работы процесса. Тепловая диаграмма. Второй закон термодинамики и его основные формулировки. Понятие о циклах. 10 Способы теплообмена. Способы распространения теплоты. Сложный теплообмен. 11 Определение тепловых потоков. Закон Фурье. Гипотеза Ньютона-Рихмана. Уравнение теплопередачи. Физический смысл коэффициентов теплоотдачи и теплопередачи. 12 Теплопроводность. Дифференциальное уравнение теплопроводности. Коэффициент теплопроводности. Теплопроводность плоских и цилиндрических стенок. Изоляционные материалы. 13 Конвективный теплообмен. Основные понятия и определения. Природа движения теплоносителя. Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопосредачи. 15 Расчет теплообменного аппарата. 4 - 1					
9 Вычисление работы процесса. Тепловая диаграмма. Второй закон термодинамики и его основные формулировки. Понятие о циклах. 4 - 1 10 Способы теплообмена. Способы распространения теплоты. Сложный теплообмен. 4 - 1 11 Определение тепловых потоков. Закон Фурье. Гипотеза Ньютона-Рихмана. Уравнение теплопередачи. Физический смысл коэффициентов теплоотдачи и теплопередачи. 4 - - 12 Теплопроводность. Дифференциальное уравнение теплопроводности. Коэффициент теплопроводности. Теплопроводности плоских и цилиндрических стенок. Изоляционные материалы. 4 - 1 13 Конвективный теплообмен. Основные понятия и определения. Природа движения теплоносителя. Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 4 - 1 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопередачи. 4 - 1 15 Расчет теплообменного аппарата. 4 - - -	8	1	4	-	1
Второй закон термодинамики и его основные формулировки. Понятие о циклах. 10 Способы теплообмена. Способы распространения теплоты. Сложный теплообмен. 11 Определение тепловых потоков. Закон Фурье. Гипотеза Ньютона-Рихмана. Уравнение теплопередачи. Физический смысл коэффициентов теплоотдачи и теплопередачи. 12 Теплопроводность. Дифференциальное уравнение теплопроводности. Коэффициент теплопроводности. Теплопроводности коэффициент теплопроводности. Теплопроводность плоских и цилиндрических стенок. Изоляционные материалы. 13 Конвективный теплообмен. Основные понятия и определения. Природа движения теплоносителя. Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопередачи. 15 Расчет теплообменного аппарата.		1			
мулировки. Понятие о циклах. 10 Способы теплообмена. Способы распространения теплоты. Сложный теплообмен. 11 Определение тепловых потоков. Закон Фурье. Гипотеза Ньютона-Рихмана. Уравнение теплопередачи. Физический смысл коэффициентов теплоотдачи и теплопередачи. 12 Теплопроводность. Дифференциальное уравнение теплопроводности. Коэффициент теплопроводности. Теплопроводность плоских и цилиндрических стенок. Изоляционные материалы. 13 Конвективный теплообмен. Основные понятия и определения. Природа движения теплоносителя. Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 14 Теплопередача. Теплообменные аппараты. Теплопередачи. Числение и цилиндрические стенки. Интенсификация теплопередачи. 15 Расчет теплообменного аппарата.	9	1 1	4	-	1
10 Способы теплообмена. Способы распространения теплоты. Сложный теплообмен. 4 - 1 11 Определение тепловых потоков. Закон Фурье. Гипотеза Ньютона-Рихмана. Уравнение теплопередачи. Физический смысл коэффициентов теплоотдачи и теплопередачи. 4 - 12 Теплопроводность. Дифференциальное уравнение теплопроводности. Теплопроводности. Коэффициент теплопроводности. Теплопроводность плоских и цилиндрических стенок. Изоляционные материалы. 4 - 1 13 Конвективный теплообмен. Основные понятия и определения. Природа движения теплоносителя. Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 4 - 1 14 Теплопередача. Теплообменные аппараты. Теплопередачи. через плоские и цилиндрические стенки. Интенсификация теплопередачи. 4 - 1 15 Расчет теплообменного аппарата. 4 - - -					
теплоты. Сложный теплообмен. 11 Определение тепловых потоков. Закон Фурье. Гипотеза Ньютона-Рихмана. Уравнение теплопередачи. Физический смысл коэффициентов теплоотдачи и теплопередачи. 12 Теплопроводность. Дифференциальное уравнение теплопороводности. Коэффициент теплопроводности. Теплопроводность плоских и цилиндрических стенок. Изоляционные материалы. 13 Конвективный теплообмен. Основные понятия и определения. Природа движения теплоносителя. Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопередачи. 15 Расчет теплообменного аппарата.		мулировки. Понятие о циклах.			
11 Определение тепловых потоков. Закон Фурье. Гипотеза Ньютона-Рихмана. Уравнение теплопередачи. Физический смысл коэффициентов теплоотдачи и теплопередачи. 4 - 12 Теплопроводность. Дифференциальное уравнение теплопроводности. Коэффициент теплопроводности. Теплопроводность плоских и цилиндрических стенок. Изоляционные материалы. 4 - 13 Конвективный теплообмен. Основные понятия и определения. Природа движения теплоносителя. Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 4 - 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопередачи. 4 - 15 Расчет теплообменного аппарата. 4 -	10	Способы теплообмена. Способы распространения	4	-	1
теза Ньютона-Рихмана. Уравнение теплопередачи. Физический смысл коэффициентов теплоотдачи и теплопередачи. 12 Теплопроводность. Дифференциальное уравнение теплопроводности. Коэффициент теплопроводности. Теплопроводности плоских и цилиндрических стенок. Изоляционные материалы. 13 Конвективный теплообмен. Основные понятия и определения. Природа движения теплоносителя. Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопередачи. 15 Расчет теплообменного аппарата.		теплоты. Сложный теплообмен.			
Физический смысл коэффициентов теплоотдачи и теплопередачи. 4 - 1 12 Теплопроводность. Дифференциальное уравнение теплопроводности. Коэффициент теплопроводности. Теплопроводность плоских и цилиндрических стенок. Изоляционные материалы. 4 - - 13 Конвективный теплообмен. Основные понятия и определения. Природа движения теплоносителя. Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 4 - 1 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопередачи. 4 - 1 15 Расчет теплообменного аппарата. 4 - - -	11	Определение тепловых потоков. Закон Фурье. Гипо-	4	-	
теплопередачи. 12 Теплопроводность. Дифференциальное уравнение теплопроводности. Коэффициент теплопроводности. Теплопроводность плоских и цилиндрических стенок. Изоляционные материалы. 13 Конвективный теплообмен. Основные понятия и определения. Природа движения теплоносителя. Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопередачи. 15 Расчет теплообменного аппарата.					
12 Теплопроводность. Дифференциальное уравнение теплопроводности. Коэффициент теплопроводности. Теплопроводность плоских и цилиндрических стенок. Изоляционные материалы. 4 - 1 13 Конвективный теплообмен. Основные понятия и определения. Природа движения теплоносителя. Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 4 - 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопередачи. 4 - 15 Расчет теплообменного аппарата. 4 -		Физический смысл коэффициентов теплоотдачи и			
теплопроводности. Коэффициент теплопроводности. Теплопроводность плоских и цилиндрических стенок. Изоляционные материалы. 13 Конвективный теплообмен. Основные понятия и определения. Природа движения теплоносителя. Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопередачи. 15 Расчет теплообменного аппарата.		теплопередачи.			
Теплопроводность плоских и цилиндрических стенок. Изоляционные материалы. 13 Конвективный теплообмен. Основные понятия и определения. Природа движения теплоносителя. Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопередачи. 15 Расчет теплообменного аппарата. 4 - 1	12	Теплопроводность. Дифференциальное уравнение	4	-	1
нок. Изоляционные материалы. 13 Конвективный теплообмен. Основные понятия и определения. Природа движения теплоносителя. Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопередачи. 15 Расчет теплообменного аппарата. 4		теплопроводности. Коэффициент теплопроводности.			
13 Конвективный теплообмен. Основные понятия и определения. Природа движения теплоносителя. Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 4 - 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопередачи. 4 - 1 15 Расчет теплообменного аппарата. 4 - -					
определения. Природа движения теплоносителя. Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопередачи. 15 Расчет теплообменного аппарата. 4 -		нок. Изоляционные материалы.			
Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопередачи. 15 Расчет теплообменного аппарата. 4 -	13	Конвективный теплообмен. Основные понятия и	4	-	
жения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопередачи. 15 Расчет теплообменного аппарата. 4 -		определения. Природа движения теплоносителя.			
ла подобия. Уравнения подобия. Частные задачи процессов теплоотдачи. 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопередачи. 15 Расчет теплообменного аппарата. 4 -					
процессов теплоотдачи. 14 Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопередачи. 15 Расчет теплообменного аппарата. 4 -					
14 Теплопередача. Теплообменные аппараты. Теплопередача. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопередачи. 4 - 1 15 Расчет теплообменного аппарата. 4 -		ла подобия. Уравнения подобия. Частные задачи			
редача через плоские и цилиндрические стенки. Интенсификация теплопередачи. 15 Расчет теплообменного аппарата. 4 -					
тенсификация теплопередачи. 4 15 Расчет теплообменного аппарата. 4	14		4	-	1
15 Расчет теплообменного аппарата. 4 -					
		тенсификация теплопередачи.			
Итого 70 - 14	15	Расчет теплообменного аппарата.	4	-	
	Ит	ОГО	70	-	14

4.4. Практические (семинарские) занятия

		Объем часов		
№ п/п	Название темы		Очно- заочная форма	Заочная форма
	3 семестр			_
1	Силы гидростатического давления на плоские и кри-	4	-	2
	волинейные поверхности.			
2	Уравнение Бернулли. Гидравлические сопротивления.	4	-	2
3	Гидравлический расчет напорных трубопроводов.	4	•	2
4	Насосная установка и ее характеристики. Работа насо-	6	-	2
	са на сеть.			
	4 семестр			
5	Расчет объемного гидропривода.	2	-	
6	Техническая термодинамика.	4	-	1
7	Основы теории теплообмена.	4	-	1
8	Идеальные циклы тепловых машин.	4	-	1
9	Циклы компрессоров и холодильных машин.	4	-	1
	Итого	36	-	12

4.5. Лабораторные работы

			Объем час	0В
№ п/п	Название темы		Очно- заочная форма	Заочная форма
1	Тарирование расходомера	2	-	2
2	Определение коэффициента сопротивления трения по длине трубопровода	2	-	
3	Определение коэффициента местных сопротивлений	2	-	2
4	Гидростатическое давление	2	-	
5	Равновесие жидкости в сосуде, равномерно вращающемся относительно вертикальной оси	2	-	
6	Изучение режимов движения жидкости	2	-	2
7	Истечение жидкости через отверстия и насадки	2	-	
8	Исследование цикла паросиловой установки.	2	-	
9	Исследование цикла холодильной установки.	2	-	
Ито	ΓΟ	18	-	6

4.6. Самостоятельная работа студентов

				Объем час	0B
№	Название темы	Вид СРС	Очная	Очно-	Заочная
п/п	пазвание темы	вид СТС	форма	заочная	форма
				форма	
1	Введение. Примене-	Изучение лекций, подготовка к	8	-	14
	ние гидравлики и	лабораторной работе (ЛР), под-			
	теплотехники в про-	готовка к практическому заня-			
	мышленности. Задачи	тию (ПЗ)			
	курса.	77	0		4.4
2	Гидростатика.	Изучение лекций, подготовка к	8	-	14
	Давление в точке	лабораторной работе (ЛР), под-			
	неподвижной	готовка к практическому заня-			
	жидкости. Основные физические свойства	тию (П3)			
	жидкости. Силы,				
	действующие в				
	жидкости.				
3	Основы кинематики	Изучение лекций, подготовка к	8	_	14
	жидкости. Гидравли-	лабораторной работе (ЛР), под-			1.
	ческие элементы по-	готовка к практическому заня-			
	тока. Виды потока:	тию (ПЗ)			
	живое сечение пото-				
	ка, расход, средняя				
	скорость.	**			
4	Основы гидродина-	Изучение лекций, подготовка к	8	-	14
	мики. Уравнение	лабораторной работе (ЛР), под-			
	Бернулли. Энергети-	готовка к практическому заня-			
	ческий смысл уравне-	тию (П3)			
	ния Бернулли. Прак-				
	тическое применение уравнений Бернулли в				
	уравнении вернулли в гидравлике.				
	тидравликс.				

5	Гидравлические сопротивления. Режимы движения. Потери напора по длине потока и в местных сопротивлениях. Эксперименты Рейнольдса. Ламинарные и турбулентные режимы движения и их закономерности. Общая методика определения режима работы центробежного насоса.	Изучение лекций, подготовка к лабораторной работе (ЛР), подготовка к практическому занятию (ПЗ)	8		16
6	Гидропривод. Основные элементы гидропривода. Область применения. Баланс мощностей в гидроприводе. Объемный гидропривод. Объемные насосы и гидродвигатели.	Изучение лекций, подготовка к лабораторной работе (ЛР), подготовка к практическому занятию (ПЗ)	8	-	14
7	Термодинамические процессы. Понятие об обратимых и необратимых процессах.	Изучение лекций, подготовка к практическому занятию (ПЗ)	8	-	14
8	Законы термодина- мики. Циклы. Первый закон термодинамики и его аналитические выражения. Вычисле- ние работы процесса. Тепловая диаграмма. Второй закон термо- динамики и его ос- новные формулиров- ки. Понятие о циклах.	Изучение лекций, подготовка к практическому занятию (ПЗ)	10	-	16
9	Циклы тепловых двигателей и холодильных установок. Термический КПД и методы его повышения. Холодильный коэффициент.	Изучение лекций, подготовка к практическому занятию (ПЗ)	8	-	14
10	Способы теплообмена. Способы распространения теплоты. Сложный теплооб-	Изучение лекций, подготовка к практическому занятию (ПЗ)	10	-	16

	мен.				
	Определение тепловых потоков. Закон Фурье. Гипотеза Ньютона-Рихмана. Уравнение теплопередачи. Физический смысл коэффициентов теплоотдачи и теплопередачи.	Изучение лекций, подготовка к практическому занятию (ПЗ)	8	-	14
12	Теплопроводность. Дифференциальное уравнение теплопроводности. Коэффициент теплопроводности. Теплопроводности плоских и цилиндрических стенок. Изоляционные материалы.	Изучение лекций, подготовка к практическому занятию (ПЗ)	10	-	14
13	Конвективный теплообмен. Основные понятия и определения. Природа движения теплоносителя. Свободное и вынужденное движения. Режимы движения теплоносителя. Основы теории подобия. Числа подобия. Уравнения подобия. Частные задачи процессов теплоотдачи.	Изучение лекций, подготовка к практическому занятию (ПЗ)	8	-	15
14	Теплопередача. Теплообменные аппараты. Теплопередача через плоские и цилиндрические стенки. Интенсификация теплопередачи.	Изучение лекций, подготовка к практическому занятию (ПЗ)	10	-	16
15	Расчет теплообменного аппарата.	Изучение лекций, подготовка к практическому занятию (ПЗ)	8	-	15
	то аппарата. го:	практическому запятию (113)	128		220

4.7. Курсовые работы (проекты) - не предусмотрены учебным планом.

5. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

традиционные объяснительно-иллюстративные технологии, которые обеспечивают доступность учебного материала для большинства студентов, системность, отработанность организационных форм и привычных методов, относительно малые затраты времени;

технологии проблемного обучения, направленные на развитие познавательной активности, творческой самостоятельности студентов и предполагающие последовательное и целенаправленное выдвижение перед студентом познавательных задач, разрешение которых позволяет студентам активно усваивать знания (используются поисковые методы; постановка познавательных задач);

технологии развивающего обучения, позволяющие ориентировать учебный процесс на потенциальные возможности студентов, их реализацию и развитие;

технологии концентрированного обучения, суть которых состоит в создании максимально близкой к естественным психологическим особенностям человеческого восприятия структуры учебного процесса и которые дают возможность глубокого и системного изучения содержания учебных дисциплин за счет объединения занятий в тематические блоки;

технологии модульного обучения, дающие возможность обеспечения гибкости процесса обучения, адаптации его к индивидуальным потребностям и особенностям обучающихся (применяются, как правило, при самостоятельном обучении студентов по индивидуальному учебному плану);

технологии дифференцированного обучения, обеспечивающие возможность создания оптимальных условий для развития интересов и способностей студентов, в том числе и студентов с особыми образовательными потребностями, что позволяет реализовать в культурно-образовательном пространстве университета идею создания равных возможностей для получения образования

технологии активного (контекстного) обучения, с помощью которых осуществляется моделирование предметного, проблемного и социального содержания будущей профессиональной деятельности студентов (используются активные и интерактивные методы обучения) и т.д.

Максимальная эффективность педагогического процесса достигается путем конструирования оптимального комплекса педагогических технологий и (или) их элементов на личностно-ориентированной, деятельностной, диалогической основе и использования необходимых современных средств обучения.

6. Формы контроля освоения дисциплины

Текущая аттестация студентов производится в дискретные временные интервалы лектором и преподавателем (-ями), ведущими практические и лабораторные занятия по дисциплине в следующих формах: вопросы для обсуждения (в виде докладов и сообщений); контрольные работы.

Промежуточная аттестации по результатам освоения дисциплины проходит в форме устного/письменного экзамена (включает в себя ответы на теоретические вопросы и ответы на тестовые задания). Студенты, выполнившие

75% текущих и контрольных мероприятий на «отлично», а остальные 25 % на «хорошо», имеют право на получение итоговой оценки.

В экзаменационную ведомость и зачетную книжку выставляются оценки по шкале, приведенной в таблице.

Шкала оценивания (экзамен)	Характеристика знания предмета и ответов	Шкала оце- нивания (зачет)
Отлично (5)	Студент глубоко и в полном объёме владеет программным материалом. Грамотно, исчерпывающе и логично его излагает в устной или письменной форме. При этом знает рекомендованную литературу, проявляет творческий подход в ответах на вопросы и правильно обосновывает принятые решения, хорошо владеет умениями и навыками при выполнении практических задач.	зачтено
Хорошо (4)	Студент знает программный материал, грамотно и по сути излагает его в устной или письменной форме, допуская незначительные неточности в утверждениях, трактовках, определениях и категориях или незначительное количество ошибок. При этом владеет необходимыми умениями и навыками при выполнении практических задач.	зачтено
Удовлетворительно (3)	Студент знает только основной программный материал, допускает неточности, недостаточно четкие формулировки, непоследовательность в ответах, излагаемых в устной или письменной форме. При этом недостаточно владеет умениями и навыками при выполнении практических задач. Допускает до 30% ошибок в излагаемых ответах.	зачтено
Неудовлетворительно (2)	Студент не знает значительной части программного материала. При этом допускает принципиальные ошибки в доказательствах, в трактовке понятий и категорий, проявляет низкую культуру знаний, не владеет основными умениями и навыками при выполнении практических задач. Студент отказывается от ответов на дополнительные вопросы.	не зачтено

7. Учебно-методическое и информационное обеспечение дисциплины

а) основная литература:

- 1. Лахмаков В.С., Основы теплотехники и гидравлики: учеб. пособие / В.С. Лахмаков, В.А. Коротинский Минск: РИПО, 2015. 220 с. ISBN 978-985-503-477-4 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9789855034774.html
- 2. Копко В.М., Теплоснабжение / В.М. Копко М: Издательство АСВ, 2017. 340 с. ISBN 978-5-93093-890-6 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL:

http://www.studentlibrary.ru/book/ISBN 9785930938906.html

3. Клименко А.В., Теплоэнергетика и теплотехника. Кн. 1. Теплоэнергетика и теплотехника. Общие вопросы / Клименко А.В. - М.: Издательский дом

МЭИ, 2017. (Справочная серия "Теплоэнергетика и теплотехника") - ISBN 978-5-383-01168-3 - Текст: электронный // ЭБС "Консультант студента": [сайт]. - URL: http://www.studentlibrary.ru/book/ISBN9785383011683.html

б) дополнительная литература:

- 1. Куповых Г.В., Основы гидромеханики: учебное пособие / Куповых И.Г.- Ростов /Д: Изд-во ЮФУ, 2068. 148 с. YSBN 978-59275-2920-9 Текст: электронный // ТБС "Консультант студента": [саЙт]. URL: http://www.studentlibrary.ru/book/ISBN 985927529209.html
- 2. Зуева Е.Ю., Гидростатика. Гидродинамика вязкой жидкости. Практикум с методическими указаниями и решениями: учебное пособие / Зуева Е.Ю. М.: Издательский дом МЭИ, 2017. ISBN 978-5-383-01195-3 Текст: электронный // ЭБС "Консультант студента: [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785383011953.html
- 3. Клименко А.В., Теплоэнергетика и теплотехника Кн. 2. Теоретические основы теплотехники. Теплотехнический эксперимент. / Клименко А.В. М.: Издательский дом МЭИ, 2017. (Справочная серия "Теплоэнергетика и теплотехника") ISBN 978-5-383-01169-0 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL:

http://www.studentlibrary.ru/book/ISBN9785383011690.html

в) методические указания:

1. Методические указания к выполнению лабораторных работ по дисциплине «Гидравлика и гидропривод». / А.Г.Петров - Стаханов: СУНИГОТ, 2017. - 45с.

г) интернет-ресурсы:

Министерство науки и высшего образования РФ https://minobrnauki.goy.ru/

Федеральная служба по надзору в сфере образования и науки https://minobrnauki.goy.ru/

Портал Федеральных государственных образовательных стандартов высшего образования — $\frac{http:}{fgosvo.ru}$

Федеральный портал «Российское образование» http://www.edu.ru/

Информационная система «Единое окно доступа к образовательным ресурсам» — http://window.edu.ru/

Федеральный центр информ ационно-образовательных ресурсов http://fcior.edu.ru/

Электронные библиотечные системы и ресурсы

- 1. Электронно-библиотечная система «Консультант студента» http://www.studentlibrary.ru/egi-bin/mb4x
 - 2. Электронная библиотека ФГБОУ ВО «ЮРГПУ (НПИ) имени М.И. Платова» «МегаПро»

https://jiweb.srspu.ru/MegaProWeb/Web.

3. Научная библиотека имени А.И. Коняева http://biblio.dahluniver.ru/

8. Материально-техническое и программное обеспечение дисциплины

Освоение дисциплины «Основы гидравлики и теплотехники» предполагает использование академических аудиторий, соответствующих действующим санитарным и противопожарным правилам и нормам.

Прочее: рабочее место преподавателя, оснащенное компьютером с доступом в Интернет.

Программное обеспечение:

The pulling course terms.			
Функциональное назначение	Бесплатное программ- ное обеспечение	Ссылки	
пазначение	not obttile achie		
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/	
1		https://ru.wikipedia.org/wiki/LibreOffice	
Операционная система	UBUNTU 19.04	https://ubuntu.com/	
Операционная система	OBON10 17.04	https://ru.wikipedia.org/wiki/Ubuntu	
Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx	
Браузер	Opera	http://www.opera.com	
Почтовый клиент	Mozilla Thunderbird	http://www.mozilla.org/ru/thunderbird	
Файл-менеджер	Far Manager	http://www.farmanager.com/download.php	
Архиватор	7Zip	http://www.7-zip.org/	
	GIMP (GNU Image Ma-	http://www.gimp.org/	
Графический редактор	nipulation Program)	http://gimp.ru/viewpage.php?page_id=8	
	inpulation Flogram)	http://ru.wikipedia.org/wiki/GIMP	
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator	
Аудиоплейер	VLC	http://www.videolan.org/vlc/	

9. Оценочные средства по дисциплине

Паспорт Оценочных средств по учебной дисциплине

«Основы гидравлики и теплотехники»

Перечень компетенций (элементов компетенций), формируемых в результате освоения учебной дисциплины (модуля) или практики

№п/п	Код контро- лируемой компетенции	Формулировка контролируе- мой компетенции	Индикаторы достижений компетенции (по реализуемой дисциплине)	Контроли- руемые темы учебной дис- циплины, практики	Этапы форми- рования (семестр изучения)
1	УК-2	Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	УК-2.1 УК-2.2 УК-2.3 УК-2.4 УК-2.5	Тема1 Тема2 Тема 3 Тема 4 Тема 5 Тема 6 Тема 7 Тема 8 Тема 9 Тема 10 Тема 11 Тема 12 Тема 13 Тема 14 Тема 15	3,4
2	ОПК-3	Способен применять соответствующий физико- математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	ОПК-3.1. ОПК-3.2. ОПК-3.3. ОПК-3.4. ОПК-3.5. ОПК-3.6.	Тема 1 Тема 2 Тема 3 Тема 4 Тема 5 Тема 6 Тема 7 Тема 8 Тема 9 Тема 10 Тема 11 Тема 12 Тема 13 Тема 14 Тема 15	3,4
3	ПК-3	Способен обеспечить инженерно-техническое сопровождение деятельности по техническому обслуживанию и ремонту устройств РЗА	ПК-3.1 ПК-3.2 ПК-3.3	Тема 15 Тема 1 Тема 2 Тема 3 Тема 4 Тема 5 Тема 6 Тема 7	3,4

		Тема 8	
		Тема 9	
		Тема 10	
		Тема 11	
		Тема 12	
		Тема 13	
		Тема 14	
		Тема 15	

Показатели и критерии оценивания компетенций, описание шкал оценивания

№ п/п	Код контролируемой компетенции	Индикаторы достижений компетенции (по реализуемой дисциплине)	Перечень планируемых резуль- татов	Контролиру- емые темы учебной дис- циплины	ние оценоч-
1	УК-2	УК-2.1 УК-2.2 УК-2.3 УК-2.4 УК-2.5	Знать: правовую структуру общества и место выполняемой профессиональной деятельности в этой структуре; знает основы действующего законодательства Российской Федерации применительно к профессиональной деятельности. Уметь: планировать собственную деятельность с учетом ограниченности ресурсов в рамках допустимых законодательством средств и методов; осуществлять поиск информации для решения поставленных задач и критически ее анализировать; применять методы критического анализа и синтеза информации, необходимой для решения поставленных задач; грамотно, логично, аргументированно формировать собственные суждения и оценки; отличать факты от мнений, интерпретаций и оценок; применять методы системного подхода при решении поставленных задач. Владеть: практическим опытом подбора правовых норм и определения экономических условий для решения конкретных профессиональных задач; методами системного и критического мышления.	Тема1 Тема2 Тема 3 Тема 4 Тема 5 Тема 6 Тема 7 Тема 8 Тема 9 Тема 10 Тема 11 Тема 12 Тема 13 Тема 14 Тема 15	Собесе- дование (устный опрос), вопросы и задания к лабора- торным работам и практиче- ским за- нятиям, вопросы к зачету и экзамену
2	ОПК-3	ОПК-3.1. ОПК-3.2. ОПК-3.3. ОПК-3.4. ОПК-3.5. ОПК-3.6.	Знать: основы и законы физических явлений гидравлики и теплотехники; основные законы равновесия жидкости и газа; основные закономерности теплопроводности, переноса теплоты и теплообмена; величины, характеризующие указанные процессы; основные величины гидравлики и теплотехники; Уметь: решать уравнения гидрав-	Тема1 Тема 2 Тема 3 Тема 4 Тема 5 Тема 6 Тема 7 Тема 8 Тема 9	Собеседование (устный опрос), вопросы и задания к лабораторным работам и

3 ПК-3	ПК-3.1	лики и теплотехники на основе современного математического аппарата; пользоваться справочной научно-технической литературой; оценивать полученные результаты расчетов; составлять рекомендации для эффективной работы гидравлических и теплотехнических систем при решении профессиональных задач; Владеть: навыками работы с современной научно-технической литературой по гидравлике и теплотехнике; навыками и основными методами решения математических задач молекулярной физики; первичными навыками и основными методами решения задач гидравлики и теплотехники. Знать: действующие стандарты,	Тема 10 Тема 11 Тема 12 Тема 13 Тема 14 Тема 15	практиче- ским за- нятиям, вопросы к зачету и экзамену
	ПК-3.2 ПК-3.3	технические условия, положения и инструкции по эксплуатации оборудования, программы испытаний; материально-техническую базу, обслуживаемого оборудования РЗА; Уметь: выбирать изоляционные расстояния, оценивать надежность открытых распределительных устройств и воздушных линий электропередачи, определять необходимые параметры нелинейных ограничителей перенапряжений и вентильных разрядников; Владеть: высокой мотивацией к выполнению профессиональной деятельности; широкой общей подготовкой (базовыми знаниями) для решения практических задач в электроэнергетике и электротехнике; навыками работы с контрольноизмерительными приборами.	Тема2 Тема 3 Тема 4 Тема 5 Тема 6 Тема 7 Тема 8 Тема 9 Тема 10 Тема 11 Тема 12 Тема 13 Тема 14 Тема 15	дование (устный опрос), вопросы и задания к лабораторным работам и практическим занятиям, вопросы к зачету и экзамену

Фонды оценочных средств по дисциплине «Основы гидравлики и теплотехники»

Вопросы для собеседования (устного опроса)

- 1. Гидравлические элементы потока.
- 2. Уравнение Бернулли для элементарной струйки идеальной жидкости.
 - 3. Уравнение Бернулли для потока реальной жидкости.
 - 4. Режимы движения жидкости.
 - 5. Виды гидравлических сопротивлений.
 - 6. Потери на трение по длине потока.

- 7. Потери напора на местные сопротивления.
- 8. Трубопроводы и их классификация.
- 9. Гидравлический удар в напорных трубопроводах.
- 10. Гидравлические машины. Их классификация и область применения.
 - 11. Гидравлические насосы. Типы, параметры, принцип действия.
- 12. Поршневые, эксцентриковые, радиально-поршневые, пластинчатые насосы.
 - 13. Гидропривод. Основные понятия и определения.
 - 14. Практическое использование гидропривода.
- 15. Принципиальный путь получения работы в тепловых двигателях. Коэффициент полезного действия.
- 16. Рабочее тело и его основные параметры. Связь между ними. Диаграммы состояния.
- 17. Термодинамический процесс. Уравнение процесса и способы его задания.
- 18. Теплота. Физическое содержание. Способы определения. Связь с процессами и состояниями. Изображение в диаграммах состояния.
- 19. Теплоёмкость. Физический смысл. Способы определения. Связь с процессами и состоянием. Молекулярно-кинетическая теория теплоёмкости.
- 20. Рабочая диаграмма состояний. Циклы прямой и обратный. Показатели их эффективности.
- 21. Первый закон термодинамики. Внутренняя Энергия физический смысл и способы определения.
- 22. Второй закон термодинамики, его физическое содержание и математическое следствие.
 - 23. Энтропия, физический смысл, способ определения.
- 24. Тепловая диаграмма состояний, её особенности. Средне планиметрическая температура процесса.
- 25. Понятие об идеальном газе. Уравнение состояния. Газовые постоянные.
- 26. Смеси газов. Способы их задания. Определение термодинамических свойств смесей. Молекулярный вес смеси.
 - 27. Калорические свойства идеального газа. Законы Джоуля и Майера.
 - 28. Изохорный и изобарный процессы с идеальным газом.
 - 29. Изотермический процесс с идеальным газом.
 - 30. Адиабатный процесс с идеальным газом.
- 31. Особенности термодинамического поведения реальных газов и паров.

- 32. Критическое состояние вещества. Стабильные и метастабильные состояния вещества. Степень сухости влажного насыщенного пара.
- 33. Калорические свойства паров. Определение свойств влажного насыщенного пара.
 - 34. Изобарный процесс с водяным паром.
 - 35. Адиабатный процесс с водяным паром.
 - 36. Процесс дросселирования газов и паров.
 - 37. Истечение газов и паров. Сопло и диффузор. Скорость истечения.
 - 38. Циклы Карно: прямой, обратный, эквивалентный, регенеративный.
 - 39. Сжатие газов и паров. Одноступенчатое сжатие.
- 40. Многоступенчатое сжатие. Выбор степени повышения давления на ступень.
- 41. Пароэнергетические установки, принцип действия. Преимущества. Цикл Карно на водяном пара и его недостатки.
 - 42. Простейшая ПТУ, схема, принцип действия и цикл Ренкина.
- 43. Изображение цикла Ренкина в диаграммах состояния и удельный расход пара.
- 44. Схема, принцип действия и цикл простейшей газотурбинной установки. Преимущества и недостатки цикла.
- 45. Термический КПД простейшей ГТУ. Влияние максимальной температуры цикла и утилизация теплоты отработавших газов.
- 46. Регенерация теплоты в ГТУ. Цикл и термический КПД регенеративной ГТУ.
 - 47. Теплоперенос и его простейшие виды, показатели эффективности.
 - 48. Тепловая нагрузка поверхности и плотность теплового потока.
- 49. Основное уравнение теплопереноса. Температурный напор и термическое сопротивление.
 - 50. Теплопроводность, схема переноса теплоты теплопроводностью.
- 51. Коэффициент теплопроводности, связь его с родом тела и параметрами. Теплоизоляторы.

Критерии и шкала оценивания по оценочному средству собеседование (устный опрос)

Шкала оценивания	Критерии оценивания
5	Полно и аргументировано отвечает по содержанию вопроса. Обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры не только по учебнику, но и самостоятельно составленные. Излагает материал последовательно и правильно.
4	Студент дает ответ, удовлетворяющий тем же требованиям, что и для

	оценки «5», но допускает 13 ошибки, которые сам же исправляет.
3	Студент обнаруживает знание и понимание основных положений вопроса, но: излагает материал неполно и допускает неточности в определении понятий или формулировке правил; не умеет достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры; излагает материал непоследовательно и допускает ошибки.
2	Студент обнаруживает незнание ответа на вопрос, допускает ошибки в формулировке определений и правил, искажающие их смысл, беспорядочно и неуверенно излагает материал; отмечаются такие недостатки в подготовке студента, которые являются серьезным препятствием к успешному овладению последующим материалом.

Задания к практическим занятиям и лабораторным работам

- 1. Определить силы гидростатического давления на плоские и криволинейные поверхности.
 - 2. Изучить уравнение Бернулли и гидравлические сопротивления.
 - 3. Выполнить гидравлический расчет напорных трубопроводов.
- 4. Изучить насосную установку и ее характеристики, а также работу насоса на сеть.
 - 5. Выполнить расчет объемного гидропривода.
 - 6. Изучить законы технической термодинамики.
- 7. Ознакомиться с применением основ теории теплообмена при решении практических задач.
 - 8. Изучить идеальные циклы тепловых машин.
 - 9. Изучить циклы компрессоров и холодильных машин.
 - 10. Выполнить тарирование расходомера.
- 11. Определить коэффициента сопротивления трения по длине трубопровода.
 - 12. Определить коэффициент местных сопротивлений
- 13. Ознакомиться с теорией гидростатическое давление, определить гидростатическое давление.
- 14. Определить условие равновесия жидкости в сосуде, равномерно вращающемся относительно вертикальной оси.
 - 15. Изучить режимы движения жидкости
 - 16. Изучить Истечение жидкости через отверстия и насадки.
 - 17. Исследовать цикл паросиловой установки.
 - 18. Исследовать цикл холодильной установки.

Контрольные вопросы к практическим занятиям и лабораторным работам

- 1. Дайте понятие гидростатического давления.
- 2. Формула гидростатического давления.
- 3. Что такое избыточное гидростатическое давление.

- 4. Какие приборы применяют для измерения гидростатического давления?
- 5. Какие силы действуют на частицы жидкости во вращающемся сосуде.
 - 6. Как определяется сила инерции?
 - 7. Как определяется сила веса?
 - 8. Формула уравнения свободной поверхности.
 - 9. Что такое установившееся движение жидкости?
- 10. Уравнение Бернулли для элементарной струйки невязкой жидкости.
 - 11. Уравнение Бернулли для целого потока реальной жидкости.
 - 12. Формула средней скорости потока жидкости.
 - 13. Что такое ламинарный режим движения жидкости?
 - 14. Что такое турбулентный режим движения жидкости?
- 15. От каких параметров зависит наличие ламинарного или турбулентного режима движения жидкости?
 - 16. Какую скорость движения жидкости называют критической?
- 17. Какие величины определяют при решении задачи о истечении жидкости через отверстия?
 - 18. Какое отверстие считается малым?
 - 19. Что такое коэффициент сжатия?
 - 20. Что такое траектория струи?
 - 21. Уравнение траектории струи?
 - 22. На чем основан способ тарирования расходомера?
- 23. Запишите формулу зависимости между перепадом давлений и расходом.
 - 24. Формула скорости потока жидкости.
 - 25. Формула для определения числа Рейнольдса.
- 26. Какой формулой определяется потеря энергии на трение по длине трубопровода?
 - 27. От чего зависит коэффициент сопротивления трения по длине?
 - 28. Назовите зоны сопротивления движения жидкости.
 - 29. Что такое местное сопротивление движения жидкости?
 - 30. Дайте определение местной о\потери напора жидкости.
 - 31. Формула местной потери напора жидкости.
 - 32. От чего зависти величина коэффициента местных сопротивленй?
 - 33. Что называется циклом Ренкина?
 - 34. Дайте определение термического КПД.
- 35. Как определяется внутренний относительный КПД паросиловой установки?
 - 36. Чем отличается цикл Ренкина от цикла Карно?
 - 37. На какие группы делятся холодильные установки?
 - 38. Что такое холодильный коэффициент?
- 39. Каковы основные недостатки воздушной компрессорной холодильной установки?
 - 40. Какими свойствами должны обладать хладоагенты?

Критерии и шкала оценивания по оценочному средству «практическое занятие»

Шкала оценивания	Критерий оценивания
5	Задание выполнено на высоком уровне (студент в полном объеме осветил рассматриваемую проблематику, привел аргументы в пользу своих суждений, владеет профильным понятийным (категориальным) аппаратом и т.п.
4	Задание выполнено на среднем уровне (студент в целом осветил рассматриваемую проблематику, привел аргументы в пользу своих суждений, допустив некоторые неточности и т.п.)
3	Задание выполнено на низком уровне (студент допустил существенные неточности, изложил материал с ошибками, не владеет в достаточной степени профильным категориальным аппаратом и т.п.)
2	Задание выполнено на неудовлетворительном уровне или не представлено (студент не готов, не выполнил задание и т.п.)

Критерии и шкала оценивания по оценочному средству «лабораторная работа»

Шкала оценивания	Критерий оценивания
5	Студент выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений, самостоятельно и рационально выбрал и подготовил для опыта все необходимое оборудование, все опыты провел в условиях и режимах, обеспечивающих получение результатов и выводов с наибольшей точностью, в представленном отчете правильно и аккуратно выполнил все записи, таблицы, рисунки, чертежи, графики, вычисления и сделал выводы, правильно выполнил анализ погрешностей, соблюдал требования безопасности труда.
4	Студент выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений, самостоятельно и рационально выбрал и подготовил для опыта все необходимое оборудование, однако опыты провел в условиях и режимах, не обеспечивающих получение результатов и выводов с достаточной точностью, в представленном отчете правильно и аккуратно выполнил все записи, таблицы, рисунки, чертежи, графики, вычисления и сделал выводы, правильно выполнил анализ погрешностей, соблюдал требования безопасности труда, допускал незначительные ошибки при ответе на дополнительные вопросы.
3	Студент выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений, выбрал и подготовил для опыта все необходимое оборудование, однако опыт проводился в нерациональных условиях, что привело к получению результатов с большей погрешностью, в отчете были допущены в общей сложности не более двух ошибок (в записях единиц, измерениях, в вычислениях, графиках, таблицах, схемах, анализе погрешностей и т.д.), не принципиального для данной работы характера, не повлиявших на результат выполнения, соблюдал требования безопасности труда, допускал незначительные ошибки при ответе на дополнительные вопросы.

2 Студент выполнил работу не в полном объеме, не сумел выбрать для опыта необходимое оборудование, опыты, измерения, вычисления, наблюдения про- изводились неправильно, в отчете были допущены множественные ошибки, не выполнил анализ погрешностей, не соблюдал требования безопасности труда, допускал ошибки при ответе на дополнительные вопросы.

Вопросы к зачету, экзамену

- 1. Общие сведения о жидкости.
- 2. Физические свойства жидкости, единицы измерения.
- 3. Вязкость жидкости.
- 4. Гидростатича. Гидростатическое давление. Свойства гидростатического давления.
 - 5. Дифференциальное уравнение равновесия жидкости.
 - 6. Уравнение поверхности равного давления.
 - 7. Основное уравнение гидростатики.
 - 8. Манометрическое и вакуумное давление.
 - 9. Закон Паскаля и его практическое применение.
 - 10. Сила давления жидкости на плоскую стенку. Центр давления.
 - 11. Сила давления жидкости на криволинейную стенку.
 - 12. Закон Архимеда. Условия плавания тел.
- 13. Гидродинамика. Виды движения жидкости. Кинематические элементы и струйная модель потока.
- 14. Гидравлические элементы потока. Понятие о расходе и средней скорости потока.
 - 15. Уравнение постоянных расходов.
- 16. Уравнение Бернулли для элементарной струйки идеальной жидкости.
 - 17. Геометрический и физический смысл уравнения Бернулли.
- 18. Уравнение Бернулли для элементарной струйки и потока реальной жидкости.
 - 19. Практическое применение уравнения Бернулли.
 - 20. Гидравлические сопротивления. Потери давления.
 - 21. Режимы движения жидкости. Число Рейнольдса.
 - 22. Ламинарный режим движения жидкости и его закономерности.
 - 23. Закон распределения скоростей по сечению ламинарного потока.
 - 24. Турбулентный режим движения и его особенности.
- 25. Гидравлические гладкие и шероховатые трубы. Коэффициент Дарси для турбулентного потока.
 - 26. Местные сопротивления.

- 27. Истечение жидкости через малое отверстие в тонкой стенке при постоянном напоре.
 - 28. Истечение жидкости через насадки.
 - 29. Истечение жидкости при переменном напоре.
 - 30. Классификация и принцип действия гидромашин.
 - 31. Основные параметры объемных гидромашин.
 - 32. Основные параметры динамических гидромашин.
 - 33. Устройство и принцип действия центробежного насоса.
- 34. Общая классификация объемных гидромашин, основные параметры.
- 35. Объемный гидропривод. Назначение, Основные понятия, теоретические положения, используемые в объемном гидроприводе.
- 36. Принципиальная схема и элементы гидропривода: Насосы, гидродигатели, гидроаппаратура и т.д.
- 37. Классификация объемного гидропривода. Преимущества и недостатки объемного гидропривода.
- 38. Регулирование объемного гидропривода. Назначение, виды регулирования, их сравнение.
 - 39. Гидроаппаратура. Общие сведения, определение, классификация.
- 40. Гидрораспределители. Классификация, принцип действия, включение их в схему гидропривода.
 - 41. Тепловой расчет объемного гидропривода.
 - 42. КПД объемного гидропривода..
 - 43. Рабочее тело, идеальный газ.
 - 44. Параметры состояния и их физический смысл.
 - 45. Термодинамическая система и термодинамический процесс.
- 46. Равновесное и неравновесное состояние, прямой и обратный термодинамические процессы.
- 47. Обратимый и необратимый термодинамические процессы, условия необратимости.
 - 48. Уравнение состояния в общем виде и для идеального газа.
 - 49. Свойства функции состояния, внутренняя энергия и энтальпия.
- 50. Работа, как процесс передачи энергии, работы расширения, внешняя, техническая.
- 51. Теплота, как процесс передачи энергии, отличие теплоты от работы и внутренней энергии.
 - 52. Теплоемкость идеального газа и методы ее определения.
 - 53. Связь между теплоемкостями идеального газа.
- 54. Зависимость теплоемкости от природы газа, термодинамического процесса и температуры.

- 55. Первый закон термодинамики и его аналитическое выражение.
- 56. Второй закон термодинамики и его формулировки.
- 57. Энтропия и качество энергии.
- 58. Энтропия как функция состояния, свойства энтропии.
- 59. Основные законы газовых смесей. Способы задания состава смеси.
- 60. Условная молекулярная масса и газовая постоянная смеси.
- 61. Исследование изохорного и изобарного процессов.
- 62. Исследование изобарного и изотермического процессов.
- 63. Теплоемкость смеси идеальных газов.
- 64. Исследование адиабатного процесса.
- 65. Исследование политропного процесса.
- 66. Теплоемкость политропного процесса, определение показателя политропы.
- 67. Влажный воздух, основные понятия и определения влажного воздуха.
 - 68. Работа и КПД цикла тепловой машины.
 - 69. Цикл Карно и его КПД.
- 70. Обратный цикл Карно, холодильный коэффициент, холодопроизводитель.
- 71. Теплопроводность через однослойную и многослойную плоские стенки.
- 72. Теплопроводность через однослойную и многослойную цилиндрические стенки.
- 73. Коэффициент теплопередачи и его связь с термическим сопротивлением.
- 74. Принципиальный путь получения работы в тепловых двигателях. Коэффициент полезного действия.
- 75. Рабочее тело и его основные параметры. Связь между ними. Диаграммы состояния.
- 76. Термодинамический процесс. Уравнение процесса и способы его задания.
- 77. Теплота. Физическое содержание. Способы определения. Связь с процессами и состояниями. Изображение в диаграммах состояния.
- 78. Теплоёмкость. Физический смысл. Способы определения. Связь с процессами и состоянием. Молекулярно-кинетическая теория теплоёмкости.
- 79. Рабочая диаграмма состояний. Циклы прямой и обратный. Показатели их эффективности.
- 80. Закон сохранения энергии. Уравнение термодинамики для потока. Располагаемая работа.

- 81. Тепловая диаграмма состояний, её особенности. Средне планиметрическая температура процесса.
 - 82. Теплоперенос и его простейшие виды, показатели эффективности.
 - 83. Теплопроводность, схема переноса теплоты теплопроводностью.
- 84. Коэффициент теплопроводности, связь его с родом тела и параметрами. Теплоизоляторы.
 - 85. Закон Фурье. Температурное поле и его характеристики.
- 86. Коэффициент теплоотдачи и основные факторы, влияющие на его величину.
- 87. Критерии подобия для стационарной теплоотдачи. Условия однозначности.
- 88. Определение коэффициента теплоотдачи с помощью теории теплового подобия.
 - 89. Теплоотдача при свободной конвекции в неограниченном объёме.
 - 90. Теплообменные аппараты. Элементы теплового расчёта.
 - 91. Расчётная разность температур. Схемы движения теплоносителей.
 - 92. Интенсификация теплопередачи. Изоляция
- 93. Тепловое излучение. Схема переноса теплоты. Основные законы излучения. Степень черноты.
 - 94. Сложный теплообмен. Коэффициент сложной теплоотдачи.

Критерии и шкала оценивания к промежуточной аттестации «зачет, экзамен»

Шкала оценивания	Характеристика знания предмета и ответов	Шкала оцени-
(экзамен)	Характеристика знания предмета и ответов	вания (зачет)
отлично (5)	Студент глубоко и в полном объёме владеет про-	зачтено
	граммным материалом. Грамотно, исчерпывающе и	
	логично его излагает в устной или письменной	
	форме. При этом знает рекомендованную литерату-	
	ру, проявляет творческий подход в ответах на во-	
	просы и правильно обосновывает принятые реше-	
	ния, хорошо владеет умениями и навыками при вы-	
	полнении практических задач	
хорошо (4)	Студент знает программный материал, грамотно и	зачтено
	по сути излагает его в устной или письменной фор-	
	ме, допуская незначительные неточности в утвер-	
	ждениях, трактовках, определениях и категориях	
	или незначительное количество ошибок. При этом	
	владеет необходимыми умениями и навыками при	
	выполнении практических задач	
удовлетворительно	Студент знает только основной программный мате-	зачтено
(3)	риал, допускает неточности, недостаточно четкие	
	формулировки, непоследовательность в ответах,	
	излагаемых в устной или письменной форме. При	
	этом недостаточно владеет умениями и навыками	

	при выполнении практических задач. Допускает до 30% ошибок в излагаемых ответах.	
неудовлетворительно (2)	Студент не знает значительной части программного материала. При этом допускает принципиальные ошибки в доказательствах, в трактовке понятий и категорий, проявляет низкую культуру знаний, не владеет основными умениями и навыками при выполнении практических задач. Студент отказывается от ответов на дополнительные вопросы.	не зачтено

Лист изменений и дополнений

№ п/п	измецеций	Дата и номер протокола за- седания кафедры (кафедр), на котором были рассмот- рены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)