МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ ЕН.03 ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

специальность

09.02.07 «ИНФОРМАЦИОННЫЕ СИСТЕМЫ И ПРОГРАММИРОВАНИЕ»

РАССМОТРЕН И СОГЛАСОВАН методической комиссией Колледжа Северодонецкого технологического института (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

Протокол № <u>01</u> от «<u>13</u>» сентября_20<u>24</u> г.

Председатель комиссии

В.Н. Лескин

Разработан на основе федерального государственного образовательного стандарта среднего профессионального образование по специальности

[NBmuj

09.02.07 Информационные системы и программирование

УТВЕРЖДЕН

заместителем директора

Infel Р.П. Филь

Составитель(и):

Арушанова Ирина Ивановна, преподаватель СПО Колледжа Северодонецкого технологического института (филиал) ФГБОУ «ЛГУ им. В.Даля»

•

1. ПАСПОРТ КОМПЛЕКТА ОЦЕНОЧНЫХ СРЕДСТВ

1.1 Область применения

КОМПЛЕКТ оценочных средств (КОС) — является неотъемлемой частью учебнометодического комплекса учебной дисциплины «Теория вероятностей и математическая статистика» и предназначен для контроля и оценки образовательных достижений обучающихся, освоивших программу данной дисциплины.

1.2 Цели и задачи КОМПЛЕКТа оценочных средств

Целью КОМПЛЕКТа оценочных средств является установление соответствия уровня подготовки обучающихся требованиям.

Для достижения поставленной цели КОМПЛЕКТом оценочных средств по дисциплине «Теория вероятностей и математическая статистика» решаются следующие задачи:

- контроль и управление процессом приобретения обучающимися знаний и умений, предусмотренных в рамках данного курса;
- контроль и оценка степени освоения общих и профессиональных компетенций, предусмотренных в рамках данного курса;
- обеспечение соответствия результатов обучения задачам будущей профессиональной деятельности через совершенствование традиционных и внедрение инновационных методов обучения в образовательный процесс в рамках данного курса.

1.3 Планируемые результаты обучения

Поскольку перечисленные компетенции носят интегральный характер, для разработки оценочных средств целесообразно выделить планируемые результаты обучения — знания и умения, характеризующие этапы формирования компетенций и обеспечивающие достижение планируемых результатов освоения образовательной программы. Таким образом, в результате освоения дисциплины «Теория вероятностей и математическая статистика» студенты должны:

Уметь:

- Применять стандартные методы и модели к решению вероятностных и статистических задач
- Использовать расчетные формулы, таблицы, графики при решении статистических задач
- Применять современные пакеты прикладных программ многомерного статистического анализа

Знать:

- Элементы комбинаторики;
- Понятие случайного события, классическое определение вероятности, вычисление вероятностей событий с использованием элементов комбинаторики, геометрическую вероятность;
- Алгебру событий, теоремы умножения и сложения вероятностей, формулу полной вероятности;
- Схему и формулу Бернулли, приближенные формулы в схеме Бернулли. Формулу (теорему) Байеса;
- Понятия случайной величины, дискретной случайной величины, ее распределение и характеристики, непрерывной случайной величины, ее распределение и характеристики;
- Законы распределения непрерывных случайных величин;

- Центральную предельную теорему, выборочный метод математической статистики, характеристики выборки;
- Понятие вероятности и частоты

Освоить следующие компетенции:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;
- ОК 02. Использовать современные средства поиска, анализа и интерпретации информации и информационные технологии для выполнения задач профессиональной деятельности;
- ОК 04. Эффективно взаимодействовать и работать в коллективе и команде;
- ОК 05. Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста;
- ОК 09. Пользоваться профессиональной документацией на государственном и иностранном языках.

Воспитательная работа

- освоение обучающимися ценностно-нормативного и деятельностно-практического аспекта отношений человека с человеком, патриота с Родиной, гражданина с правовым государством и гражданским обществом, человека с природой, с искусством и т.д.;
- вовлечение обучающегося в процессы самопознания, самопонимания, содействие обучающимся в соотнесении представлений о собственных возможностях, интересах, ограничениях с запросами и требованиями окружающих людей, общества, государства;
- помощь в личностном самоопределении, проектировании индивидуальных образовательных траекторий и образа будущей профессиональной деятельности, поддержка деятельности обучающегося по саморазвитию;
- овладение обучающимся социальными, регулятивными и коммуникативными компетенциями, обеспечивающими ему индивидуальную успешность в общении с
- окружающими, результативность в социальных практиках, в процессе сотрудничества со сверстниками, старшими и младшими

1.3 Промежуточная аттестация по дисциплине

Форма промежуточной аттестации по УД «ЕН.03 Теория вероятностей и математическая статистика»:

II (I) курс 3(1) семестр – дифференцированный зачет в форме теста.

1.4 Перечень оценочных средств, используемых для текущей аттестации

№ п/п	Наименование оценочного средства	Краткая характеристика оценочного средства	Представление оценочного средства в КОМПЛЕКТе	
1	Собеседование,	Средство контроля, организованное	Вопросы по текущим	
	устный опрос	как специальная беседа	темам	

№ п/п	Наименование оценочного средства	Краткая характеристика оценочного средства	Представление оценочного средства в КОМПЛЕКТе
		преподавателя с обучающимся на темы, связанные с изучаемой дисциплиной, и рассчитанное на выяснение объема знаний, обучающегося по определенному разделу, теме, проблеме и т.п.	
2	Тест	Система стандартизированных заданий, позволяющая автоматизировать процедуру измерения уровня знаний и умений обучающегося	Тест № 1
3	Практическая работа	Деятельность, направленная на углубление применения, развития теоретических знаний в комплексе с формированием необходимых для этого умений и навыков	Практическая работа № 1 Практическая работа № 2 Практическая работа № 3 Практическая работа № 4 Практическая работа № 5 Практическая работа № 6

1.6 Шкала оценки образовательных достижений

1.6.1 Критерии и шкала оценивания ответов на устные вопросы

№ п/п	Критерии оценивания	Оценка
1	Студент показывает прочные знания основных процессов изучаемой предметной области, владеет терминологическим аппаратом; умеет объяснять сущность, явлений, процессов, событий, делает выводы и обобщения, дает аргументированные ответы, приводит примеры; свободно владеет монологической речью, его ответ отличается логичностью, последовательностью, а также глубиной и полнотой раскрытия темы	отлично
2	Студент обнаруживает прочные знания основных процессов изучаемой предметной области, владеет терминологическим аппаратом; умеет объяснять сущность, явлений, процессов, событий, делает выводы и обобщения, дает аргументированные ответы, приводит примеры, свободно владеет монологической речью, его ответ отличается логичностью, последовательностью, а также глубиной и полнотой раскрытия темы, однако допускается одна — две неточности в ответе	хорошо
3	Студент показывает знания основных вопросов теории, но дает недостаточно аргументированные ответы и примеры, недостаточно свободно владеет монологической речью, навыки анализа явлений, процессов слабо сформированы. Его ответ свидетельствует в основном о знании процессов изучаемой предметной области, но отличается недостаточной глубиной и полнотой раскрытия темы,	удовлетворительно

№ п/п	Критерии оценивания	Оценка
	логичностью и последовательностью. Допускается	
	несколько ошибок в содержании ответа	
4	Ответ студента показывает незнание процессов изучаемой	неудовлетворительно
	предметной области, отличается неглубоким раскрытием	
	темы; незнанием основных вопросов теории,	
	несформированными навыками анализа явлений, процессов;	
	неумением давать аргументированные ответы, слабым	
	владением монологической речью, отсутствием логичности	
	и последовательности. Допускаются серьезные ошибки в	
	содержании ответа	

1.6.2 Критерии и шкала оценивания результатов тестирования

№ п/п	Тестовые нормы, % правильных ответов	Оценка
1	90-100 %	отлично
2	75-89 %	хорошо
3	50-74 %	удовлетворительно
4	менее 50 %	неудовлетворительно

1.6.3 Критерии и шкала оценивания результатов выполнения практической работы

В процессе выполнения практической работы каждый студент составляет индивидуальный отчет, который включает цели и задачи работы, практическую часть и выводы. Выводы должны четко формулировать основные результаты работы.

Оценка **«отлично»** выставляется, если студент активно работает в течение практического занятия, дает полные ответы на вопросы в соответствии с планом практической работы, показывает глубокое владение теоретическим материалом, знание соответствующей литературы, проявляет умение самостоятельно и аргументированно излагать материал, анализировать явления и факты, делать самостоятельные обобщения и выводы, правильно выполняет учебные задачи, не допуская более одной арифметической ошибки или описки.

Оценка **«хорошо»** выставляется при условии соблюдения следующих требований: студент активно работает в течение практического занятия, вопросы освещены полно, изложения материала логическое, обоснованное фактами, со ссылками на соответствующие нормативные документы и литературные источники, освещение вопросов завершено выводами, студент обнаружил умение анализировать факты и события, а также выполнять учебные задания. Но в ответах допущены неточности, некоторые незначительные ошибки, имеет место недостаточная аргументированность при изложении материала, четко выраженное отношение студента к фактам и событиям или допущены 1-2 арифметические и 1-2 логические ошибки при решении задач.

Оценка **«удовлетворительно»** выставляется в том случае, когда студент в целом овладел общей сутью вопросов по данной теме, обнаруживает знание лекционного материала, законодательства и учебной литературы, пытается анализировать факты и события, делать выводы и решать задачи. Но на занятии ведет себя пассивно, отвечает только по вызову преподавателя, дает неполные ответы на вопросы, допускает грубые ошибки при освещении теоретического материала или 3-4 логических ошибок при решении

специальных задач.

Оценка **«неудовлетворительно»** выставляется в случае, когда студент не отвечает на поставленные вопросы или они освещены неправильно, бессистемно, с грубыми ошибками, отсутствуют понимания основной сути вопросов, обнаружено неумение делать выводы и обобщения, решать учебные задачи.

1.7 Этапы формирования компетенций

No	Voutno Hypyony to posto H. I	Формуруализа	Вид аттестации			
п/п	Контролируемые разделы, темы дисциплины	Формируемые компетенции	Текущий	Промежуточная		
11/11	темы дисциплины	компетенции	контроль	аттестация		
1	Основы теории комплексных	ОК 01, ОК	Практическая	Дифференциров		
	чисел	02,ОК 04, ОК	работа № 1	анный зачет		
		05,OK 09				
2	Теория пределов	ОК 01, ОК	Практическая			
		02,ОК 04, ОК	работа № 2			
		05,ОК 09				
3	Дифференциальное исчисление	ОК 01, ОК	Практическая			
	функции одной действительной	02,ОК 04, ОК	работа № 3			
	переменной	05,OK 09				
4	Интегральное исчисление	OK 01, OK	Практическая			
	функции одной действительной	02,ОК 04, ОК	работа № 4			
	переменной	05,ОК 09				
5	Дифференциальное исчисление	OK 01, OK	Практическая			
	функции нескольких	02,OK 04, OK	работа № 5			
	действительных переменных	05,ОК 09	-			

2. КОНТРОЛЬНО-ОПЕНОЧНЫЕ СРЕДСТВА

2.1 Оценочные средства для текущего контроля

Пример заданий для практической работы

Задача. Шесть шаров случайным образом раскладывают в три ящика. Найти вероятность того, что во всех ящиках окажется разное число шаров, при условии, что все ящики не пустые.

Решение: Используем <u>классическое определение вероятности</u>: P=m/nP=m/n, где mm - число исходов, благоприятствующих осуществлению события, а nn - число всех равновозможных элементарных исходов.

m=6m=6, так как есть только три случая расположения 6 шаров по 3 ящикам, чтобы во всех ящиках оказалось разное число шаров: (1, 2, 3), (2, 1, 3), (3, 2, 1), (1, 3, 2), (2, 3, 1), (3, 1, 2).

Всего случаев расположения 6 шаров по 3 ящикам, чтобы ни один ящик не остался пустым равно

$$m=C_{3-16-1}=C_{25}=5!2!3!=4.51.2=10.$$
 $m=C_{6-13-1}=C_{52}=5!2!3!=4.51.2=10.$

8

Тогда искомая вероятность P=6/10=0,6P=6/10=0,6.

Ответ: 0,6.

ЗАДАНИЕ. Из генеральной совокупности извлечена выборка объема n. Найти выборочную среднюю, выборочную дисперсию, выборочное среднее квадратическое отклонение, исправленную выборочную дисперсию, коэффициент вариации, моду и медиану.

X_{i}	10,5	11	11,5	12	12,5	13	13,5
n,	2	18	40	25	6	5	4

PEHIEHHE.

Выборочная средняя
$$\overline{x} = \frac{1}{n} \sum x_i n_i = \frac{1}{100} 1173 = 11,73$$
.

Выборочная дисперсия
$$\overline{D} = \frac{1}{n} \sum_{i} (x_i - \overline{x})^2 n_i = \frac{1}{100} 40,71 = 0,4071$$

Исправленная дисперсия
$$S^2 = \frac{n}{n-1}\overline{D} = \frac{100}{99}0,4071 = 0,411$$

Выборочное среднеквадратическое отклонение $\overline{\sigma} = \sqrt{\overline{D}} = 0,638$

Исправленное выборочное среднеквадратическое отклонение S=0,641

Вычисления приведены в таблице ниже.

Х,	10,5	11	11,5	12	12,5	13	13,5	Сумма
n_i	2	18	40	25	6	5	4	100
$X_i B_i$	21	198	460	300	75	65	54	1173
$(x_i - \overline{x})^2 n_i$	3,0258	9,5922	2,116	1,8225	3,5574	8.0645	12,532	40,71

Коэффициент вариации
$$V = \frac{\overline{\sigma}}{2} 100\% = \frac{0,638}{11.73} 100\% = 5,44\%$$

Мода – варианта с наибольшей частотой, Мо = 11,5.

Медиана — варианта, находящаяся в середине ряда: Me = 12.

2.2 Оценочные средства для промежуточной аттестации

Вопросы к дифференцированному зачету по учебной дисциплине

- 1. Основные понятия теории вероятностей
- 2 Классическое определение вероятностей..
- 3. Условная вероятность. Независимость событий.
- 4. Формула полной вероятности. Формула Байеса.
- 5. Последовательность независимых испытаний. Формула Бернулли.
- 6. Случайная величина. Законы распределения случайных величин.
- 7. Функция распределения случайной величины и ее свойства.
- 8. Плотность распределения и ее свойства.
- 9. Общее определение математического ожидания и его свойства.
- 10. Дисперсия и ее свойства.
- 11. Закон больших чисел. Неравенство Чебышева, теорема Чебышева.
- 12. Теорема Бернулли.
- 13. Центральная предельная теорема.
- 14. Основные законы распределения вероятностей случайной величины: биномиальный, равномерный, нормальный.
- 15. Основные понятия математической статистики (выборка, вариационный ряд, гистограмма).
- 16. Свойства оценок.

Пример теста:

- 1. Вероятность события P(A) это:
- $P(A) = \frac{m}{n}$, где m число исходов испытаний, благоприятствующих появлению события A, n-общее число исходов испытаний;
- числовая функция, определенная на поле событий $\,F\,$ и удовлетворяющая трем условиям:

1.
$$P(A) \ge 0$$
; 2. $P(\Omega) = 1$; 3. $P = \sum_{k} A_{k} = \sum_{k} P(A_{k})$.

- числовая мера появления события A в п испытаниях;
- $P(A) = \frac{m}{n}$, где m число появлений событий A в n испытаниях; отношение

9

число элементарных событий в некотором подмножестве $A \subseteq \Omega$.

- 2. Какие способы задания вероятностей вы знаете:
 - классический, динамический, точечный, геометрический;
 - статистический, геометрический, биноминальный, классический;
 - геометрический, классический, дискретный, статистический;
 - классический, геометрический, точечный, статистический;
 - классический, геометрический, статистический, комбинаторный.
- 3. Когда применяется классический способ задания вероятности:
 - пространство элементарных событий бесконечно, все события равновозможные и независимые;
 - пространство элементарных событий замкнуто, все события независимы;
 - пространство элементарных событий конечно, все события равновозможные;
 - пространство элементарных событий конечно, все элементарные события независимы.
- 4. Когда применяется геометрический способ задания вероятности:
 - пространство элементарных событий бесконечно, все события равновозможные и независимые;
 - пространство элементарных событий замкнуто, все события независимы;
 - пространство элементарных событий конечно, все события равновозможные;
 - пространство элементарных событий конечно, все элементарные события независимы.
- 5. Суммой двух **событий** A и B называют:
 - событие $A \cap B$, состоящее из элементарных событий, принадлежащих или событию A или B:
 - событие A+B, состоящее из элементарных событий, принадлежащих или событию A или B;
 - событие A+B , состоящее из элементарных событий, принадлежащих и событию A и B ;
 - событие $A \cdot B$, состоя щее из элементарных событий, принадлежащих и событию $A \cdot B$:
 - событие $A \cup B$, состоящее из элементарных событий, принадлежащих и событию A и B:
- 6. Произведени**ем двух соб**ытий A и B называют:
 - событие $A \cap B$, состоящее из элементарных событий, принадлежащих или событию A или B:
 - событие A+B, состоящее из элементарных событий, принадлежащих или событию A или B:
 - событие A+B, состоящее из элементарных событий, принадлежащих и событию A и B:
 - событие $A \bullet B$, состоящее из элементарных событий, принадлежащих и событию A и B:

• событие $A \cup B$, состоящее из элементарных событий, принадлежащих и событию A и B:

7.Законы распределения непрерывной случайной величины представляются в виде:

- функции распределения F(x) и совокупностью значений X;
- функции распределения F(x) и функции плотности распределения $\mathcal{O}(x)$;
- функции распределения F(x) и совокупностью значений P_i ;
- функции распределения F(x) и рядом распределения $(x_i; p_i)$;
- функции распределения F(x) и $\sum P(X = x)$;

8. Функция распределения случайной величины это:

- Вероятность того, что P(X = x);
- Вероятность того, что P(X ≈ x);
- Вероятность того, что $P(X \le x)$;
- Вероятность того, что ^{P(X ≠ x)};
- Вероятность того, что P(X > x).

9. Функция плотности распределения случайной величины $\rho(x)$ это:

• средняя плотность распределения вероятности на интервале Δx ,

 $\rho(x) = \frac{F(x)}{\Delta x}$ равная

- предельная средняя плотность вероятности на интервале $^{\bigwedge X}$, равная $\rho(x) = F^{^{\dag}}(x)$:
- предельная средняя плотность вероятности на интервале Δx , равная $\rho(x) = dF(x)$.
- предельная средняя плотность вероятности на интервале Δx , равная $\rho(x) = \frac{F(x)}{dx}$:
- средняя плотность распределения вероятности на интервале Λx , $\rho(x) = \frac{F(x) F(\Delta x)}{\Delta x}$ равная

10. Основные числовые характеристики дискретных случайных величин это:

- Среднее арифметическое, дисперсия, квантиль, моменты k -того порядка, мода и медиана;
- Дисперсия, центральные и начальные моменты k -того порядка, среднее геометрическое, мода и медиана;
- Математическое ожидание, мода, медиана, дисперсия, среднее квадратичное отклонение, центральные и начальные моменты k -того порядка.

- Математическое ожидание, среднее арифметическое, дисперсия, среднее квадратичное отклонение, мода, медиана, центральные и начальные моменты *k* -того порядка.
- Математическое ожидание, мода, медиана, дисперсия, среднее квадратичное отклонение, центральные и начальные моменты k -того порядка, эксцесс, асимметрия.

11. Сущность предельных теорем и закона больших чисел заключается:

- В определении числовых характеристик случайных величин при большом числе наблюдаемых данных;
- В поведении числовых характеристик и законов распределения наблюдаемых значений случайных величин;
- В определении области применения нормального закона распределения случайных величин при сложении большого количества случайных величин;
- В поведении числовых характеристик и законов распределения случайных величин при увеличении числа наблюдений и опытов.
- В определении суммарных значений основных характеристик законов распределения.

12. Коэффициент корреляции случайных величин характеризует:

- Степень независимости между случайными величинами;
- Степень нелинейной зависимости между случайными величинами;
- Степень линейной зависимости между случайными величинами;
- Степень регрессии между случайными величинами;
- Степень разброса двух величин относительно математического ожидания.
- Степень отклонения двух величин от их математических ожиданий.

13. Марковским случайным процессом называют такие процессы, у которых:

- Плотность совместного распределения произвольных N сечений полностью определяет поведение процесса;
- Плотность совместного распределения произвольных (N-1) сечений полностью определяет поведение процесса;
- Плотность совместного распределения произвольных N=3 сечений полностью определяет поведение процесса;
- Плотность совместного распределения произвольных N=2 сечений полностью определяет поведение процесса;
- Плотность совместного распределения произвольных N=4 сечений полностью определяет поведение процесса;

14. Марковскими цепями называю случайных процесс, у которого:

- Сама функция подчиняется нормальному закону распределения;
- Сама функция подчиняется показательному закону распределения;
- Сама функция имеет дискретный характер;
- Сама функция имеет непрерывный характер;
- Сама функция подчиняется биноминальному закону распределения;

15. К оценкам генеральной совокупности предъявляются следующие требования:

- Оценка должна быть стационарной, эргодичной и эффективной;
- Оценка должна быть состоятельной, эргодичной и эффективной;
- Оценка должна быть состоятельной, стационарной и эргодичной;
- Оценка должна быть состоятельной, эффективной и несмещенной;
- Оценка должна быть несмещенной, стационарной и эффективной;

16.Статистической гипотезой называют:

- Предположение относительно параметров и вида закона распределения генеральной совокупности;
- Предположение относительно объема генеральной совокупности;
- Предположение относительно параметров и вида закона распределения выборки;
- Предположение относительно объема выборочной совокупности;
- Предположение относительно статистического критерия;

17. При проверки статистической гипотезы ошибка первого рода это:

- Принятие в действительности неверной гипотезы;
- Отвержение в действительности правильной гипотезы;
- Принятие в действительности правильной гипотезы;
- Отвержение в действительности неправильной гипотезы;

18. В критерии Колмогорова за меру качества согласия эмпирического и теоретического распределения принимается:

- Относительное расхождение между теоретической и эмпирической частотами попадания случайной величины в интервал;
- Максимальное расхождение по модулю между теоретической и эмпирической частотами попадания случайной величины в интервал;
- Среднее квадратичное отклонение между теоретической и эмпирической частотами попадания случайной величины в интервал;
- Максимальное расхождение модуля разности между эмпирической и теоретической функциями распределения;
- Максимальное расхождение модуля разности между эмпирической и теоретической функциями плотности распределения;

19. Дисперсионный анализ позволяет:

- Установить степень влияния фактора на изменчивость признака;
- Установить количество факторов влияния на изменчивость признака;
- Установить степень влияния факторов на дисперсию;
- Установить степень влияния фактора на среднее значение;
- Установить степень влияния фактора на числовые характеристики случайной величины;

20. Задачами регрессионного анализа являются:

- Выявление связи между случайными величинами и оценка их тесноты;
- Выявление связи между случайными величинами и их числовыми характеристиками;
- Выявление уравнения связи между случайными величинами;

- Выявление уравнения связи между случайной зависимой переменной и неслучайными независимыми переменными и оценка неизвестных значений зависимой переменной;
- Выявление уравнения связи между неслучайной зависимой переменной и случайными независимыми переменными и оценка неизвестных значений независимой переменной;
- Выявление уравнения связи между неслучайной независимой переменной и случайными независимыми переменными и оценка неизвестных значений зависимой переменной;

За каждый правильный ответ – 1 балл

Критерии оценивания

Количество правильных ответов	Оценка
18-20	«отлично»
15-17	«хорошо»
12-14	«удовлетворительно
Менее 12	«неудовлетворительно»