МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Луганский государственный университет имени Владимира Даля»

Стахановский инженерно-педагогический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Луганский государственный университет имени Владимира Даля»

Кафедра электромеханики и транспортных систем

У/ТВЕРЖДАЮ:

Директор СИПИ (филиала)

ФГБОУ ВО «ЛГУ им. В. Даля»

А.А. Авершин

(подпись)

« 24 » април 2023 года

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ «ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ»

по направлению подготовки 13.03.02 Электроэнергетика и электротехника профиль «Электроснабжение»

Лист согласования РПУД

Рабочая программа учебной дисциплины «Теория автоматического управления» по направлению подготовки 13.03.02 Электроэнергетика и электротехника. -26 с.

Рабочая программа учебной дисциплины «Теория автоматического управления» разработана в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 13.03.02 Электроэнергетика и электротехника, утвержденного приказом Министерства образования и науки Российской Федерации от 28 февраля 2018 года № 144 (с изменениями и дополнениями от 26 ноября 2020 г., 8 февраля 2021 г., 19 июля 2022 г.).

СОСТАВИТЕЛИ:

канд. техн. наук, доцент Петров А.Г. канд. психол. наук, доцент Авершин А.А.

Рабочая программа дисциплины утверждена на заседании кафедры электромеханики и транспортных систем «18 » <u>Опрого</u> 2023 г., протокол № 9 .

Заведующий кафедрой электромеханики и трансп	ортных (систем	А.Г. П	етрон
Переутверждена: «	»	20	_ г., протокол №	<u> </u>
Переутверждена: «		20	_ г., протокол №	

Председатель учебно-методической комиссии СИПИ (филиала) ФГБОУ ВО «ЛГУ им. В. Даля» _____ Н.В. Банник

[©] Петров А.Г., Авершин А.А., 2023 год © ФГБОУ ВО «ЛГУ им. В. Даля», 2023 год

Структура и содержание дисциплины

1. Цели и задачи дисциплины, ее место в учебном процессе

Цель изучения дисциплины «Теория автоматического управления» — формирование теоретических основ и методологии проектирования систем управления горно-технологическими процессами и электромеханическими системами, усвоение студентами общих принципов и средств управления динамическими системами разной физической природы для формирования знаний и практических навыков относительно автоматизации процессов и технологических объектов горного производства.

Задачи изучения дисциплины «Теория автоматического управления»: изучение принципов построения автоматических систем управления, методы их анализа и синтеза; - приобретение навыков проводить аналитические и экспериментальные исследования процессов в разных САУ с использованием измерительных приборов для изучения особенностей технологических объектов горного производства с точки зрения их автоматизации, принципов и вариантов построения средств автоматизации, разработки критериев оценивания автоматических систем управления технологическим процессом за критериями экономической целесообразности и надежности, путей их усовершенствования.

2. Место дисциплины в структуре ООП ВО.

Дисциплина «Теория автоматического управления» относится к части дисциплин, формируемых участниками образовательных отношений.

Содержание дисциплины основывается на базе дисциплин: «Физика», «Теоретическая и прикладная механика», «Теоретические основы электротехники», «Промышленная электроника» и служит основой для освоения дисциплин «Основы электропривода», «Проектирование систем электроснабжения», «Управление системами электроснабжения и эксплуатация электроустановок».

3. Требования к результатам освоения содержания дисциплины

Код и наименование	Индикаторы достижений компе-	Перечень планируемых ре-
компетенции	тенции (по реализуемой дисци-	зультатов
·	плине)	
УК-2. Способен опре-	УК-2.1. Проводит декомпозицию	Знать: правовую структуру
делять круг задач в	поставленной цели проекта в зада-	общества и место выполняемой
рамках поставленной	чах	профессиональной деятельно-
цели и выбирать опти-	УК-2.2. Демонстрирует знание	сти в этой структуре; знает ос-
мальные способы их	правовых норм достижения по-	новы действующего законода-
решения, исходя из	ставленной цели в сфере реализа-	тельства Российской Федерации применительно к профес-
действующих право-	ции проекта	сиональной деятельности.
вых норм, имеющихся	УК-2.3. Демонстрирует умение	Уметь: планировать собствен-
ресурсов и ограниче-	определять имеющиеся ресурсы	ную деятельность с учетом
ний	для достижения цели проекта	ограниченности ресурсов в
	УК-2.4. Осуществляет поиск не-	рамках допустимых законода-
	обходимой информации для до-	тельством средств и методов;
	стижения задач проекта	осуществлять поиск информа-
	УК-2.5. Выявляет и анализирует	ции для решения поставленных
	различные способы решения задач	задач и критически ее анализи-

в рамках цели проекта и аргументирует их выбор

ровать; применять методы крит ического анализа и синтеза информации, необходимой для решения поставленных задач; грамотно, логично, аргументированно формировать собственные суждения и оценки; отличать факты от мнений, интерпретаций и оценок; применять методы системного подхода при решении поставленных задач.

Владеть: практическим опытом подбора правовых норм и определения экономических условий для решения конкретных профессиональных задач; методами системного и критического мышления.

УК-8. Способен создавать и поддерживать в повседневной жизни и профессиональной деятельности безопасные условия жизнедеятельности для сохранения природной среды, обеспечения устойчивого развития общества, в том числе при угрозе и возникновении чрезвычайных ситуаций и военных конфликтов

УК-8.1. Обеспечивает условия безопасной и комфортной образовательной среды, способствующей сохранению жизни и здоровья обучающихся в соответствии с их возрастными особенностями и санитарно-гигиеническими нормами УК-8.2. Умеет обеспечивать безопасность обучающихся и оказывать первую помощь, в том числе при возникновении чрезвычайных ситуаций и военных конфликтов УК-8.3. Опенивает степень потенциальной опасности и использует средства индивидуальной и коллективной зашиты

Знать: меры ответственности педагогических работников за жизнь и здоровье обучающихся, находящихся под их руководством; способы защиты персонала и населения от возможных последствий аварий, катастроф, стихийных бедствий; меры профилактики травматизма, инфекционных и неинфекционных заболеваний; основы безопасности, взаимодействия человека со средой обитания, основы физиологии и рациональных условий труда, последствий воздействия на человека опасных, вредных и поражающих факторов среды обитания в зонах трудовой деятельности и отдыха; основы медицинских знаний и здорового образа жизни; принципы защиты населения в военное время; основы национальной безопасности Российской Федерации.

Уметь: создавать здоровьесберегающую образовательную среду; обеспечивать охрану жизни и здоровья обучающихся и персонала; идентифицировать опасности; прогнозировать ход развития чрезвычайных ситуаций и давать оценку их последствиям; правильно оценивать ситуацию при различных видах отравлений, термических состояниях, травмах и оказывать доврачебную помощь.

Владеть: правовыми, нормативно-техническими и организационными основами безопас-

		ности жизнедеятельности; основными способами защиты
		человека от возможных последствий аварий, катастроф, сти-
		хийных бедствий; приемами по оказанию доврачебной помощи,
		навыками здорового образа жизни; методами обеспечения
		социальной безопасности.
ОПК -6 Способен проводить измерения электри-	ОПК-6.1. Выбирает средства измерения, проводит измерения электриче-	Знать: Основные физические законы, область их практиче-
ческих и неэлектриче-	ских и неэлектрических величин, об-	ского учёта и использования;
ских величин примени- тельно к объектам про- фессиональной деятель-	рабатывает результаты измерений и оценивает их погрешность.	основные физические величины их определение, смысл, едини-
ности		цы их измерения; основные понятия и законы электромагнит-
		ного поля и теории электрических и магнитных цепей; мето-
		ды анализа цепей постоянного
		и переменного токов в стационарных и переходных режимах:
		Уметь: Объяснить основные наблюдаемые природные и тех-
		ногенные явления и эффекты с
		позиций физических законов; истолковывать смысл физиче-
		ских величин и понятий; ис-
		пользовать законы и методы расчета электромагнитного по-
		ля, электрических, магнитных цепей:
		Владеть: Подходами использо-
		вания основных общефизических законов и принципов в
		практических ситуациях; навыками анализа физической сущ-
		ности явлений; методами рас-
		чета переходных и установив- шихся процессов в линейных и
		нелинейных электрических це-
		пях; способностью выявлять естественнонаучную сущность
		проблем, возникающих в ходе
		профессионально- педагогической деятельности:
ПК-3 – Способен обес-	ПК 3.1 Способен выполнить рабо-	Знать: действующие стандарты, технические условия, поло-
печить инженернотехническое сопровож-	ты по техническому обслуживанию и ремонту устройств РЗА.	жения и инструкции по эксплу-
дение деятельности по	ПК 3.2 Осуществляет расчет уста-	атации оборудования, программы испытаний; материально-
техническому обслуживанию и ремонту	вок устройств РЗА. ПК 3.3 Обеспечивает ведение нор-	техническую базу, обслужива-
устройств РЗА	мативно-технической документа-	емого оборудования РЗА; Уметь: выбирать изоляцион-
	ции по техническому обслуживанию устройств РЗА.	ные расстояния, оценивать надежность открытых распре-
	, <u>1</u>	делительных устройств и линий
		электропередачи, определять необходимые параметры нели-
		нейных ограничителей перена-
		пряжений и вентильных раз-

рядников; использовать методы оценки основных видов энергоресурсов и преобразования их в электрическую и тепловую энергию, а так же методы оценки первичного и вторичного оборудования энергосистем. Владеть: высокой мотивацией к выполнению профессиональной деятельности; способностью к письменной, устной и электронной коммуникации на государственном языке и необходимым знанием иностранного языка; широкой общей подготовкой (базовыми знаниями) для решения практических задач в электроэнергетике и электротехнике; навыками работы с контрольно-измерительными приборами.

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

	Объе	Объем часов (зач. ед.)		
Вид учебной работы	Очная форма	Очно- заочная форма	Заочная форма	
Общая учебная нагрузка (всего)	144		144	
	(4,0 зач. ед)		(4,0 зач. ед)	
Обязательная аудиторная учебная нагрузка (всего)	48		14	
в том числе:				
Лекции	18		6	
Семинарские занятия				
Практические занятия	16		4	
Лабораторные работы	14		4	
Курсовая работа (курсовой проект)				
Другие формы и методы организации образовательно-				
го процесса (расчетно-графические работы, групповые дискус-				
сии, ролевые игры, тренинг, компьютерные симуляции, интерак-				
тивные лекции, семинары, анализ деловых ситуаций и т.п.)				
Самостоятельная работа студента (всего)	96		130	
Итоговая аттестация	зачет		зачет	

4.2. Содержание разделов дисциплины

- Тема 1. Введение.
- Тема 2. Классификация и принципы построения САУ.
- Тема 3. Линейные непрерывные системы автоматического управления (САУ).
- Тема 4. Временные и частотные характеристики типовых динамических звеньев СУ.
 - Тема 5. Устойчивость САУ.
 - Тема 6. Построение области устойчивости в плоскости параметров САУ.

- Тема 7. Оценка качества процесса управления.
- Тема 8. Синтез в системах управления.
- Тема 9. Теория нелинейных систем автоматического управления.

4.3. Лекции

№	Название темы		Объем часов	
п/п			Очно- заочная	Заочная форма
1	Введение.	2	форма	
2	Классификация и принципы построения САУ.	2	_	1
3	Линейные непрерывные системы автоматического управления (САУ).		-	<u> </u>
4	Временные и частотные характеристики типовых динамических звеньев СУ.		-	1
5	Устойчивость САУ.		-	
6	Построение области устойчивости в плоскости параметров САУ.		-	2
7	Оценка качества процесса управления.		-	1
8	Синтез в системах управления.		-	
9	Теория нелинейных систем автоматического управления. 22 -			
Ито	ro:	18	-	6

4.4. Практические (семинарские) занятия

No	Название темы		Объем час	0В
п/п		Очная форма	Очно- заочная форма	Заочная форма
1	Составление дифференциального уравнения двигателя постоянного тока, управляемого по цепям обмотки якоря и обмотки возбуждения	2		
2	Составление дифференциального уравнения системы автоматической стабилизации угловой скорости двигателя постоянного тока.			1
3	Построение структурных схем систем автоматического управления. Определение передаточных функций замкнутых систем автоматического управления.	2		1
4	Преобразование структурных схем систем автоматического управления. Передаточные функции САУ по задающему и возмущающему воздействиям.			1
5	Расчет переходных процессов релейных систем автоматического регулирования.			1
6	Прямые и корневые показатели качества переходных процессов систем автоматического управления.			
Итог	TO:	16	-	4

4.5. Лабораторные работы

No	Название темы		Объем часог	В
п/п		Очная форма	Очно- заочная форма	Заочная форма
1	Исследование типовых линейных цепей.	2		

2	Исследование динамических режимов двигателя постоянного тока с независимым возбуждением	2		
3	Исследования автоматизированной системы контроля (АСК) стабилизации скорости вращения двигателя постоянного тока с независимым возбуждением	4		2
4	4 Исследование законов регулирования промышленных объектов			2
5 Трехпозиционное регулирование температурной нагревательной печи сопротивления		2		
6 Экспериментальная идентификация динамических характеристик теплового объекта управления		2		
	Итого:	14	-	4

4.6. Самостоятельная работа студентов

№	Название темы	Вид СРС		Объем часо	В
п/п			Очная форма	Очно- заочная форма	Заочная форма
1	Тема 1. Введение.	Изучение лекций, подготовка к лабораторной работе (ЛР), проведение расчетов	10		14
1	Тема 2. Классификация и принципы построения САУ.	Изучение лекций, подготовка к ЛР, проведение расчетов	12		14
3	Тема 3. Линейные непрерывные системы автоматического управления (САУ).	Изучение лекций, подготовка к ЛР, проведение расчетов	10		14
4	Тема 4. Временные и частотные характеристики типовых динамических звеньев СУ.	Изучение лекций, подготовка к ЛР, проведение расчетов	10		14
5	Тема 5. Устойчивость САУ.	Изучение лекций, подготовка к ЛР, проведение расчетов	12		14
6	Тема 6. Построение области устойчивости в плоскости параметров САУ.	Изучение лекций, подготовка к ЛР, проведение расчетов	10		14
7	Тема 7. Оценка качества процесса управления.	Изучение лекций, подготовка к ЛР, проведение расчетов	10		16
8	Тема 8. Синтез в системах управления.	Изучение лекций, подготовка к ЛР, проведение расчетов	10		14
9	Тема 9. Теория нелинейных систем автоматического управления.	Изучение лекций, подготовка к ЛР, проведение расчетов	12		16
]	Итого:		96		130

4.7. Курсовые работы/проекты – не предусмотрены.

5. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

традиционные объяснительно-иллюстративные технологии, которые обеспечивают доступность учебного материала для большинства студентов, системность, отработанность организационных форм и привычных методов, относительно малые затраты времени;

технологии проблемного обучения, направленные на развитие познавательной активности, творческой самостоятельности студентов и предполагающие последовательное и целенаправленное выдвижение перед студентом познавательных задач, разрешение которых позволяет студентам активно усваивать знания (используются поисковые методы; постановка познавательных задач);

технологии развивающего обучения, позволяющие ориентировать учебный процесс на потенциальные возможности студентов, их реализацию и развитие;

технологии концентрированного обучения, суть которых состоит в создании максимально близкой к естественным психологическим особенностям человеческого восприятия структуры учебного процесса и которые дают возможность глубокого и системного изучения содержания учебных дисциплин за счет объединения занятий в тематические блоки;

технологии модульного обучения, дающие возможность обеспечения гибкости процесса обучения, адаптации его к индивидуальным потребностям и особенностям обучающихся (применяются, как правило, при самостоятельном обучении студентов по индивидуальному учебному плану);

технологии дифференцированного обучения, обеспечивающие возможность создания оптимальных условий для развития интересов и способностей студентов, в том числе и студентов с особыми образовательными потребностями, что позволяет реализовать в культурно-образовательном пространстве университета идею создания равных возможностей для получения образования

технологии активного (контекстного) обучения, с помощью которых осуществляется моделирование предметного, проблемного и социального содержания будущей профессиональной деятельности студентов (используются активные и интерактивные методы обучения) и т.д.

Максимальная эффективность педагогического процесса достигается путем конструирования оптимального комплекса педагогических технологий и (или) их элементов на личностно-ориентированной, деятельностной, диалогической основе и использования необходимых современных средств обучения.

6. Формы контроля освоения дисциплины

Текущая аттестация студентов производится в дискретные временные интервалы лектором и преподавателем (-ями), ведущими практические и лабораторные занятия по дисциплине в следующих формах: вопросы для обсуждения (в виде докладов и сообщений); контрольные работы.

Промежуточная аттестации по результатам освоения дисциплины проходит в форме устного/письменного экзамена (включает в себя ответы на теоретические вопросы и ответы на тестовые задания). Студенты, выполнившие 75% текущих и контрольных мероприятий на «отлично», а остальные 25 % на «хорошо», имеют право на получение итоговой оценки.

В экзаменационную ведомость и зачетную книжку выставляются оценки по шкале, приведенной в таблице.

Шкала оценивания	Характеристика знания предмета и ответов	Шкала оцени-
(экзамен)		вания
		(зачет)
отлично (5)	Студент глубоко и в полном объёме владеет программ-	зачтено
	ным материалом. Грамотно, исчерпывающе и логично	
	его излагает в устной или письменной форме. При этом	
	знает рекомендованную литературу, проявляет творче-	
	ский подход в ответах на вопросы и правильно обосно-	
	вывает принятые решения, хорошо владеет умениями и	
	навыками при выполнении практических задач.	
хорошо (4)	Студент знает программный материал, грамотно и по	зачтено
	сути излагает его в устной или письменной форме, до-	
	пуская незначительные неточности в утверждениях,	
	трактовках, определениях и категориях или незначи-	
	тельное количество ошибок. При этом владеет необхо-	
	димыми умениями и навыками при выполнении прак-	
	тических задач.	
удовлетворительно	Студент знает только основной программный материал,	зачтено
(3)	допускает неточности, недостаточно четкие формули-	
	ровки, непоследовательность в ответах, излагаемых в	
	устной или письменной форме. При этом недостаточно	
	владеет умениями и навыками при выполнении практи-	
	ческих задач. Допускает до 30% ошибок в излагаемых	
	ответах.	**
неудовлетворительно	Студент не знает значительной части программного ма-	Не зачтено
(2)	териала. При этом допускает принципиальные ошибки	
	в доказательствах, в трактовке понятий и категорий,	
	проявляет низкую культуру знаний, не владеет основ-	
	ными умениями и навыками при выполнении практи-	
	ческих задач. Студент отказывается от ответов на до-	
	полнительные вопросы.	

7. Учебно-методическое и программно-информационное обеспечение дисциплины:

а) основная литература:

1. Кулаков Г.Т., Теория автоматического управления теплоэнергетическими процессами: учеб. пособие / Г.Т. Кулаков, А.Т. Кулаков, В.В. Кравченко, А.Н. Кухоренко, К.И. Артёменко, Ю.М. Ковриго, И.М. Голинко, Т.Г. Баган, А.С. Бунке - Минск: Выш. шк., 2017. - 238 с. - ISBN 978-985-06-2800-8 - Текст: электронный // ЭБС "Консультант студента": [сайт]. - URL:

http://www.studentlibrary.ru/book/ISBN9789850628008.html

- 2. Аносов В.Н., Теория автоматического управления : учеб.-метод. пособие / Аносов В.Н. Новосибирск : Изд-во НГТУ, 2016. 68 с. ISBN 978-5-7782-3036-1 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL:
 - $\underline{http://www.studentlibrary.ru/book/ISBN 9785778230361.html}$
- 3. Гаврилов А.Н., Теория автоматического управления технологическими объектами (линейные системы) : учеб. пособие / А.Н. Гаврилов, Ю.П. Барметов,

А.А. Хвостов - Воронеж : ВГУИТ, 2016. - 243 с. - ISBN 978-5-00032-176-8 - Текст : электронный // ЭБС "Консультант студента": [сайт]. - URL:

http://www.studentlibrary.ru/book/ISBN9785000321768.html

б) дополнительная литература:

- 1. Подчукаев В.А., Теория автоматического управления (аналитические методы): Учеб. для вузов / Подчукаев В.А. М.: ФИЗМАТЛИТ, 2005. 392 с. ISBN 5-9221-0445-4 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN5922104454.html
- 2. Ким Д.П., Теория автоматического управления. Т. 2. Многомерные, нелинейные, оптимальные и адаптивные системы / К и м Д. П. 2-е изд., испр. и доп. М. : ФИЗМАТЛИТ, 2007. 440 с. ISBN 978-5-9221-0858-4 Текст : электронный // ЭБС "Консультант студента": [сайт]. URL:

http://www.studentlibrary.ru/book/ISBN9785922108584.html

3. Петраков Ю.В., Теория автоматического управления технологическими системами: учебное пособие для студентов вузов / Петраков Ю.В., Драчев О.И. - М.: Машиностроение, 2008. - 336 с. - ISBN 978-5-217-03391-1 - Текст: электронный // ЭБС "Консультант студента": [сайт]. - URL:

http://www.studentlibrary.ru/book/ISBN9785217033911.html

- 4. Ким Д.П., Теория автоматического управления. Т. 1. Линейные системы / К и м Д. П. 2-е изд., испр. и доп. М.: ФИЗМАТЛИТ, 2007. 312 с. ISBN 978-5-9221-0857-7 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785922108577.html
- 5. Салихов З.Г., Теория автоматического управления. Линейные системы / З.Г. Салихов, А.В. Сириченко М.: МИСиС, 2012. 84 с. ISBN 978-5-87623-632-6 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785876236326.html
- 6. Глазырин Г.В., Теория автоматического регулирования : учеб. пособие / Глазырин Г.В. Новосибирск : Изд-во НГТУ, 2014. 168 с. ISBN 978-5-7782-2473-5 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL:

http://www.studentlibrary.ru/book/ISBN9785778224735.html

7. Назаров В.И., Теория автоматического регулирования теплоэнергетических процессов. Практикум: учеб. пособие / В.И. Назаров - Минск: Выш. шк., 2015. - 215 с. - ISBN 978-985-06-2605-9 - Текст: электронный // ЭБС "Консультант студента": [сайт]. - URL:

http://www.studentlibrary.ru/book/ISBN9789850626059.html

в) методические указания:

- 1. Конспект лекций по курсу «Теория автоматического управления» Сост.: Хаджиков Н.Р., Черный С.А.-Харьков: УИПА, 2008.-21 с.
- 2. Теория автоматического управления. Методические указания к выполнению лабораторных работ для специальности 6.010104.22 «Профессиональное образование. Электромеханическое оборудование, автоматизация процессов добычи полезных ископаемых и руд» / Сост.:Кухарев А.Л., Стаханов: СУНИГОТ, 2012.-59 с.
- 3. Методические указания к самостоятельной работе по курсу «Теория автоматического управления» Сост.: Хаджиков Н.Р., Черный С.А.-Харьков: УИПА, 2008.-21 с.

- 4. Методические указания к практическим работам по курсу «Теория автоматического управления» Сост.: Хаджиков Н.Р., Черный С.А. Харьков: УИПА. 2008-65 с.
- 5. Контрольная работа по курсу «Теория автоматического управления» для студентов заочной формы обучения. Сост.: Хаджиков Н.Р., Черный С.А. Харьков: УИПА, 2008-15с.

г) интернет-ресурсы:

Министерство науки и высшего образования РФ – https://minobrnauki.gov.ru/ Федеральная служба по надзору в сфере образования и науки – http://obrnadzor.gov.ru/

Портал Федеральных государственных образовательных стандартов высшего образования – $\frac{http://fgosvo.ru}{}$

Федеральный портал «Российское образование» – http://www.edu.ru/

Информационная система «Единое окно доступа к образовательным ресурсам» – http://window.edu.ru/

Федеральный центр информационно-образовательных ресурсов – http://fcior.edu.ru/

Электронные библиотечные системы и ресурсы

- 1. Электронно-библиотечная система «Консультант студента» http://www.studentlibrary.ru/cgi-bin/mb4x
- 2. Электронная библиотека ФГБОУ ВО «ЮРГПУ (НПИ) имени М.И. Платова» «МегаПро» https://libweb.srspu.ru/MegaProWeb/Web.

Информационный ресурс библиотеки образовательной организации

3. Научная библиотека имени А. Н. Коняева – http://biblio.dahluniver.ru/

8. Материально-техническое обеспечение дисциплины

Освоение дисциплины «Теория автоматического управления» предполагает использование академических аудиторий, соответствующих действующим санитарным и противопожарным правилам и нормам.

Прочее: рабочее место преподавателя, оснащенное компьютером с доступом в Интернет.

Программное обеспечение:

Функциональное назначение	Бесплатное программное обеспечение	Ссылки
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu
Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx
Браузер	Opera	http://www.opera.com
Почтовый клиент	Mozilla Thunderbird	http://www.mozilla.org/ru/thunderbird

Файл-менеджер	Far Manager	http://www.farmanager.com/download.php
Архиватор	7Zip	http://www.7-zip.org/
Графический редак- тор	GIMP (GNU Image Manipulation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator
Аудиоплейер	VLC	http://www.videolan.org/vlc/

9. Оценочные средства по дисциплине

Паспорт Оценочных средств по учебной дисциплине

«Теория атематического управления»

Перечень компетенций, формируемых в результате освоения учебной дисциплины

№п/п	Код контро- лируемой компетенции	Формулировка контролируе- мой компетенции	Индикаторы достижений компетенции (по реализуемой дисциплине)	Контроли- руемые темы учебной дис- циплины, практики	Этапы форми- рования (семестр изучения)
1	УК-2	Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	УК-2.1 УК-2.2 УК-2.3 УК-2.4 УК-2.5	Тема1 Тема2 Тема 3 Тема 4 Тема 5 Тема 6 Тема 7 Тема 8 Тема 9	6
2	УК-8	Способен создавать и поддерживать в повседневной жизни и в профессиональной деятельности безопасные условия жизнедеятельности для сохранения природной среды, обеспечения устойчивого развития общества, в том числе при угрозе и возникновении чрезвычайных ситуаций и военных конфликтов	УК-8.1 УК-8.2 УК-8.3	Тема1 Тема2 Тема 3 Тема 4 Тема 5 Тема 6 Тема 7 Тема 8 Тема 9	6
2	ОПК-6	Способен проводить измерения электрических и неэлектрических и неэлектрических величин применительно к объектам профессиональной деятельности	ОПК-6.1.	Тема1 Тема2 Тема 3 Тема 4 Тема 5 Тема 6 Тема 7 Тема 8 Тема 9	6
3	ПК-3	Способен обеспечить инженерно-техническое сопровождение деятельности по техническому обслуживанию и ремонту устройств РЗА	ПК-3.1 ПК-3.2 ПК-3.3	Тема 1 Тема 2 Тема 3 Тема 4 Тема 5 Тема 6 Тема 7 Тема 8 Тема 9	6

Показатели и критерии оценивания компетенций, описание шкал оценивания

№ п/п	Код контро- лируемой компетенции	Индикаторы достижений компетенции (по реализуемой дисциплине)	Перечень планируемых ре- зультатов	Контроли- руемые те- мы учеб- ной дисци- плины	Наимено- вание оценоч- ного средства
1	УК-2	УК-2.1 УК-2.2 УК-2.3 УК-2.4 УК-2.5	Знать: правовую структуру общества и место выполняемой профессиональной деятельности в этой структуре; знает основы действующего законодательства Российской Федерации применительно к профессиональной деятельности. Уметь: планировать собственную деятельность с учетом ограниченности ресурсов в рамках допустимых законодательством средств и методов; осуществлять поиск информации для решения поставленных задач и критически ее анализировать; применять методы крит ического анализа и синтеза информации, необходимой для решения поставленных задач; грамотно, логично, аргументированно формировать собственные суждения и оценки; отличать факты от мнений, интерпретаций и оценок; применять методы системного подхода при решении поставленных задач. Владеть: практическим опытом подбора правовых норм и определения экономических условий для решения конкретных профессиональных задач; методами системного и критического мышления.	Тема1 Тема2 Тема 3 Тема 4 Тема 5 Тема 6 Тема 7 Тема 8 Тема 9	Собесе- дование (устный опрос), вопросы и задания к лабора- торным и практиче- ским ра- ботам, вопросы к зачету
2	УК-8	УК-8.1 УК-8.2 УК-8.3	Знать: меры ответственности педагогических работников за жизнь и здоровье обучающихся, находящихся под их руководством; способы защиты персонала и населения от возможных последствий аварий, катастроф, стихийных бедствий; меры профилактики травматизма, инфекционных и неинфекционных заболеваний; основы безопасности, взаимодействия человека со средой обитания, основы физиологии и рациональных условий труда, послед-	Тема1 Тема2 Тема 3 Тема 4 Тема 5 Тема 6 Тема 7 Тема 8 Тема 9	Собеседование (устный опрос), вопросы и задания к лабораторным и практическим работам, вопросы к зачету

					T
			ствий воздействия на человека		
			опасных, вредных и поражаю-		
			щих факторов среды обитания в		
			зонах трудовой деятельности и		
			отдыха; основы медицинских		
			знаний и здорового образа жиз-		
			ни; принципы защиты населе-		
			ния в военное время; основы		
			национальной безопасности		
			Российской Федерации.		
			Уметь: создавать здоровьесбе-		
			регающую образовательную		
			среду; обеспечивать охрану		
			жизни и здоровья обучающихся		
			и персонала; идентифицировать		
			опасности; прогнозировать ход		
			развития чрезвычайных ситуа-		
			ций и давать оценку их послед-		
			ствиям; правильно оценивать		
			ситуацию при различных видах		
			отравлений, термических со-		
			стояниях, травмах и оказывать		
			доврачебную помощь.		
			Владеть: правовыми, норма-		
			тивно-техническими и органи-		
			зационными основами безопас-		
			ности жизнедеятельности; ос-		
			новными способами защиты		
			человека от возможных послед-		
			ствий аварий, катастроф, сти-		
			хийных бедствий; приемами по		
			оказанию доврачебной помощи,		
			навыками здорового образа		
			жизни; методами обеспечения		
			жизни, методами обеспечения социальной безопасности.		
2	OTIL (Т1	C - 5
2	ОПК-6		Знать: Основные физические	Тема1	Собесе-
			законы, область их практиче-	Тема2	дование
			ского учёта и использования;	Тема 3	(устный
			основные физические величины	Тема 4	опрос),
			их определение, смысл, едини-	Тема 5	вопросы и
			цы их измерения; основные по-	Тема 6	задания к
			нятия и законы электромагнит-	Тема 7	лабора-
			ного поля и теории электриче-	Тема 8	торным и
			ских и магнитных цепей; мето-	Тема 9	практиче-
			ды анализа цепей постоянного	1 CIVIA 7	-
			и переменного токов в стацио-		ским ра-
			нарных и переходных режимах:		ботам,
			Уметь: Объяснить основные		вопросы к
			наблюдаемые природные и тех-		зачету
			ногенные явления и эффекты с		
			позиций физических законов;		
			истолковывать смысл физиче-		
			ских величин и понятий; ис-		
			пользовать законы и методы		
			расчета электромагнитного по-		
			ля, электрических, магнитных		
			цепей:		
			Владеть: Подходами использо-		
			вания основных общефизиче-		
			ских законов и принципов в		
	l .	i	ринцинов в		l .

	_		_		,
			практических ситуациях; навы-		
			ками анализа физической сущ-		
			ности явлений; методами рас-		
			чета переходных и установив-		
			шихся процессов в линейных и		
			нелинейных электрических це-		
			пях; способностью выявлять		
			естественнонаучную сущность		
			проблем, возникающих в ходе		
			профессионально- педагогиче-		
			ской деятельности:		
3	ПК-3	ПК-3.1	Знать: действующие стандар-	Тема1	Собесе-
		ПК-3.2	ты, технические условия, поло-	Тема2	дование
		ПК-3.3	жения и инструкции по эксплу-	Тема 3	(устный
		1110 3.5	атации оборудования, програм-	Тема 4	опрос),
			мы испытаний; материально-	Тема 5	· /·
			техническую базу, обслужива-		вопросы и
			емого оборудования РЗА;	Тема 6	задания к
			Уметь: выбирать изоляцион-	Тема 7	лабора-
			ные расстояния, оценивать	Тема 8	торным и
			надежность молниезащиты от-	Тема 9	практиче-
			крытых распределительных		ским ра-
			устройств и воздушных линий		ботам,
			электропередачи, определять		вопросы к
			необходимые параметры нели-		зачету
			нейных ограничителей перена-		3a ici y
			пряжений и вентильных раз-		
			рядников; использовать методы		
			оценки основных видов энерго-		
			ресурсов и преобразования их в		
			электрическую и тепловую		
			энергию, а так же методы оцен-		
			ки первичного и вторичного		
			оборудования энергосистем.		
			Владеть: высокой мотивацией		
			к выполнению профессиональ-		
			ной деятельности; способно-		
			стью к письменной, устной и		
			электронной коммуникации на		
			государственном языке и необ-		
			ходимым знанием иностранно-		
			го языка;		
			широкой общей подготовкой		
			(базовыми знаниями) для реше-		
			ния практических задач в элек-		
			троэнергетике и электротехни-		
			ке; навыками работы с кон-		
			трольно-измерительными при-		
			борами.		

Фонды оценочных средств по дисциплине «Теория автоматического управления»

Вопросы для собеседования (устного опроса)

- 1. Постановка задачи автоматизации управления
- 2. Принципы автоматического управления.
- 3. Классификация систем автоматического управления (САУ).

- 4. Функциональная схема САУ.
- 5. Законы управления САУ.
- 6. Модели объектов и систем управления. Формы представления моделей.
- 7. Уравнения динамики и статики.
- 8. Передаточные функции непрерывных САУ.
- 9. Связность, размерность и порядок систем.
- 10. Уравнения состояния и выхода.
- 11. Особенности математического описания цифровых систем управления.
- 12. Режимы работы САУ и типовые воздействия.
- 13. Временные и частотные характеристики САУ.
- 14. Понятие элементарного динамического звена.
- 15. Основные характеристики и электронная модель усилительного звена.
- 16. Основные характеристики и электронная модель инерционного звена.
- 17. Основные характеристики и электронная модель интегрирующего звена.
- 18. Основные характеристики и электронная модель дифференцирующего звена.
 - 19. Основные характеристики и электронная модель форсирующего звена.
 - 20. Основные характеристики и электронная модель колебательного звена.
 - 21. Структурные схемы САУ.
 - 22. Правила преобразования структурных схем.
- 23. Уравнения динамики и основные передаточные функции одноконтурной САУ.
 - 24. Структурные преобразования САУ.
 - 25. Понятие об устойчивости линейных САУ.
 - 26. Корневой критерий устойчивости.
 - 27. Алгебраический критерий устойчивости. .
 - 28. Критерий устойчивости Михайлова.
 - 29. Критерий устойчивости Найквиста.
 - 30. Логарифмический критерий устойчивости.
 - 31. Запасы устойчивости по фазе и амплитуде.
 - 32. Показатели качества САУ.
 - 33. Прямые и косвенные методы анализа качества САУ.
 - 34. Интегральные оценки качества
 - 35. Метод коэффициентов динамических ошибок
 - 36. Классификация дискретных САУ. Виды квантования.
 - 37. Основные функциональные элементы дискретных САУ.
 - 38. Анализ качества переходного процесса.
 - 39. Необходимость коррекции и ее виды.
 - 40. Способы коррекции САУ
 - 41. Введение производной в закон управления;
 - 42. Введение интеграла в закон управления.
 - 43. Синтез корректирующих устройств с помощью типовых ЛАЧХ.
 - 44. Понятие нелинейной системы. Виды статических характеристик.
 - 45. Особенности нелинейных САУ.
 - 46. Метод линеаризации нелинейных характеристик.
 - 47. Системы оптимального управления.
 - 48. Системы адаптивного управления.

Критерии и шкала оценивания по оценочному средству собеседование (устный опрос)

Шкала оценивания	Критерии оценивания
5	Полно и аргументировано отвечает по содержанию вопроса. Обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры не только по учебнику, но и самостоятельно составленные. Излагает материал последовательно и правильно.
4	Студент дает ответ, удовлетворяющий тем же требованиям, что и для оценки «5», но допускает 13 ошибки, которые сам же исправляет.
3	Студент обнаруживает знание и понимание основных положений вопроса, но: излагает материал неполно и допускает неточности в определении понятий или формулировке правил; не умеет достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры; излагает материал непоследовательно и допускает ошибки.
2	Студент обнаруживает незнание ответа на вопрос, допускает ошибки в формулировке определений и правил, искажающие их смысл, беспорядочно и неуверенно излагает материал; отмечаются такие недостатки в подготовке студента, которые являются серьезным препятствием к успешному овладению последующим материалом.

Задания к практическим занятиям и лабораторным работам

- 1. Составить дифференциальное уравнение двигателя постоянного тока, управляемого по цепям обмотки якоря и обмотки возбуждения.
- 2. Составить дифференциальное уравнение системы автоматической стабилизации угловой скорости двигателя постоянного тока.
- 3. Построить структурных схем систем автоматического управления. Определить передаточные функции замкнутых систем автоматического управления.
- 4. Исследовать преобразование структурных схем систем автоматического управления и передаточные функции САУ по задающему и возмущающему воздействиям.
- 5. Рассчитать переходные процессы релейных систем автоматического регулирования.
- 6. Изучить прямые и корневые показатели качества переходных процессов систем автоматического управления.
 - 7. Исследовать типичных линейных цепей.
- 8. Исследовать динамические режимы двигателя постоянного тока с независимым возбуждением.
- 9. Исследовать автоматизированные системы управления (АСУ) стабилизации скорости вращения двигателя постоянного тока с независимым возбуждением.
 - 10. Исследовать законы регулирования промышленных объектов.
- 11. Исследовать трехпозиционное регулирование температуры нагревающей печи.

12. Исследовать экспериментальную идентификацию динамических характеристик теплового объекта управления.

Контрольные вопросы к практическим занятиям и лабораторным работам

- 1. Перечислите основные этапы, выполнение которых необходимо для создания эффективной САУ.
- 2. Какова технологическая цель функционирования объекта, рассматриваемого на практическом занятии в качестве примера?
- 3. Что является возмущающим воздействием в примере, рассматриваемом на практическом занятии? Что является управляющим воздействием? Что является выходом объекта?
 - 4. Что такое запаздывание?
 - 5. Что такое период инерционности?
 - 6. Что такое статический (установившийся) режим?
 - 7. Зачем сглаживать кривые разгона, полученные экспериментально?
- 8. Какие методы сглаживания экспериментальных зависимостей Вы знаете?
 - 9. Какова основная идея алгоритма скользящего среднего?
- 10. Почему число интервалов времени в алгоритме скользящего среднего должно быть четным?
- 11. Каковы рекомендации по выбору числа точек в «окне усреднения» при использовании алгоритма скользящего среднего?
 - 12. Какова основная идея метода четвертых разностей?
- 13. Что является настраиваемым параметром метода четвертых разностей?
- 14. В каком случае метод скользящего среднего предпочтительнее метода четвертых разностей? В каком случае метод четвертых разностей предпочтительнее метода скользящего среднего?
- 15. Какие этапы нужно выполнить для идентификации динамической характеристики методом площадей?
 - 16. Что такое многоконтурная система без перекрестных связей?
 - 17. Что такое многоконтурная система с перекрестными связями?
 - 18. Какова технология расчета общей передаточной функции САУ?
- 19. Как на структурных схемах САУ обозначаются звено сравнения, сумматор, узел (развилка)?
- 20. Как рассчитать передаточную функцию последовательно соединенных звеньев (если передаточная функция каждого звена известна)?
- 21. Как рассчитать передаточную функцию параллельно соединенных звеньев (если передаточная функция каждого звена известна)?
- 22. Как переносится сумматор по ходу и против хода сигнала при структурных преобразованиях САУ?
- 23. Как переносится узел (развилка) по ходу и против хода сигнала при структурных преобразованиях САУ?
- 24. Как переставляются узлы и сумматоры при структурных преобразованиях САУ?

- 25. В чем заключается принцип суперпозиции, используемый при составлении общей передаточной функции по одному из каналов САУ?
- 26. Сформулируйте необходимое и достаточное условие устойчивости САУ.
- 27. Зачем вводят дифференцирующую составляющую в линейный закон управления?
- 28. Каковы преимущества пропорционально-интегрально-дифференцирующиего (ПИД)-закона управления?
 - 29. Каковы недостатки ПИД-закона управления?
- 30. В каком случае следует рассматривать целесообразность использования ПИД-закона управления?
 - 31. Какие линейные законы управления Вы знаете?
- 32. Зачем нужны более совершенные (по сравнению с линейными законами) алгоритмы управления?
- 33. Почему в общепромышленных регуляторах не используются различные комбинации кратных интегралов и производных высоких порядков, предусмотренные общей формой линейного закона управления?
- 34. Каким образом можно получить какой-либо линейный закон управления из обобщенной формы непрерывного ПИД-закона управления?
 - 35. Какова цель введения нелинейностей в закон управления?
 - 36. Какие типы нелинейных законов управления Вы знаете?
 - 37. Что такое функциональные нелинейные законы управления?
- 38. Какие функциональные нелинейные законы управления называются статическими?
- 39. Какие функциональные нелинейные законы управления называются динамическими?
 - 40. Что такое логические нелинейные законы управления?
 - 41. Какова область применения логических регуляторов?
 - 42. Что такое оптимизирующие нелинейные законы управления?
 - 43. Что означает понятие «трубка Солодовникова»?
 - 44. Что такое параметрические нелинейные законы управления?

Критерии и шкала оценивания по оценочному средству «практическое занятие»

Шкала оценивания	Критерий оценивания
5	Задание выполнено на высоком уровне (студент в полном объеме осветил рассматриваемую проблематику, привел аргументы в пользу своих суждений, владеет профильным понятийным (категориальным) аппаратом и т.п.
4	Задание выполнено на среднем уровне (студент в целом осветил рассматриваемую проблематику, привел аргументы в пользу своих суждений, допустив некоторые неточности и т.п.)
3	Задание выполнено на низком уровне (студент допустил существенные неточности, изложил материал с ошибками, не владеет в достаточной степени профильным категориальным аппаратом и т.п.)
2	Задание выполнено на неудовлетворительном уровне или не представлено (студент не готов, не выполнил задание и т.п.)

Критерии и шкала оценивания по оценочному средству «лабораторная работа»

Шкала оценивания	Критерий оценивания
5	Студент выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений, самостоятельно и рационально выбрал и подготовил для опыта все необходимое оборудование, все опыты провел в условиях и режимах, обеспечивающих получение результатов и выводов с наибольшей точностью, в представленном отчете правильно и аккуратно выполнил все записи, таблицы, рисунки, чертежи, графики, вычисления и сделал выводы, правильно выполнил анализ погрешностей, соблюдал требования безопасности труда.
4	Студент выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений, самостоятельно и рационально выбрал и подготовил для опыта все необходимое оборудование, однако опыты провел в условиях и режимах, не обеспечивающих получение результатов и выводов с достаточной точностью, в представленном отчете правильно и аккуратно выполнил все записи, таблицы, рисунки, чертежи, графики, вычисления и сделал выводы, правильно выполнил анализ погрешностей, соблюдал требования безопасности труда, допускал незначительные ошибки при ответе на дополнительные вопросы.
3	Студент выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений, выбрал и подготовил для опыта все необходимое оборудование, однако опыт проводился в нерациональных условиях, что привело к получению результатов с большей погрешностью, в отчете были допущены в общей сложности не более двух ошибок (в записях единиц, измерениях, в вычислениях, графиках, таблицах, схемах, анализе погрешностей и т.д.), не принципиального для данной работы характера, не повлиявших на результат выполнения, соблюдал требования безопасности труда, допускал незначительные ошибки при ответе на дополнительные вопросы.
2	Студент выполнил работу не в полном объеме, не сумел выбрать для опыта необходимое оборудование, опыты, измерения, вычисления, наблюдения производились неправильно, в отчете были допущены множественные ошибки, не выполнил анализ погрешностей, не соблюдал требования безопасности труда, допускал ошибки при ответе на дополнительные вопросы.

Вопросы к зачету

- 1. Место теории управления в системе наук об управлении объектами и процессами. Краткий исторический очерк из истории развития теории управления.
 - 2. Основные законы регулирования ПИ- и ПИД-регулирования.
 - 3. Критерии устойчивости линейных САУ. Критерий Рауса-Гурвица.
 - 4. Типовые звенья САУ. Инерционное звено.
- 5. Соединения звеньев автоматики. Последовательное и параллельное соединения.
 - 6. Критерии устойчивости линейных САУ. Критерий Михайлова.
- 7. Математическое описание объектов управления. Математические модели вход-выход. Понятие о передаточной функции. Статические и динамические характеристики. Частотные характеристики.

- 8. Типовые звенья САУ. Звено 2-го порядка. Случай комплексных сопряженных корней.
- 9. Метод Z-изображений при расчете импульсных САУ. Основные теоремы Z-преобразований.
- 10. Понятие, расшифровка и определение КЧХ (АЧХ), АЧХ, ФЧХ, МЧХ, ВЧХ, ЛАЧХ, ЛФЧХ.
 - 11. Устойчивость линейных САУ. Критерий Вышнеградского.
- 12. Выбор типа регуляторов и определение оптимальных параметров настроек.
 - 13. Типовые звенья САУ. Пропорциональное и дифференцирующее звенья.
- 14. Встречно-параллельное соединение звеньев. Обратные связи, их виды, достоинства и недостатки.
 - 15. Импульсные САР. Общие понятия. Импульсные фильтры.
 - 16. Типовые звенья САУ. Интегрирующее звено.
 - 17. Одноемкостный объект с самовыравниванием и П-регулятором.
- 18. Математическое описание импульсных САР. Разностные уравнения и их решение.
 - 19. Типовые звенья САУ. Интегро-дифференцирующее звено (t>1, t<1).
 - 20. Критерии устойчивости линейных САУ. Критерий Найквиста.
- 21. Нелинейные САР. Характеристики нелинейных элементов. Особенности поведения нелинейных САР. Обзор методов расчета нелинейных систем.
- 22. Типовые звенья САУ. Реальное (инерционно-дифференцирующее) дифференцирующее звено.
 - 23. Основные законы регулирования П-, И-, ПИ-регулирования.
 - 24. Критерий абсолютной устойчивости нелинейных систем Попова.
 - 25. Типовые звенья САУ. Форсирующее и запаздывающее звенья.
- 26. Соединения звеньев автоматики. Последовательное, параллельное и встречно-параллельное соединения звеньев.
- 27. Методы расчета нелинейных САУ. Метод кусочно-линейной аппроксимации.
 - 28. Типовые звенья САУ. Апериодическое звено 2-го порядка.
 - 29. Реальные импульсные фильтры. Амплитудно-импульсный модулятор.
- 30. Случайные сигналы и их характеристики. Прохождение случайных сигналов через линейные звенья.
- 31. Типовые звенья САУ. Звено 2-го порядка (корни вещественные и равные, корни чисто мнимые).
- 32. Построение областей устойчивости по одному параметру. Метод D-разбиения.
 - 33. дискретные системы. Импульсные фильтры. Решетчатые функции.
- 34. Методы расчета переходных процессов в линейных системах управления. Точные и приближенные методы (обзор с примерами).
 - 35. Законы регулирования П-, И-, ПИ-, ПД- и ПИД-регулирования.
 - 36. Частотные характеристики и критерии устойчивости импульсных САУ.
 - 37. Основные показатели качества регулирования.
- 38. Синтез линейных систем управления. Корректирующее звенья. Последовательная и параллельная коррекции.

- 39. Анализ и элементы синтеза стахостических систем при стационарных случайных воздействиях.
 - 40. Интегральные оценки качества регулирования.
 - 41. Одноемкостной объект с самовыравниванием и И-регулятором.
 - 42. Задачи оптимального управления и критерии оптимальности.
 - 43. Ошибки регулирования по задающему воздействию.
 - 44. Переходные процессы в импульсных системах управления.
- 45. Системы управления, оптимальные по быстродействию, по расходам энергии и ресурсов.
 - 46. Ошибки регулирования по возмущающему воздействию.
 - 47. Методы расчета нелинейных САУ. Метод фазовых портретов.
 - 48. Понятие об адаптивном управлении.
- 49. Построение областей устойчивости линейных систем по одному параметру.
 - 50. Методы расчета нелинейных САУ. Метод гармонической линеаризации.
- 51. Одноемкостной объект с самовыравниванием и ПИ-регулятором (корни вещественные и равные).
- 52. Объекты регулирования и их характеристики. Емкость и коэффициент емкости, время разгона, запаздывания.

Объекты одно- двух- и многоемкостные.

- 53. Реальные импульсные фильтры. Экстраполятор нулевого порядка.
- 54. методы расчета нелинейных систем. Метод гармонического баланса.
- 55. Экспериментальные методы определения параметров передаточных функций объектов управления.
 - 56. Критерии устойчивости импульсных систем.
- 57. Оценка поведения нелинейных систем по фазовым портретам. Метод изоклин.
 - 58. Построение кривой разгона по импульсной переходной характеристике.
- 59. Применение метода гармонической линеаризации при расчете амплитуды и частоты автоколебаний в нелинейной системе управления.
 - 60. Устойчивость импульсных систем. Критерий устойчивости.
- 61. Одноемкостной объект с самовыравниванием и ПИ-регулятором (корни комплексные и сопряженные).
 - 62. Законы регулирования П-, И-, ПИ-, и ПИД- регулирования.
 - 63. Критерий абсолютной устойчивости нелинейных систем Попова.
 - 64. Основные показатели качества регулирования в линейных САУ.
- 65. Устойчивость линейных систем. Критерий устойчивости. Повышение устойчивости.
- 66. Задачи оптимального управления. Системы управления, оптимальные по быстродействию, по расходам ресурсов и энергии.
- 67. Переходные процессы в импульсных системах. Качество работы импульсных СУ.
- 68. Устойчивость нелинейных систем. Первый и второй методы Ляпунова. Частотный метод исследования абсолютной устойчивости.
 - 69. Понятие об адаптивном управлении.
 - 70. Показатели качества регулирования в линейных САУ.

- 71. Фазовые портреты нелинейных систем. Фазовая скорость. Оценка поведения нелинейных систем по фазовому портрету.
 - 72. Критерий устойчивости линейных систем. Критерий Найквиста.
- 73. Устойчивость линейных систем. Критерии устойчивости. Логарифмический критерий устойчивости.
- 74. Построение переходной функции по вещественной частотной характеристике. Метод трапеций.

Критерии и шкала оценивания к промежуточной аттестации «зачёт»

Шкала оценивания (экзамен)	Характеристика знания предмета и ответов	Шкала оценивания (зачет)
отлично (5)	Студент глубоко и в полном объёме владеет программным материалом. Грамотно, исчерпывающе и логично его излагает в устной или письменной форме. При этом знает рекомендованную литературу, проявляет творческий подход в ответах на вопросы и правильно обосновывает принятые решения, хорошо владеет умениями и навыками при выполнении практических задач	зачтено
хорошо (4)	Студент знает программный материал, грамотно и по сути излагает его в устной или письменной форме, допуская незначительные неточности в утверждениях, трактовках, определениях и категориях или незначительное количество ошибок. При этом владеет необходимыми умениями и навыками при выполнении практических задач	зачтено
удовлетворительно (3)	Студент знает только основной программный материал, допускает неточности, недостаточно четкие формулировки, непоследовательность в ответах, излагаемых в устной или письменной форме. При этом недостаточно владеет умениями и навыками при выполнении практических задач. Допускает до 30% ошибок в излагаемых ответах.	зачтено
неудовлетворительно (2)	Студент не знает значительной части программного материала. При этом допускает принципиальные ошибки в доказательствах, в трактовке понятий и категорий, проявляет низкую культуру знаний, не владеет основными умениями и навыками при выполнении практических задач. Студент отказывается от ответов на дополнительные вопросы.	не зачтено

Лист изменений и дополнений

№ п/п	Виды дополнений и изме-	Дата и номер протокола за-	Подпись (с расшифровкой)
	нений	седания кафедры (кафедр),	заведующего кафедрой (за-
		на котором были рассмот-	ведующих кафедрами)
		рены и одобрены изменения	
		и дополнения	