МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ для проведения текущего контроля, промежуточной аттестации в форме экзамена

по учебной дисциплине общеобразовательного цикла ОДП.01 Математика: алгебра и начала математического анализа, геометрия

специальность 09.02.07

РАССМОТРЕН И СОГЛАСОВАН методической комиссией Колледжа Северодонецкого технологического института (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

Протокол № <u>01</u> от «<u>13</u>» _ сентября_20<u>24</u> г.

Председатель комиссии

В.Н. Лескин

Разработан на основе федерального государственного образовательного стандарта среднего профессионального образование по специальности

09.02.07 Информационные системы и программирование

УТВЕРЖДЕН

заместителем директора

Р.П. Филь

Составитель(и):

Арушанова Ирина Ивановна, преподаватель СПО Колледжа Северодонецкого технологического института (филиал) ФГБОУ «ЛГУ им. В.Даля»

1. Паспорт комплекта контрольно-оценочных средств

В ходе освоения учебной дисциплины ОДП.01 Математика: алгебра и начала математического анализа, геометрия обучающийся должен обладать следующими знаниями и умениями, направленными на достижение результатов ее изучения в соответствии с требованиями ФГОС СОО с учетом профессиональной направленности ФГОС СПО.

2. Оценивание уровня освоения учебной дисциплины

Промежуточная аттестация по учебной дисциплине проводится в форме экзамена.

Контроль и оценка освоения учебной дисциплины по темам (разделам)

	Формы и методы к	етоды контроля	
Элементы учебой дисциплины	Текущий контроль	Промежуточный контроль	
	Форма контроля	Форма контроля	
Тема 1. Повторение курса математики основной школы Тема 2. Степени и	Устный прос Самостоятельная работа Контрольная работа Устный опрос		
корни. Степенная функция	Самостоятельная работа Математический диктант Проверка ведения тетрадей Контрольная работа		
Тема 3.Показательная функция	Устный прос Самостоятельная работа Тестовое задание Контрольная работа		
Тема 4. Логарифмы. Логарифмическая функция	Устный опрос Самостоятельная работа Математический диктант Проверка ведения тетрадей Контрольная работа		
Тема 5. Основы тригонометрии. Тригонометрические функции	Устный опрос Математический диктант 1 Математический диктант 2 Самостоятельная работа 1 Самостоятельная работа 2 Проверка ведения тетрадей Контрольная работа		
Тема 6. Комплексные числа	Устный опрос Самостоятельная работа		

Тема 7.	Verman	1
	Устный прос	
Координаты и	Самостоятельная работа	
векторы	Контрольная работа	
Тема 8.	Устный опрос	
Прямые и	Самостоятельная работа	
плоскости в	Математический диктант	
пространстве	Проверка ведения тетрадей	
	Контрольная работа	
Тема 9.	Устный опрос	
Производная	Математический диктант	
функции, ее применение	Самостоятельная работа 1	
	Самостоятельная работа 2	
	Проверка ведения тетрадей	
	Контрольная работа	
Тема 10.	Устный опрос	
Первообразная	Математический диктант	
и интеграл	Самостоятельная работа	
	Проверка ведения тетрадей	
	Контрольная работа	
Тема 11.	Устный опрос	
Многогранники и тела	Математический диктант	
вращения	Самостоятельная работа 1	
	Самостоятельная работа 2	
	Проверка ведения тетрадей	
	Контрольная работа	
Тема 12.	Устный опрос	
Множества.	Самостоятельная работа	
Элементы теории	•	
графов		
Тема 13. Элементы	Устный опрос	
комбинаторики,	Самостоятельная работа	
статистики и теории	Проверка ведения тетрадей	
вероятностей	Контрольная работа	
Тема 14. Уравнения и	Устный опрос	
неравенства	Самостоятельная работа	
	Проверка ведения тетрадей	
	Контрольная работа	
Промежуточная		Экзамен
аттестация		

3. Задания для оценивания уровня освоения учебной дисциплины

- 3.1. Задания для текущего контроля прилагаются по темам в соответствии с ТАБЛИЦЕЙ 1.
 - 2. Задания для промежуточной аттестации прилагаются.

4. Условия проведения промежуточной аттестации

Количество вариантов заданий для аттестующихся — четыре варианта. Время выполнения задания — 135 мин.

5. Критерии оценивания для промежуточной аттестации

Экзамен по математике проводится в форме письменной работы.

- Работа оформляется на отдельных двойных листах (в клетку) со штампом учебного заведения.
- Содержание всех заданий соответствует действующей программе учебной дисциплины ОДП.01 Математика: алгебра и начала математического анализа, геометрия.
- Каждый вариант экзаменационной работы состоит из трех частей, отличающихся уровнем сложности:

В первой части (7 заданий) к каждому заданию предложено четыре возможных варианта ответа, из которых только один правильный. Задание считается выполненным правильно, если указана буква, которой обозначен правильный ответ, и сам ответ. Например: 1. а) 0,5 кг.

При этом НЕ ТРЕБУЕТСЯ записывать условия заданий и решение.

Если указан правильный ответ, то начисляется 1 балл, если же указанный обучающимся ответ — неправильный, то выполнение задания оценивается в 0 баллов. Если указано несколько букв, то такой ответ оценивается в 0 баллов, даже если среди множества ответов есть правильный.

Вторая часть работы состоит из 4 заданий. Задание этой части считается выполненным правильно, если оно сопровождается кратким условием и решением, при необходимости рисунком с записями соответствующих формул, а также записью правильного ответа. Каждое задание оценивается 0, 1 или 2 баллами. В 0 баллов оценивается неправильное решение задания. Если в задании получен правильный ответ, но решение имеет некоторые недочеты или при правильном ходе решения обучающийся допускает вычислительную ошибку, изза которой получен неверный ответ, то задание оценивается 1 баллом. Частичное выполнение задания второй части (например, если правильно найден один из двух корней уравнения системы уравнений) также оценивается 1 баллом.

Приведенный правильный ответ без необходимых записей решения оценивается в 0 баллов.

Третья часть аттестационной работы состоит из 3 заданий (2 по алгебре и 1 по геометрии), которые предполагают развернутое решение и обоснование каждого его этапа с записью развернутого ответа.

При этом обучающийся выполняет ТОЛЬКО одно задание по алгебре по своему выбору и одно задание по геометрии!!!

Задание по алгебре считают выполненным правильно, если обучающийся привел запись решения с обоснованием каждого этапа и дал верный ответ. Задание по геометрии предполагает подробное описание условия задачи и введение его в решение. Задания третьей части оценивается 4 баллами.

- Формулировки заданий обучающиеся не переписывают, а указывают только номер задания.
- Исправления и зачеркивания в оформлении решения заданий, если они сделаны аккуратно, не являются основанием для снижения оценки.
- Сумма баллов, начисленных за правильно выполненную экзаменационную работу, переводится в оценку по 5-балльной системе оценивания по специальной шкале.

Система начисления баллов за правильно выполненное задание для оценивания работ приведена в таблице 2.

Таблица 2

Номера заданий	Количество баллов	Всего
1.1 - 1.7	по 1 баллу	7 баллов
2.1 - 2.4	по 2 балла	8 баллов
два задания из 3.1-3.3.	по 4 балла	8 баллов
Всего ба	ЛЛОВ	23 балла

Соответствие количества баллов оценке в 5-балльной системе приведены в таблице 3.

Таблица 3

Количество набранных баллов	Оценка
0-2	1
3-9	2
10-15	3
16-20	4
21-23	5

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

РАССМОТРЕН И ПРИНЯТ

методической комиссией Колледжа Северодонецкого технологического института (филиал) ФГБОУ ВО «ЛГУ им. В. Даля» Протокол № 01 от «13» сентября_2024 г.

УТВЕРЖДАЮ Заместитель директора

Infly Р.П. Филь

«<u>13</u>» <u>сентября</u> 20<u>24</u> г.

Председатель комиссии

В.Н. Лескин

КОМПЛЕКТ ЗАДАНИЙ

для проведения промежуточной аттестации в форме <u>экзамена</u>

по учебной дисциплине общеобразовательного цикла ОДП.01 Математика: алгебра и начала математического анализа, геометрия

специальность 09.02.07

для студентов 1 курса

Преподаватель

И.И. Арушанова

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

Учебная дисциплина ОДП.01 Математика: алгебра и начала математического анализа, геометрия

Специальность 09.02.07 Информационные системы и программирование Курс 1

ВАРИАНТ № 1

Часть первая

Задания 1.1-1.7 содержат по четыре варианта ответов, из которых только ОДИН ответ ПРАВИЛЬНЫЙ. Выберите правильный, по Вашему мнению, ответ.

1.1.	.1. Найти значение переменной $log_{3^5}3 = x$.				
	a) 1;	6) 5;	B) 1/5;	г) 0.	
1.2.	Вычислить значение выражения 5√-32.				
	a) -2;	$6) - \frac{1}{2};$	в) -5;	г) 2.	
1.3.	Представить выражение $\left(x^{\frac{1}{3}}\right)^9$ в виде степени.				
	a) $\frac{1}{3}$;	6) 3;	в) <i>х</i> ³ ;	Γ) χ^2 .	
1.4.	Найти общий вид первообразной функции $f(x) = x - 3$.				
	a) $F(x) = \frac{x^2}{2} - 3x$;		B) $F(x) = x^2 - 3x + C$;		
	6)F(x)=1+C;		$\Gamma F(x) = \frac{x^2}{2} - 3x + C.$		
1.5.	Упростить выражение $sin3\alpha sin\alpha + cos\alpha cos3\alpha$.				
	a) cos2α;	δ) − <i>cos</i> 4α;	в) sin4α;	Γ) $-sin2\alpha$.	
1.6.	При каком k вектор $\vec{n}(-10; k; 5)$ коллинеарен вектору $\vec{m}(-2; -4; 1)$.				
	a) $k = -4$;	б) $k = -20$;	B) $k = -5$;	r) $k = 5$.	
1.7.	Угол между образующей и плоскостью основания конуса равен 60° , а радиус основания конуса $4\sqrt{3}$ см. Найти высоту конуса.				
_	а) 8см;	б) 12см;	в) 2√3 см;	г) 8√3 см.	

Часть вторая

Решение заданий 2.1-2.4 должно быть кратким. В случае необходимости проиллюстрируйте решение схемами, рисунками.

2.1.	Решить неравенство $25^{7-5x} \le 0,008$.
2.2.	Найти область определения функции
	$f(x) = \log_{\frac{1}{2}}(5x^2 + 3x - 8) + \frac{1}{\sqrt[4]{2x - 7}}.$

2.3.	Упростить $\frac{a^{\frac{1}{3}}-25}{a^{\frac{1}{6}}+5}$.
2.4.	Диагональ осевого сечения прямого кругового цилиндра наклонена к плоскости основания под углом 45° и равна 6√2 см. Найти объем цилиндра.

Часть третья

Решение задач 3.1-3.3 должно содержать обоснование. В нем необходимо записать последовательные логические действия и объяснения, сослаться на математические факты, из которых следует то или иное утверждение. Если необходимо, проиллюстрируйте решение схемами, графиками, таблицами.

3.1. Найти промежутки возрастания и убывания функции <i>у</i> точки экстремума.	
3.2.	Решить уравнение $cos^25x + 7sin^25x = 4 sin 10x$.
3.3.	В основании пирамиды лежит прямоугольный треугольник с гипотенузой 4см и острым углом 30°. Каждое боковое ребро пирамиды образует с плоскостью основания угол 60°. Найти объем пирамиды.

Председатель

методической комиссии

Преподаватель

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

Учебная дисциплина ОДП.01 Математика: алгебра и начала математического анализа, геометрия

Специальность 09.02.07 Информационные системы и программирование Курс 1

ВАРИАНТ № 2

Часть первая

Задания 1.1-1.7 содержат по четыре варианта ответов, из которых только ОДИН ответ ПРАВИЛЬНЫЙ. Выберите правильный, по Вашему мнению, ответ.

1.1.	. Найдите значение выражения $\log_6 9 + \log_6 4$.				
	a) log ₆ 13;	б) 12;	в) 6;	г) 2.	
1.2.	Решите уравнение $\sqrt{2x-3}=3$.				
	a) 2;	б) 3;	в) 6;	г) 9.	
1.3.	Решите неравен	ство $\log_{0,2} x > \log_{0,2}$	5.		
	a) (-∞; 5);		B) (0; 5)∪(5; +∞);		
	б) (5; +∞);		r) (0; 5).		
1.4.	Укажите общий вид первообразных функции $f(x) = 10x^4 - 6x$.				
	a) $2x^3 - 3x^2 + C$;	6) $2x^5 - 4x^2 + C$;	B) $5x^5 - 4x^2 + C$;	Γ) $40x^3 - 6 + C$.	
1.5.	Укажите множе	Укажите множество значений функции $y = \cos x + 3$.			
	a) [-1; 1];	б) [0; 3];	в) [2; 4];	г) [0; 2].	
1.6	Вычислите объем шара с радиусом 3 см.				
	a) 36π cm ³ ;	б) 9π см ³ ;	B) 108π cm ³ ;	r) 54π cm ³ .	
1.7.	При каких значениях m и n векторы \bar{a} (-15; m ; -10) и \bar{b} (3; 4; n) коллинеарны?				
	a) $m = 20$; $n = 2$;		B) $m = 20$; $n = -2$;		
	б) <i>m</i> = -20; <i>n</i> = -2;		r) $m = -20$; $n = 2$.		

Часть вторая

Решение заданий 2.1-2.4 должно быть кратким. В случае необходимости проиллюстрируйте решение схемами, рисунками.

2.1.	Чему равно значение выражения $\cos(2\alpha - \frac{\pi}{2})$, если $\cos\alpha = -0.8$ и $\frac{\pi}{2} < \alpha < \pi$?
2.2.	Решите уравнение: $64^x - 7 \cdot 8^x - 8 = 0$.
2.3.	Чему равен угловой коэффициент касательной к графику функции $f(x) = \ln{(2x+1)}$ в точке с абсциссой $x_0=1,5$?
2.4.	Объем конуса с радиусом основания 6 см равен 96 д см ³ . Вычислите площадь боковой поверхности конуса.

Часть третья

Решение задач 3.1-3.5 должно содержать обоснование. В нем необходимо записать последовательные логические действия и объяснения, сослаться на математические факты, из которых следует то или иное утверждение. Если необходимо, проиллюстрируйте решение схемами, графиками, таблицами.

3.1.	Решите уравнение $6\sin^2 x - 3\sin x \cos x - 5\cos^2 x = 2$.
3.2.	Число 60 представьте в виде суммы двух положительных чисел так, чтобы сумма их квадратов была наименьшей.
3.3.	Основанием пирамиды является правильный треугольник со стороной 6 см. Одна боковая грань пирамиды перпендикулярна плоскости основания, а две другие наклонены к плоскости основания под углом 45^0 . Найдите объем пирамиды.

Председатель

методической комиссии

Преподаватель

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

Учебная дисциплина ОДП.01 Математика: алгебра и начала математического анализа, геометрия

Специальность 09.02.07 Информационные системы и программирование Курс 1

ВАРИАНТ № 3

Часть первая

Задания 1.1-1.7 содержат по четыре варианта ответов, из которых только ОДИН ответ ПРАВИЛЬНЫЙ. Выберите правильный, по Вашему мнению, ответ.

	а) 100 см;	б) 50 см;	в) 5 см;	г) 20 см.
1.7.	Чему равен радиус сферы, площадь поверхности которой равна $100 \pi \mathrm{cm}^2$?			
	a) 0°;	б) 180°;	в) 90°;	г) нельз. определить.
1.6.	Две прямые a и b параллельны, а прямые b и c перпендикулярны. Чему равен угол между a и c :			
	a) $f'(x) = \frac{x^2}{3} - \frac{x}{2}$;	6) $f'(x) = x^2 - x$;	B) $f'(x) = x^3 - x^2$;	$\Gamma) f'(x) = 3x^2 - 2x$
1.5.	Найти производную функции $f(x) = \frac{x^3}{3} - \frac{x^2}{2}$.			
	a) 1;	б) 9;	B) - 9;	r) – 4.
1.4.	Упростите выра	жение $5\sin^2 x - 4 +$	$5\cos^2 x$.	
	a) (8; 10);	б) (14; 16);	в) (6; 8);	г) (4; 6).
1.3.	Укажите промежуток, которому принадлежит корень уравнения $\log_2(x+1) = 4$.			
	a) $y = 0.2^X$;	6) $y = 3^x$;	$\mathbf{B}) \ y = \left(\frac{5}{6}\right)^{x};$	$(r) y = 2^{-x}$.
1.2.	Какая функция	является возрастаю	щей?	·
	a) 0,027;	б) 0,03;	в) – 0,3;	г) 0,3.
1.1.	Вычислите: $\sqrt[3]{-0.3} \cdot \sqrt[3]{-0.09}$.			

Часть вторая

Решение заданий 2.1-2.4 должно быть кратким. В случае необходимости проиллюстрируйте решение схемами, рисунками.

2.1.	Решите неравенство $7^{x+2} - 14 \cdot 7^x \le 5$.	
2.2.	Решите систему уравнений: $\begin{cases} x^2 - y^2 = 24, \\ x - y = 2. \end{cases}$	

2.3.	Упростите выражение: $\frac{18}{a+3a^{\frac{1}{2}}} - \frac{6}{a^{\frac{1}{2}}}$.
2.4.	Из точки к плоскости проведены две наклонные, равные 23 см и 33 см. Найдите расстояние от этой точки до плоскости, если проекции наклонных относятся как 2:3.

Часть третья

Решение задач 3.1-3.3 должно содержать обоснование. В нем необходимо записать последовательные логические действия и объяснения, сослаться на математические факты, из которых следует то или иное утверждение. Если необходимо, проиллюстрируйте решение схемами, графиками, таблицами.

3.1.	Вычислите площадь фигуры, ограниченной параболой $y=8-x^2$ и прямой $y=4$.		
3.2.	Решите уравнение: $\sin^2 x + 0.5 \sin 2x = 1$.		
3.3.	Диагональ правильной четырехугольной призмы равна 15 см, а диагональ боковой грани — 12 см. Найдите площадь боковой поверхности призмы.		

Председатель

методической комиссии

Преподаватель

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

Учебная дисциплина ОДП.01 Математика: алгебра и начала математического анализа, геометрия

Специальность 09.02.07 Информационные системы и программирование

Курс 1

ВАРИАНТ № 4

Часть первая

Задания 1.1-1.7 содержат по четыре варианта ответов, из которых только ОДИН ответ ПРАВИЛЬНЫЙ. Выберите правильный, по Вашему мнению, ответ.

1.1.	Найдите значение выражения $(\sqrt[3]{4^3 \cdot 27^2})^3$.				
	a) 8;	6) 18;	в) 6;	г) 144.	
1.2.	Решите неравенство $5^{3-x} < \frac{1}{25}$.				
	a) (-∞; 5);	б) (1; +∞);	в) (-∞; 1);	r) (5; +∞).	
1.3.	Укажите множество значений функции $y = \log_{0.2}(x+4)$.				
	a) (0; +∞);	6) (−4; +∞);	B) (4; +∞);	r) $(\infty; +\infty)$.	
1.4.	Упростите выражение $-4\sin^2 x + 5 - 4\cos^2 x$.				
	a) 1;	б) 9;	в) 5;	г) 4.	
1.5.	Вычислите неопределенный интеграл $\int (2x - \frac{1}{x^2})dx$.				
	a) $x^2 - \frac{1}{x^2} + C$;	6) $x^2 + \frac{1}{x} + C$;	B) $2x^2 - \frac{1}{x} + C$;	Γ) $2x^2 + \frac{1}{x} + C$.	
1.6.	Точка E — середина AB . Найдите координаты точки E , если A (14; -8; 5), B (4; -2; -7).				
	a) E (-9; 5; -1);	6) E (9; -5; -1);	в) Е (-9; -5; -1);	r) E (9; 5; 1).	
1.7.	Найдите объем правильной треугольной пирамиды, площади основания которой равна 12 см ² , а высота – 8 см.				
	а) 96 см ³ ;	б) 32 см ³ ;	в) 48 см ³ ;	г) 24 см ³ .	

Часть вторая

Решение заданий 2.1-2.4 должно быть кратким. В случае необходимости проиллюстрируйте решение схемами, рисунками.

2.1.	Решите уравнение: $\log_6(x-2) + \log_6(x-11) = 2$.		
2.2.	Найдите наименьшее значение функции $f(x) = \frac{x^4}{4} - 2x^2$ на промежутке [0; 4].		
2.3.	Найдите область определения функции $f(x) = \frac{10}{2 - \sqrt[4]{x}}$.		

Диагональ боковой грани правильной треугольной призмы образует с основанием угол 30°. Найти объем призмы, если площадь ее боковой поверхности 72√3 см².

Часть третья

Решение задач 3.1-3.3 должно содержать обоснование. В нем необходимо записать последовательные логические действия и объяснения, сослаться на математические факты, из которых следует то или иное утверждение. Если необходимо, проиллюстрируйте решение схемами, графиками, таблицами.

3.1.	Найдите промежутки возрастания и убывания и точки экстремума	
3.2.	Докажите тождество: $2\cos^2(\frac{\pi}{4} - 2\alpha) = \sin 4\alpha + 1$.	
3.3.	В цилиндре параллельно его оси проведена плоскость, пересекающая нижнее основание цилиндра по хорде, которая видна из центра этого основания под углом α. Диагональ образовавшегося сечения наклонена к плоскости основания под углом β. Найдите площадь боковой поверхности цилиндра, если площадь его основания равна S.	

Председатель

методической комиссии

Преподаватель